vendor/libgit2/src/integer.h in rugged-1.1.1 vs vendor/libgit2/src/integer.h in rugged-1.2.0

- old
+ new

@@ -41,14 +41,14 @@ unsigned long r = (unsigned long)p; return p == (int64_t)r; } /** @return true if p fits into the range of an int */ -GIT_INLINE(int) git__is_int(long long p) +GIT_INLINE(int) git__is_int(int64_t p) { int r = (int)p; - return p == (long long)r; + return p == (int64_t)r; } /* Use clang/gcc compiler intrinsics whenever possible */ #if (__has_builtin(__builtin_add_overflow) || \ (defined(__GNUC__) && (__GNUC__ >= 5))) @@ -78,27 +78,36 @@ __builtin_ssub_overflow(one, two, out) # define git__add_int64_overflow(out, one, two) \ __builtin_add_overflow(one, two, out) +/* clang on 32-bit systems produces an undefined reference to `__mulodi4`. */ +# if !defined(__clang__) || !defined(GIT_ARCH_32) +# define git__multiply_int64_overflow(out, one, two) \ + __builtin_mul_overflow(one, two, out) +# endif + /* Use Microsoft's safe integer handling functions where available */ #elif defined(_MSC_VER) # define ENABLE_INTSAFE_SIGNED_FUNCTIONS # include <intsafe.h> # define git__add_sizet_overflow(out, one, two) \ (SizeTAdd(one, two, out) != S_OK) # define git__multiply_sizet_overflow(out, one, two) \ (SizeTMult(one, two, out) != S_OK) + #define git__add_int_overflow(out, one, two) \ (IntAdd(one, two, out) != S_OK) #define git__sub_int_overflow(out, one, two) \ (IntSub(one, two, out) != S_OK) #define git__add_int64_overflow(out, one, two) \ (LongLongAdd(one, two, out) != S_OK) +#define git__multiply_int64_overflow(out, one, two) \ + (LongLongMult(one, two, out) != S_OK) #else /** * Sets `one + two` into `out`, unless the arithmetic would overflow. @@ -149,8 +158,61 @@ return true; *out = one + two; return false; } +#endif + +/* If we could not provide an intrinsic implementation for this, provide a (slow) fallback. */ +#if !defined(git__multiply_int64_overflow) +GIT_INLINE(bool) git__multiply_int64_overflow(int64_t *out, int64_t one, int64_t two) +{ + /* + * Detects whether `INT64_MAX < (one * two) || INT64_MIN > (one * two)`, + * without incurring in undefined behavior. That is done by performing the + * comparison with a division instead of a multiplication, which translates + * to `INT64_MAX / one < two || INT64_MIN / one > two`. Some caveats: + * + * - The comparison sign is inverted when both sides of the inequality are + * multiplied/divided by a negative number, so if `one < 0` the comparison + * needs to be flipped. + * - `INT64_MAX / -1` itself overflows (or traps), so that case should be + * avoided. + * - Since the overflow flag is defined as the discrepance between the result + * of performing the multiplication in a signed integer at twice the width + * of the operands, and the truncated+sign-extended version of that same + * result, there are four cases where the result is the opposite of what + * would be expected: + * * `INT64_MIN * -1` / `-1 * INT64_MIN` + * * `INT64_MIN * 1 / `1 * INT64_MIN` + */ + if (one && two) { + if (one > 0 && two > 0) { + if (INT64_MAX / one < two) + return true; + } else if (one < 0 && two < 0) { + if ((one == -1 && two == INT64_MIN) || + (two == -1 && one == INT64_MIN)) { + *out = INT64_MIN; + return false; + } + if (INT64_MAX / one > two) + return true; + } else if (one > 0 && two < 0) { + if ((one == 1 && two == INT64_MIN) || + (INT64_MIN / one > two)) + return true; + } else if (one == -1) { + if (INT64_MIN / two > one) + return true; + } else { + if ((one == INT64_MIN && two == 1) || + (INT64_MIN / one < two)) + return true; + } + } + *out = one * two; + return false; +} #endif #endif