lib/rumale/linear_model/nnls.rb in rumale-linear_model-0.24.0 vs lib/rumale/linear_model/nnls.rb in rumale-linear_model-0.25.0
- old
+ new
@@ -1,115 +1,92 @@
# frozen_string_literal: true
require 'lbfgsb'
-require 'rumale/base/estimator'
require 'rumale/base/regressor'
require 'rumale/validation'
+require_relative 'base_estimator'
+
module Rumale
module LinearModel
# NNLS is a class that implements non-negative least squares regression.
# NNLS solves least squares problem under non-negative constraints on the coefficient using L-BFGS-B method.
#
# @example
# require 'rumale/linear_model/nnls'
#
- # estimator = Rumale::LinearModel::NNLS.new(reg_param: 0.01, random_seed: 1)
+ # estimator = Rumale::LinearModel::NNLS.new(reg_param: 0.01)
# estimator.fit(training_samples, traininig_values)
# results = estimator.predict(testing_samples)
#
- class NNLS < ::Rumale::Base::Estimator
- include ::Rumale::Base::Regressor
+ class NNLS < Rumale::LinearModel::BaseEstimator
+ include Rumale::Base::Regressor
- # Return the weight vector.
- # @return [Numo::DFloat] (shape: [n_outputs, n_features])
- attr_reader :weight_vec
-
- # Return the bias term (a.k.a. intercept).
- # @return [Numo::DFloat] (shape: [n_outputs])
- attr_reader :bias_term
-
# Returns the number of iterations when converged.
# @return [Integer]
attr_reader :n_iter
- # Return the random generator for initializing weight.
- # @return [Random]
- attr_reader :rng
-
# Create a new regressor with non-negative least squares method.
#
# @param reg_param [Float] The regularization parameter for L2 regularization term.
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
# @param bias_scale [Float] The scale of the bias term.
# @param max_iter [Integer] The maximum number of epochs that indicates
# how many times the whole data is given to the training process.
# @param tol [Float] The tolerance of loss for terminating optimization.
# If solver = 'svd', this parameter is ignored.
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
- # @param random_seed [Integer] The seed value using to initialize the random generator.
- def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
- max_iter: 1000, tol: 1e-4, verbose: false, random_seed: nil)
+ def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, verbose: false)
super()
@params = {
reg_param: reg_param,
fit_bias: fit_bias,
bias_scale: bias_scale,
max_iter: max_iter,
tol: tol,
- verbose: verbose,
- random_seed: random_seed || srand
+ verbose: verbose
}
- @rng = Random.new(@params[:random_seed])
end
# Fit the model with given training data.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
# @return [NonneagtiveLeastSquare] The learned regressor itself.
def fit(x, y)
- x = ::Rumale::Validation.check_convert_sample_array(x)
- y = ::Rumale::Validation.check_convert_target_value_array(y)
- ::Rumale::Validation.check_sample_size(x, y)
+ x = Rumale::Validation.check_convert_sample_array(x)
+ y = Rumale::Validation.check_convert_target_value_array(y)
+ Rumale::Validation.check_sample_size(x, y)
x = expand_feature(x) if fit_bias?
n_features = x.shape[1]
n_outputs = single_target?(y) ? 1 : y.shape[1]
- w_init = ::Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup
- w_init[w_init.lt(0)] = 0
+ w_init = Numo::DFloat.zeros(n_outputs * n_features)
bounds = Numo::DFloat.zeros(n_outputs * n_features, 2)
bounds.shape[0].times { |n| bounds[n, 1] = Float::INFINITY }
res = Lbfgsb.minimize(
fnc: method(:nnls_fnc), jcb: true, x_init: w_init, args: [x, y, @params[:reg_param]], bounds: bounds,
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1
)
@n_iter = res[:n_iter]
- w = single_target?(y) ? res[:x] : res[:x].reshape(n_outputs, n_features).transpose
+ w = single_target?(y) ? res[:x] : res[:x].reshape(n_outputs, n_features)
+ @weight_vec, @bias_term = split_weight(w)
- if fit_bias?
- @weight_vec = single_target?(y) ? w[0...-1].dup : w[0...-1, true].dup
- @bias_term = single_target?(y) ? w[-1] : w[-1, true].dup
- else
- @weight_vec = w.dup
- @bias_term = single_target?(y) ? 0 : Numo::DFloat.zeros(y.shape[1])
- end
-
self
end
# Predict values for samples.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
def predict(x)
- x = ::Rumale::Validation.check_convert_sample_array(x)
+ x = Rumale::Validation.check_convert_sample_array(x)
x.dot(@weight_vec.transpose) + @bias_term
end
private
@@ -120,18 +97,9 @@
z = x.dot(w.transpose)
d = z - y
loss = (d**2).sum.fdiv(n_samples) + alpha * (w * w).sum
gradient = 2.fdiv(n_samples) * d.transpose.dot(x) + 2.0 * alpha * w
[loss, gradient.flatten.dup]
- end
-
- def expand_feature(x)
- n_samples = x.shape[0]
- Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
- end
-
- def fit_bias?
- @params[:fit_bias] == true
end
def single_target?(y)
y.ndim == 1
end