examples/dcgan/train.rb in ruby-dnn-0.12.4 vs examples/dcgan/train.rb in ruby-dnn-0.13.0

- old
+ new

@@ -1,7 +1,7 @@ require "dnn" -require "dnn/mnist" +require "dnn/datasets/mnist" require "numo/linalg/autoloader" require_relative "dcgan" MNIST = DNN::MNIST @@ -20,13 +20,15 @@ x_train, y_train = MNIST.load_train x_train = Numo::SFloat.cast(x_train) x_train = x_train / 127.5 - 1 iter = DNN::Iterator.new(x_train, y_train) +num_batchs = x_train.shape[0] / batch_size (1..epochs).each do |epoch| puts "epoch: #{epoch}" - iter.foreach(batch_size) do |x_batch, y_batch, index| + num_batchs.times do |index| + x_batch, y_batch = iter.next_batch(batch_size) noise = Numo::SFloat.new(batch_size, 20).rand(-1, 1) images = gen.predict(noise) x = x_batch.concatenate(images) y = Numo::SFloat.cast([1] * batch_size + [0] * batch_size).reshape(batch_size * 2, 1) dis_loss = dis.train_on_batch(x, y) @@ -35,7 +37,8 @@ label = Numo::SFloat.cast([1] * batch_size).reshape(batch_size, 1) dcgan_loss = dcgan.train_on_batch(noise, label) puts "index: #{index}, dis_loss: #{dis_loss.mean}, dcgan_loss: #{dcgan_loss.mean}" end + iter.reset dcgan.save("trained/dcgan_model_epoch#{epoch}.marshal") end