lib/rumale/linear_model/lasso.rb in rumale-linear_model-0.24.0 vs lib/rumale/linear_model/lasso.rb in rumale-linear_model-0.25.0

- old
+ new

@@ -1,111 +1,157 @@ # frozen_string_literal: true +require 'rumale/base/estimator' require 'rumale/base/regressor' require 'rumale/validation' -require 'rumale/linear_model/base_sgd' +require_relative 'base_estimator' + module Rumale module LinearModel - # Lasso is a class that implements Lasso Regression - # with stochastic gradient descent (SGD) optimization. + # Lasso is a class that implements Lasso Regression with coordinate descent optimization. # # @example # require 'rumale/linear_model/lasso' # - # estimator = - # Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1) + # estimator = Rumale::LinearModel::Lasso.new(reg_param: 0.1) # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) # # *Reference* - # - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007. - # - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009. - # - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010. - class Lasso < BaseSGD - include ::Rumale::Base::Regressor + # - Friedman, J., Hastie, T., and Tibshirani, R., "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, 33 (1), pp. 1--22, 2010. + # - Simon, N., Friedman, J., and Hastie, T., "A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression," arXiv preprint arXiv:1311.6529, 2013. + class Lasso < Rumale::LinearModel::BaseEstimator + include Rumale::Base::Regressor - # Return the weight vector. - # @return [Numo::DFloat] (shape: [n_outputs, n_features]) - attr_reader :weight_vec + # Return the number of iterations performed in coordinate descent optimization. + # @return [Integer] + attr_reader :n_iter - # Return the bias term (a.k.a. intercept). - # @return [Numo::DFloat] (shape: [n_outputs]) - attr_reader :bias_term - - # Return the random generator for random sampling. - # @return [Random] - attr_reader :rng - # Create a new Lasso regressor. # - # @param learning_rate [Float] The initial value of learning rate. - # The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t). - # @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds. - # If nil is given, the decay sets to 'reg_param * learning_rate'. - # @param momentum [Float] The momentum factor. # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param max_iter [Integer] The maximum number of epochs that indicates # how many times the whole data is given to the training process. - # @param batch_size [Integer] The size of the mini batches. # @param tol [Float] The tolerance of loss for terminating optimization. - # @param n_jobs [Integer] The number of jobs for running the fit method in parallel. - # If nil is given, the method does not execute in parallel. - # If zero or less is given, it becomes equal to the number of processors. - # This parameter is ignored if the Parallel gem is not loaded. - # @param verbose [Boolean] The flag indicating whether to output loss during iteration. - # @param random_seed [Integer] The seed value using to initialize the random generator. - def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9, - reg_param: 1.0, fit_bias: true, bias_scale: 1.0, - max_iter: 1000, batch_size: 50, tol: 1e-4, - n_jobs: nil, verbose: false, random_seed: nil) + def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4) super() - @params.merge!(method(:initialize).parameters.to_h { |_t, arg| [arg, binding.local_variable_get(arg)] }) - @params[:decay] ||= @params[:reg_param] * @params[:learning_rate] - @params[:random_seed] ||= srand - @rng = Random.new(@params[:random_seed]) - @penalty_type = L1_PENALTY - @loss_func = ::Rumale::LinearModel::Loss::MeanSquaredError.new + @params = { + reg_param: reg_param, + fit_bias: fit_bias, + bias_scale: bias_scale, + max_iter: max_iter, + tol: tol + } end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model. # @return [Lasso] The learned regressor itself. def fit(x, y) - x = ::Rumale::Validation.check_convert_sample_array(x) - y = ::Rumale::Validation.check_convert_target_value_array(y) - ::Rumale::Validation.check_sample_size(x, y) + x = Rumale::Validation.check_convert_sample_array(x) + y = Rumale::Validation.check_convert_target_value_array(y) + Rumale::Validation.check_sample_size(x, y) - n_outputs = y.shape[1].nil? ? 1 : y.shape[1] - n_features = x.shape[1] + @n_iter = 0 + x = expand_feature(x) if fit_bias? - if n_outputs > 1 - @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) - @bias_term = Numo::DFloat.zeros(n_outputs) - if enable_parallel? - models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) } - n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] } - else - n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) } - end - else - @weight_vec, @bias_term = partial_fit(x, y) - end + @weight_vec, @bias_term = if single_target?(y) + partial_fit(x, y) + else + partial_fit_multi(x, y) + end + self end # Predict values for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values. # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample. def predict(x) - x = ::Rumale::Validation.check_convert_sample_array(x) + x = Rumale::Validation.check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term + end + + private + + def partial_fit(x, y) + n_features = x.shape[1] + w = Numo::DFloat.zeros(n_features) + x_norms = (x**2).sum(axis: 0) + residual = y - x.dot(w) + + @params[:max_iter].times do |iter| + w_err = 0.0 + n_features.times do |j| + next if x_norms[j].zero? + + w_prev = w[j] + + residual += w[j] * x[true, j] + z = x[true, j].dot(residual) + w[j] = soft_threshold(z, @params[:reg_param]).fdiv(x_norms[j]) + residual -= w[j] * x[true, j] + + w_err = [w_err, (w[j] - w_prev).abs].max + end + + @n_iter = iter + 1 + + break if w_err <= @params[:tol] + end + + split_weight(w) + end + + def partial_fit_multi(x, y) + n_features = x.shape[1] + n_outputs = y.shape[1] + w = Numo::DFloat.zeros(n_outputs, n_features) + x_norms = (x**2).sum(axis: 0) + residual = y - x.dot(w.transpose) + + @params[:max_iter].times do |iter| + w_err = 0.0 + n_features.times do |j| + next if x_norms[j].zero? + + w_prev = w[true, j] + + residual += x[true, j].expand_dims(1) * w[true, j] + z = x[true, j].dot(residual) + w[true, j] = [1.0 - @params[:reg_param].fdiv(Math.sqrt((z**2).sum)), 0.0].max.fdiv(x_norms[j]) * z + residual -= x[true, j].expand_dims(1) * w[true, j] + + w_err = [w_err, (w[true, j] - w_prev).abs.max].max + end + + @n_iter = iter + 1 + + break if w_err <= @params[:tol] + end + + split_weight(w) + end + + def soft_threshold(z, threshold) + sign(z) * [z.abs - threshold, 0].max + end + + def sign(z) + return 0.0 if z.zero? + + z.positive? ? 1.0 : -1.0 + end + + def single_target?(y) + y.ndim == 1 end end end end