examples/iris_example.rb in ruby-dnn-0.10.1 vs examples/iris_example.rb in ruby-dnn-0.10.2

- old
+ new

@@ -1,34 +1,34 @@ -require "dnn" -require "dnn/iris" -# If you use numo/linalg then please uncomment out. -# require "numo/linalg/autoloader" - -include DNN::Layers -include DNN::Activations -include DNN::Optimizers -include DNN::Losses -Model = DNN::Model -Iris = DNN::Iris - -x, y = Iris.load(true) -x_train, y_train = x[0...100, true], y[0...100] -x_test, y_test = x[100...150, true], y[100...150] - -x_train /= 255 -x_test /= 255 - -y_train = DNN::Utils.to_categorical(y_train, 3, Numo::SFloat) -y_test = DNN::Utils.to_categorical(y_test, 3, Numo::SFloat) - -model = Model.new - -model << InputLayer.new(4) - -model << Dense.new(64) -model << ReLU.new - -model << Dense.new(3) - -model.compile(Adam.new, SoftmaxCrossEntropy.new) - -model.train(x_train, y_train, 1000, batch_size: 10, test: [x_test, y_test]) +require "dnn" +require "dnn/iris" +# If you use numo/linalg then please uncomment out. +# require "numo/linalg/autoloader" + +include DNN::Layers +include DNN::Activations +include DNN::Optimizers +include DNN::Losses +Model = DNN::Model +Iris = DNN::Iris + +x, y = Iris.load(true) +x_train, y_train = x[0...100, true], y[0...100] +x_test, y_test = x[100...150, true], y[100...150] + +x_train /= 255 +x_test /= 255 + +y_train = DNN::Utils.to_categorical(y_train, 3, Numo::SFloat) +y_test = DNN::Utils.to_categorical(y_test, 3, Numo::SFloat) + +model = Model.new + +model << InputLayer.new(4) + +model << Dense.new(64) +model << ReLU.new + +model << Dense.new(3) + +model.compile(Adam.new, SoftmaxCrossEntropy.new) + +model.train(x_train, y_train, 1000, batch_size: 10, test: [x_test, y_test])