lib/rumale/ensemble/gradient_boosting_regressor.rb in rumale-ensemble-0.25.0 vs lib/rumale/ensemble/gradient_boosting_regressor.rb in rumale-ensemble-0.26.0

- old
+ new

@@ -86,11 +86,11 @@ # @return [GradientBoostingRegressor] The learned regressor itself. def fit(x, y) # initialize some variables. n_features = x.shape[1] @params[:max_features] = n_features if @params[:max_features].nil? - @params[:max_features] = [[1, @params[:max_features]].max, n_features].min + @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp n_outputs = y.shape[1].nil? ? 1 : y.shape[1] # train regressor. @base_predictions = n_outputs > 1 ? y.mean(0) : y.mean @estimators = if n_outputs > 1 multivar_estimators(x, y) @@ -139,10 +139,10 @@ def partial_fit(x, y, init_pred) # initialize some variables. estimators = [] n_samples = x.shape[0] - n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min + n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min # rubocop:disable Style/ComparableClamp whole_ids = Array.new(n_samples) { |v| v } y_pred = Numo::DFloat.ones(n_samples) * init_pred sub_rng = @rng.dup # grow trees. @params[:n_estimators].times do |_t|