README.md in ruby-dnn-0.16.2 vs README.md in ruby-dnn-1.0.0

- old
+ new

@@ -40,10 +40,15 @@ model << Dense.new(10) model.setup(Adam.new, SoftmaxCrossEntropy.new) model.train(x_train, y_train, 10, batch_size: 128, test: [x_test, y_test]) + + +accuracy, loss = model.evaluate(x_test, y_test) +puts "accuracy: #{accuracy}" +puts "loss: #{loss}" ``` When create a model with 'define by run' style: ```ruby @@ -69,10 +74,14 @@ model = MLP.new model.setup(Adam.new, SoftmaxCrossEntropy.new) model.train(x_train, y_train, 10, batch_size: 128, test: [x_test, y_test]) + +accuracy, loss = model.evaluate(x_test, y_test) +puts "accuracy: #{accuracy}" +puts "loss: #{loss}" ``` Please refer to examples for basic usage. If you want to know more detailed information, please refer to the source code. @@ -83,9 +92,22 @@ | Activations | Sigmoid, Tanh, Softsign, Softplus, Swish, ReLU, LeakyReLU, ELU, Mish | | Basic | Flatten, Reshape, Dropout, BatchNormalization | | Pooling | MaxPool2D, AvgPool2D, GlobalAvgPool2D, UnPool2D | | Optimizers | SGD, Nesterov, AdaGrad, RMSProp, AdaDelta, RMSPropGraves, Adam, AdaBound | | Losses | MeanSquaredError, MeanAbsoluteError, Hinge, HuberLoss, SoftmaxCrossEntropy, SigmoidCrossEntropy | + +## Datasets +● Iris +● MNIST +● Fashion-MNIST +● CIFAR-10 +● CIFAR-100 +● STL-10 + +## Examples +● VAE +● DCGAN +● Pix2pix ## TODO ● Write a test. ● Write a document. ● Support to GPU.