lib/rumale/linear_model/ridge.rb in rumale-linear_model-0.24.0 vs lib/rumale/linear_model/ridge.rb in rumale-linear_model-0.25.0

- old
+ new

@@ -2,205 +2,136 @@ require 'lbfgsb' require 'rumale/base/regressor' require 'rumale/validation' -require 'rumale/linear_model/base_sgd' +require_relative 'base_estimator' + module Rumale module LinearModel # Ridge is a class that implements Ridge Regression - # with stochastic gradient descent (SGD) optimization, - # singular value decomposition (SVD), or L-BFGS optimization. + # with singular value decomposition (SVD) or L-BFGS optimization. # # @example # require 'rumale/linear_model/ridge' # - # estimator = - # Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1) + # estimator = Rumale::LinearModel::Ridge.new(reg_param: 0.1) # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) # # # If Numo::Linalg is installed, you can specify 'svd' for the solver option. # require 'numo/linalg/autoloader' # require 'rumale/linear_model/ridge' # # estimator = Rumale::LinearModel::Ridge.new(reg_param: 0.1, solver: 'svd') # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) - # - # *Reference* - # - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010. - class Ridge < BaseSGD - include ::Rumale::Base::Regressor + class Ridge < Rumale::LinearModel::BaseEstimator + include Rumale::Base::Regressor - # Return the weight vector. - # @return [Numo::DFloat] (shape: [n_outputs, n_features]) - attr_reader :weight_vec - - # Return the bias term (a.k.a. intercept). - # @return [Numo::DFloat] (shape: [n_outputs]) - attr_reader :bias_term - - # Return the random generator for random sampling. - # @return [Random] - attr_reader :rng - # Create a new Ridge regressor. # - # @param learning_rate [Float] The initial value of learning rate. - # The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t). - # If solver is not 'sgd', this parameter is ignored. - # @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds. - # If nil is given, the decay sets to 'reg_param * learning_rate'. - # If solver is not 'sgd', this parameter is ignored. - # @param momentum [Float] The momentum factor. - # If solver is not 'sgd', this parameter is ignored. # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param max_iter [Integer] The maximum number of epochs that indicates # how many times the whole data is given to the training process. # If solver is 'svd', this parameter is ignored. - # @param batch_size [Integer] The size of the mini batches. - # If solver is not 'sgd', this parameter is ignored. # @param tol [Float] The tolerance of loss for terminating optimization. # If solver is 'svd', this parameter is ignored. - # @param solver [String] The algorithm to calculate weights. ('auto', 'sgd', 'svd', or 'lbfgs'). + # @param solver [String] The algorithm to calculate weights. ('auto', 'svd', or 'lbfgs'). # 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'lbfgs' solver. - # 'sgd' uses the stochastic gradient descent optimization. # 'svd' performs singular value decomposition of samples. # 'lbfgs' uses the L-BFGS method for optimization. - # @param n_jobs [Integer] The number of jobs for running the fit method in parallel. - # If nil is given, the method does not execute in parallel. - # If zero or less is given, it becomes equal to the number of processors. - # This parameter is ignored if the Parallel gem is not loaded or solver is not 'sgd'. # @param verbose [Boolean] The flag indicating whether to output loss during iteration. # If solver is 'svd', this parameter is ignored. - # @param random_seed [Integer] The seed value using to initialize the random generator. - def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9, - reg_param: 1.0, fit_bias: true, bias_scale: 1.0, - max_iter: 1000, batch_size: 50, tol: 1e-4, - solver: 'auto', - n_jobs: nil, verbose: false, random_seed: nil) + def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, solver: 'auto', verbose: false) super() - @params.merge!