lib/dnn/core/layers.rb in ruby-dnn-0.13.4 vs lib/dnn/core/layers.rb in ruby-dnn-0.14.0

- old
+ new

@@ -5,35 +5,38 @@ class Layer attr_accessor :name attr_reader :input_shape def self.call(x, *args) - self.new(*args).(x) + new(*args).(x) end def self.from_hash(hash) return nil unless hash layer_class = DNN.const_get(hash[:class]) layer = layer_class.allocate - raise DNN_Error.new("#{layer.class} is not an instance of #{self} class.") unless layer.is_a?(self) + raise DNN_Error, "#{layer.class} is not an instance of #{self} class." unless layer.is_a?(self) layer.load_hash(hash) + layer.name = hash[:name]&.to_sym layer end def initialize @built = false @name = nil end # Forward propagation and create a link. - # @param [Array] input Array of the form [x_input_data, prev_link]. - def call(input) - x, prev_link = *input + # @param [Tensor] input_tensor Input tensor. + # @return [Tensor] Output tensor. + def call(input_tensor) + x = input_tensor.data + prev_link = input_tensor.link build(x.shape[1..-1]) unless built? y = forward(x) link = Link.new(prev_link, self) - [y, link] + Tensor.new(y, link) end # Build the layer. # @param [Array] input_shape Setting the shape of the input data. def build(input_shape) @@ -47,17 +50,17 @@ end # Forward propagation. # @param [Numo::SFloat] x Input data. def forward(x) - raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'forward'") + raise NotImplementedError, "Class '#{self.class.name}' has implement method 'forward'" end # Backward propagation. # @param [Numo::SFloat] dy Differential value of output data. def backward(dy) - raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'backward'") + raise NotImplementedError, "Class '#{self.class.name}' has implement method 'backward'" end # Please reimplement this method as needed. # The default implementation return input_shape. # @return [Array] Return the shape of the output data. @@ -75,11 +78,10 @@ def load_hash(hash) initialize end end - # This class is a superclass of all classes with learning parameters. class HasParamLayer < Layer # @return [Boolean] Setting false prevents learning of parameters. attr_accessor :trainable @@ -88,64 +90,72 @@ @trainable = true end # @return [Array] The parameters of the layer. def get_params - raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'get_params'") + raise NotImplementedError, "Class '#{self.class.name}' has implement method 'get_params'" end end - class InputLayer < Layer - def self.call(input) - shape = input.is_a?(Array) ? input[0].shape : input.shape - self.new(shape[1..-1]).(input) + def self.call(input_tensor) + new(input_tensor.data.shape[1..-1]).(input_tensor) end # @param [Array] input_dim_or_shape Setting the shape or dimension of the input data. def initialize(input_dim_or_shape) super() @input_shape = input_dim_or_shape.is_a?(Array) ? input_dim_or_shape : [input_dim_or_shape] end - def call(input) + def call(input_tensor) build unless built? - if input.is_a?(Array) - x, prev_link = *input - else - x = input - prev_link = nil - end - link = prev_link ? Link.new(prev_link, self) : Link.new(nil, self) - [forward(x), link] + Tensor.new(forward(input_tensor.data), Link.new(input_tensor&.link, self)) end def build @built = true end def forward(x) unless x.shape[1..-1] == @input_shape - raise DNN_ShapeError.new("The shape of x does not match the input shape. input shape is #{@input_shape}, but x shape is #{x.shape[1..-1]}.") + raise DNN_ShapeError, "The shape of x does not match the input shape. input shape is #{@input_shape}, but x shape is #{x.shape[1..-1]}." end x end def backward(dy) dy end + def to_proc + method(:call).to_proc + end + + def >>(layer) + if RUBY_VERSION < "2.6.0" + raise DNN_Error, "Function composition is not supported before ruby version 2.6.0." + end + to_proc >> layer + end + + def <<(layer) + if RUBY_VERSION < "2.6.0" + raise DNN_Error, "Function composition is not supported before ruby version 2.6.0." + end + to_proc << layer + end + def to_hash super(input_shape: @input_shape) end def load_hash(hash) initialize(hash[:input_shape]) end end - # It is a superclass of all connection layers. class Connection < HasParamLayer attr_reader :weight attr_reader :bias attr_reader :weight_initializer @@ -204,11 +214,10 @@ @bias_regularizer.param = @bias if @bias_regularizer end end end - class Dense < Connection attr_reader :num_nodes # @param [Integer] num_nodes Number of nodes. def initialize(num_nodes, @@ -222,11 +231,11 @@ @num_nodes = num_nodes end def build(input_shape) unless input_shape.length == 1 - raise DNN_ShapeError.new("Input shape is #{input_shape}. But input shape must be 1 dimensional.") + raise DNN_ShapeError, "Input shape is #{input_shape}. But input shape must be 1 dimensional." end super num_prev_nodes = input_shape[0] @weight.data = Xumo::SFloat.new(num_prev_nodes, @num_nodes) @bias.data = Xumo::SFloat.new(@num_nodes) if @bias @@ -264,11 +273,10 @@ bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]), use_bias: hash[:use_bias]) end end - class Flatten < Layer def forward(x) x.reshape(x.shape[0], *output_shape) end @@ -279,12 +287,13 @@ def output_shape [@input_shape.reduce(:*)] end end - class Reshape < Layer + attr_reader :output_shape + def initialize(output_shape) super() @output_shape = output_shape end @@ -294,22 +303,17 @@ def backward(dy) dy.reshape(dy.shape[0], *@input_shape) end - def output_shape - @output_shape - end - def to_hash super(output_shape: @output_shape) end def load_hash(hash) initialize(hash[:output_shape]) end end - class Dropout < Layer attr_accessor :dropout_ratio attr_reader :use_scale