lib/rumale/ensemble/gradient_boosting_classifier.rb in rumale-ensemble-0.25.0 vs lib/rumale/ensemble/gradient_boosting_classifier.rb in rumale-ensemble-0.26.0

- old
+ new

@@ -95,11 +95,11 @@ ::Rumale::Validation.check_sample_size(x, y) # initialize some variables. n_features = x.shape[1] @params[:max_features] = n_features if @params[:max_features].nil? - @params[:max_features] = [[1, @params[:max_features]].max, n_features].min + @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size # train estimator. if n_classes > 2 @base_predictions = multiclass_base_predictions(y) @@ -185,10 +185,10 @@ def partial_fit(x, y, init_pred) # initialize some variables. estimators = [] n_samples = x.shape[0] - n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min + n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min # rubocop:disable Style/ComparableClamp whole_ids = Array.new(n_samples) { |v| v } y_pred = Numo::DFloat.ones(n_samples) * init_pred sub_rng = @rng.dup # grow trees. @params[:n_estimators].times do |_t|