lib/rubysl/mathn/mathn.rb in rubysl-mathn-1.0.0 vs lib/rubysl/mathn/mathn.rb in rubysl-mathn-2.0.0

- old
+ new

@@ -1,218 +1,178 @@ +#-- +# $Release Version: 0.5 $ +# $Revision: 1.1.1.1.4.1 $ + +## +# = mathn # -# mathn.rb - -# $Release Version: 0.5 $ -# $Revision: 1.1.1.1.4.1 $ -# $Date: 1998/01/16 12:36:05 $ -# by Keiju ISHITSUKA(SHL Japan Inc.) +# mathn is a library for changing the way Ruby does math. If you need +# more precise rounding with multiple division or exponentiation +# operations, then mathn is the right tool. # -# -- +# Without mathn: # +# 3 / 2 => 1 # Integer # +# With mathn: # +# 3 / 2 => 3/2 # Rational +# +# mathn features late rounding and lacks truncation of intermediate results: +# +# Without mathn: +# +# 20 / 9 * 3 * 14 / 7 * 3 / 2 # => 18 +# +# With mathn: +# +# 20 / 9 * 3 * 14 / 7 * 3 / 2 # => 20 +# +# +# When you require 'mathn', the libraries for Prime, CMath, Matrix and Vector +# are also loaded. +# +# == Copyright +# +# Author: Keiju ISHITSUKA (SHL Japan Inc.) +#-- +# class Numeric follows to make this documentation findable in a reasonable +# location -require "complex.rb" -require "rational.rb" +class Numeric; end + +require "cmath.rb" require "matrix.rb" +require "prime.rb" -class Integer +unless defined?(Math.exp!) + Object.instance_eval{remove_const :Math} + Math = CMath # :nodoc: +end - def gcd2(int) - a = self.abs - b = int.abs - a, b = b, a if a < b +## +# When mathn is required, Fixnum's division and exponentiation are enhanced to +# return more precise values from mathematical expressions. +# +# 2/3*3 # => 0 +# require 'mathn' +# 2/3*3 # => 2 - pd_a = a.prime_division - pd_b = b.prime_division +class Fixnum + remove_method :/ - gcd = 1 - for pair in pd_a - as = pd_b.assoc(pair[0]) - if as - gcd *= as[0] ** [as[1], pair[1]].min - end - end - return gcd - end + ## + # +/+ defines the Rational division for Fixnum. + # + # 1/3 # => (1/3) - def Integer.from_prime_division(pd) - value = 1 - for prime, index in pd - value *= prime**index - end - value - end + alias / quo - def prime_division - raise ZeroDivisionError if self == 0 - ps = Prime.new - value = self - if value < 0 - value = -value - pv = [[-1, 1]] - else - pv = [] - end - for prime in ps - count = 0 - while (value1, mod = value.divmod(prime) - mod) == 0 - value = value1 - count += 1 - end - if count != 0 - pv.push [prime, count] - end - break if prime * prime >= value - end - if value > 1 - pv.push [value, 1] - end - return pv - end -end + alias power! ** unless method_defined? :power! -class Prime - include Enumerable + ## + # Exponentiate by +other+ - def initialize - @seed = 1 - @primes = [] - @counts = [] - end - - def succ - i = -1 - size = @primes.size - while i < size - if i == -1 - @seed += 1 - i += 1 - else - while @seed > @counts[i] - @counts[i] += @primes[i] - end - if @seed != @counts[i] - i += 1 - else - i = -1 - end - end + def ** (other) + if self < 0 && other.round != other + Complex(self, 0.0) ** other + else + power!(other) end - @primes.push @seed - @counts.push @seed + @seed - return @seed end - alias next succ - def each - loop do - yield succ - end - end end -class Fixnum - alias / quo -end +## +# When mathn is required Bignum's division and exponentiation are enhanced to +# return more precise values from mathematical expressions. class Bignum - alias / quo -end + remove_method :/ -class Rational - Unify = true + ## + # +/+ defines the Rational division for Bignum. + # + # (2**72) / ((2**70) * 3) # => 4/3 - def inspect - format "%s/%s", numerator.inspect, denominator.inspect - end + alias / quo - alias power! ** + alias power! ** unless method_defined? :power! - def ** (other) - if other.kind_of?(Rational) - other2 = other - if self < 0 - return Complex.new!(self, 0) ** other - elsif other == 0 - return Rational(1,1) - elsif self == 0 - return Rational(0,1) - elsif self == 1 - return Rational(1,1) - end + ## + # Exponentiate by +other+ - npd = numerator.prime_division - dpd = denominator.prime_division - if other < 0 - other = -other - npd, dpd = dpd, npd - end + def ** (other) + if self < 0 && other.round != other + Complex(self, 0.0) ** other + else + power!(other) + end + end - for elm in npd - elm[1] = elm[1] * other - if !elm[1].kind_of?(Integer) and elm[1].denominator != 1 - return Float(self) ** other2 - end - elm[1] = elm[1].to_i - end +end - for elm in dpd - elm[1] = elm[1] * other - if !elm[1].kind_of?