README.md in ruby-dnn-0.16.2 vs README.md in ruby-dnn-1.0.0
- old
+ new
@@ -40,10 +40,15 @@
model << Dense.new(10)
model.setup(Adam.new, SoftmaxCrossEntropy.new)
model.train(x_train, y_train, 10, batch_size: 128, test: [x_test, y_test])
+
+
+accuracy, loss = model.evaluate(x_test, y_test)
+puts "accuracy: #{accuracy}"
+puts "loss: #{loss}"
```
When create a model with 'define by run' style:
```ruby
@@ -69,10 +74,14 @@
model = MLP.new
model.setup(Adam.new, SoftmaxCrossEntropy.new)
model.train(x_train, y_train, 10, batch_size: 128, test: [x_test, y_test])
+
+accuracy, loss = model.evaluate(x_test, y_test)
+puts "accuracy: #{accuracy}"
+puts "loss: #{loss}"
```
Please refer to examples for basic usage.
If you want to know more detailed information, please refer to the source code.
@@ -83,9 +92,22 @@
| Activations | Sigmoid, Tanh, Softsign, Softplus, Swish, ReLU, LeakyReLU, ELU, Mish |
| Basic | Flatten, Reshape, Dropout, BatchNormalization |
| Pooling | MaxPool2D, AvgPool2D, GlobalAvgPool2D, UnPool2D |
| Optimizers | SGD, Nesterov, AdaGrad, RMSProp, AdaDelta, RMSPropGraves, Adam, AdaBound |
| Losses | MeanSquaredError, MeanAbsoluteError, Hinge, HuberLoss, SoftmaxCrossEntropy, SigmoidCrossEntropy |
+
+## Datasets
+● Iris
+● MNIST
+● Fashion-MNIST
+● CIFAR-10
+● CIFAR-100
+● STL-10
+
+## Examples
+● VAE
+● DCGAN
+● Pix2pix
## TODO
● Write a test.
● Write a document.
● Support to GPU.