examples/dcgan/dcgan.rb in ruby-dnn-1.2.1 vs examples/dcgan/dcgan.rb in ruby-dnn-1.2.2
- old
+ new
@@ -127,10 +127,10 @@
images = @gen.predict(noise)
y_real = Numo::SFloat.ones(batch_size, 1)
y_fake = Numo::SFloat.zeros(batch_size, 1)
@dis.enable_training
dis_loss = @dis.train_on_batch(x_batch, y_real)
- dis_loss + @dis.train_on_batch(images, y_fake)
+ dis_loss += @dis.train_on_batch(images, y_fake)
noise = Numo::SFloat.new(batch_size, 20).rand(-1, 1)
label = Numo::SFloat.cast([1] * batch_size).reshape(batch_size, 1)
dcgan_loss = train_on_batch(noise, label)