(method(:initialize).parameters.to_h { |_t, arg| [arg, binding.local_variable_get(arg)] }) + @params = { + reg_param: reg_param, + fit_bias: fit_bias, + bias_scale: bias_scale, + max_iter: max_iter, + tol: tol, + verbose: verbose + } @params[:solver] = if solver == 'auto' enable_linalg?(warning: false) ? 'svd' : 'lbfgs' else - solver.match?(/^svd$|^sgd$|^lbfgs$/) ? solver : 'lbfgs' + solver.match?(/^svd$|^lbfgs$/) ? solver : 'lbfgs' end - @params[:decay] ||= @params[:reg_param] * @params[:learning_rate] - @params[:random_seed] ||= srand - @rng = Random.new(@params[:random_seed]) - @penalty_type = L2_PENALTY - @loss_func = ::Rumale::LinearModel::Loss::MeanSquaredError.new end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model. # @return [Ridge] The learned regressor itself. def fit(x, y) - x = ::Rumale::Validation.check_convert_sample_array(x) - y = ::Rumale::Validation.check_convert_target_value_array(y) - ::Rumale::Validation.check_sample_size(x, y) + x = Rumale::Validation.check_convert_sample_array(x) + y = Rumale::Validation.check_convert_target_value_array(y) + Rumale::Validation.check_sample_size(x, y) - if @params[:solver] == 'svd' && enable_linalg?(warning: false) - fit_svd(x, y) - elsif @params[:solver] == 'lbfgs' - fit_lbfgs(x, y) - else - fit_sgd(x, y) - end + @weight_vec, @bias_term = if @params[:solver] == 'svd' && enable_linalg?(warning: false) + partial_fit_svd(x, y) + else + partial_fit_lbfgs(x, y) + end self end # Predict values for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values. # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample. def predict(x) - x = ::Rumale::Validation.check_convert_sample_array(x) + x = Rumale::Validation.check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end private - def fit_svd(x, y) + def partial_fit_svd(x, y) x = expand_feature(x) if fit_bias? - s, u, vt = Numo::Linalg.svd(x, driver: 'sdd', job: 'S') d = (s / (s**2 + @params[:reg_param])).diag w = vt.transpose.dot(d).dot(u.transpose).dot(y) - - @weight_vec, @bias_term = single_target?(y) ? split_weight(w) : split_weight_mult(w) + w = w.transpose.dup unless single_target?(y) + split_weight(w) end - def fit_lbfgs(x, y) - fnc = proc do |w, x, y, a| # rubocop:disable Lint/ShadowingOuterLocalVariable + def partial_fit_lbfgs(base_x, base_y) + fnc = proc do |w, x, y, a| n_samples, n_features = x.shape w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil? z = x.dot(w.transpose) d = z - y loss = (d**2).sum.fdiv(n_samples) + a * (w * w).sum gradient = 2.fdiv(n_samples) * d.transpose.dot(x) + 2.0 * a * w [loss, gradient.flatten.dup] end - x = expand_feature(x) if fit_bias? + base_x = expand_feature(base_x) if fit_bias? - n_features = x.shape[1] - n_outputs = single_target?(y) ? 1 : y.shape[1] + n_features = base_x.shape[1] + n_outputs = single_target?(base_y) ? 1 : base_y.shape[1] + w_init = Numo::DFloat.zeros(n_outputs * n_features) res = Lbfgsb.minimize( - fnc: fnc, jcb: true, x_init: init_weight(n_features, n_outputs), args: [x, y, @params[:reg_param]], + fnc: fnc, jcb: true, x_init: w_init, args: [base_x, base_y, @params[:reg_param]], maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1 ) - @weight_vec, @bias_term = - if single_target?(y) - split_weight(res[:x]) - else - split_weight_mult(res[:x].reshape(n_outputs, n_features).transpose) - end + w = single_target?(base_y) ? res[:x] : res[:x].reshape(n_outputs, n_features) + split_weight(w) end - def fit_sgd(x, y) - if single_target?(y) - @weight_vec, @bias_term = partial_fit(x, y) - else - n_outputs = y.shape[1] - n_features = x.shape[1] - @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) - @bias_term = Numo::DFloat.zeros(n_outputs) - if enable_parallel? - models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) } - n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] } - else - n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) } - end - end - end - def single_target?(y) y.ndim == 1 - end - - def init_weight(n_features, n_outputs) - ::Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup - end - - def split_weight_mult(w) - if fit_bias? - [w[0...-1, true].dup, w[-1, true].dup] - else - [w.dup, Numo::DFloat.zeros(w.shape[1])] - end end end end end