(Integer) and elm[1].denominator != 1 - return Float(self) ** other2 - end - elm[1] = elm[1].to_i - end +## +# When mathn is required Rational is changed to simplify the use of Rational +# operations. +# +# Normal behaviour: +# +# Rational.new!(1,3) ** 2 # => Rational(1, 9) +# (1 / 3) ** 2 # => 0 +# +# require 'mathn' behaviour: +# +# (1 / 3) ** 2 # => 1/9 - num = Integer.from_prime_division(npd) - den = Integer.from_prime_division(dpd) +class Rational + remove_method :** - Rational(num,den) + ## + # Exponentiate by +other+ + # + # (1/3) ** 2 # => 1/9 - elsif other.kind_of?(Integer) - if other > 0 - num = numerator ** other - den = denominator ** other - elsif other < 0 - num = denominator ** -other - den = numerator ** -other - elsif other == 0 - num = 1 - den = 1 - end - Rational.new!(num, den) - elsif other.kind_of?(Float) - Float(self) ** other - else - x , y = other.coerce(self) - x ** y - end - end - - def power2(other) + def ** (other) if other.kind_of?(Rational) + other2 = other if self < 0 - return Complex(self, 0) ** other + return Complex(self, 0.0) ** other elsif other == 0 return Rational(1,1) elsif self == 0 return Rational(0,1) elsif self == 1 return Rational(1,1) end - dem = nil - x = self.denominator.to_f.to_i - neard = self.denominator.to_f ** (1.0/other.denominator.to_f) - loop do - if (neard**other.denominator == self.denominator) - dem = neaed - break + npd = numerator.prime_division + dpd = denominator.prime_division + if other < 0 + other = -other + npd, dpd = dpd, npd + end + + for elm in npd + elm[1] = elm[1] * other + if !elm[1].kind_of?(Integer) and elm[1].denominator != 1 + return Float(self) ** other2 end + elm[1] = elm[1].to_i end - nearn = self.numerator.to_f ** (1.0/other.denominator.to_f) + + for elm in dpd + elm[1] = elm[1] * other + if !elm[1].kind_of?(Integer) and elm[1].denominator != 1 + return Float(self) ** other2 + end + elm[1] = elm[1].to_i + end + + num = Integer.from_prime_division(npd) + den = Integer.from_prime_division(dpd) + Rational(num,den) elsif other.kind_of?(Integer) if other > 0 num = numerator ** other @@ -222,44 +182,75 @@ den = numerator ** -other elsif other == 0 num = 1 den = 1 end - Rational.new!(num, den) + Rational(num, den) elsif other.kind_of?(Float) Float(self) ** other else x , y = other.coerce(self) x ** y end end end +## +# When mathn is required, the Math module changes as follows: +# +# Standard Math module behaviour: +# Math.sqrt(4/9) # => 0.0 +# Math.sqrt(4.0/9.0) # => 0.666666666666667 +# Math.sqrt(- 4/9) # => Errno::EDOM: Numerical argument out of domain - sqrt +# +# After require 'mathn', this is changed to: +# +# require 'mathn' +# Math.sqrt(4/9) # => 2/3 +# Math.sqrt(4.0/9.0) # => 0.666666666666667 +# Math.sqrt(- 4/9) # => Complex(0, 2/3) + module Math + remove_method(:sqrt) + + ## + # Computes the square root of +a+. It makes use of Complex and + # Rational to have no rounding errors if possible. + # + # Math.sqrt(4/9) # => 2/3 + # Math.sqrt(- 4/9) # => Complex(0, 2/3) + # Math.sqrt(4.0/9.0) # => 0.666666666666667 + def sqrt(a) if a.kind_of?(Complex) - abs = sqrt(a.real*a.real + a.image*a.image) - # if not abs.kind_of?(Rational) - # return a**Rational(1,2) - # end + abs = sqrt(a.real*a.real + a.imag*a.imag) +# if not abs.kind_of?(Rational) +# return a**Rational(1,2) +# end x = sqrt((a.real + abs)/Rational(2)) y = sqrt((-a.real + abs)/Rational(2)) - # if !(x.kind_of?(Rational) and y.kind_of?(Rational)) - # return a**Rational(1,2) - # end - if a.image >= 0 +# if !(x.kind_of?(Rational) and y.kind_of?(Rational)) +# return a**Rational(1,2) +# end + if a.imag >= 0 Complex(x, y) else Complex(x, -y) end + elsif a.respond_to?(:nan?) and a.nan? + a elsif a >= 0 rsqrt(a) else Complex(0,rsqrt(-a)) end end + ## + # Compute square root of a non negative number. This method is + # internally used by +Math.sqrt+. + def rsqrt(a) if a.kind_of?(Float) sqrt!(a) elsif a.kind_of?(Rational) rsqrt(a.numerator)/rsqrt(a.denominator) @@ -301,13 +292,36 @@ sqrt!(a) end end end + class << self + remove_method(:sqrt) + end module_function :sqrt module_function :rsqrt end -class Complex - Unify = true +## +# When mathn is required, Float is changed to handle Complex numbers. + +class Float + alias power! ** + + ## + # Exponentiate by +other+ + + def ** (other) + if self < 0 && other.round != other + Complex(self, 0.0) ** other + else + power!(other) + end + end + end +module Rubinius + def self.mathn_loaded? + true + end +end