examples/cifar10_example.rb in ruby-dnn-0.1.8 vs examples/cifar10_example.rb in ruby-dnn-0.2.0

- old
+ new

@@ -10,38 +10,38 @@ CIFAR10 = DNN::CIFAR10 x_train, y_train = CIFAR10.load_train x_test, y_test = CIFAR10.load_test -x_train = SFloat.cast(x_train).reshape(x_train.shape[0], 32, 32, 3).transpose(0, 3, 2, 1) -x_test = SFloat.cast(x_test).reshape(x_test.shape[0], 32, 32, 3).transpose(0, 3, 2, 1) +x_train = SFloat.cast(x_train).transpose(0, 2, 3, 1) +x_test = SFloat.cast(x_test).transpose(0, 2, 3, 1) x_train /= 255 x_test /= 255 y_train = DNN::Util.to_categorical(y_train, 10) y_test = DNN::Util.to_categorical(y_test, 10) model = Model.new -model << InputLayer.new([3, 32, 32]) +model << InputLayer.new([32, 32, 3]) -model << Conv2D.new(16, 5, 5) +model << Conv2D.new(16, 5, 5, padding: true) model << BatchNormalization.new model << ReLU.new -model << Conv2D.new(16, 5, 5) +model << Conv2D.new(16, 5, 5, padding: true) model << BatchNormalization.new model << ReLU.new model << MaxPool2D.new(2, 2) -model << Conv2D.new(32, 5, 5) +model << Conv2D.new(32, 5, 5, padding: true) model << BatchNormalization.new model << ReLU.new -model << Conv2D.new(32, 5, 5) +model << Conv2D.new(32, 5, 5, padding: true) model << BatchNormalization.new model << ReLU.new model << Flatten.new @@ -53,10 +53,6 @@ model << Dense.new(10) model << SoftmaxWithLoss.new model.compile(Adam.new) -model.train(x_train, y_train, 20, batch_size: 100) do - model.test(x_test, y_test) -end - -model.save("trained_cifar10.marshal") +model.train(x_train, y_train, 10, batch_size: 100, test: [x_test, y_test])