examples/general/SRL/lib/ast_builder.rb in rley-0.6.00 vs examples/general/SRL/lib/ast_builder.rb in rley-0.6.01

- old
+ new

@@ -7,13 +7,12 @@ # Uses the Builder GoF pattern. # The Builder pattern creates a complex object # (say, a parse tree) from simpler objects (terminal and non-terminal # nodes) and using a step by step approach. class ASTBuilder < Rley::ParseRep::ASTBaseBuilder + Terminal2NodeClass = {}.freeze - Terminal2NodeClass = { }.freeze - attr_reader :options protected def terminal2node() @@ -24,11 +23,11 @@ # Factory method for creating a node object for the given # input token. # @param aTerminal [Terminal] Terminal symbol associated with the token # @param aTokenPosition [Integer] Position of token in the input stream # @param aToken [Token] The input token - def new_leaf_node(aProduction, aTerminal, aTokenPosition, aToken) + def new_leaf_node(_production, _terminal, aTokenPosition, aToken) node = Rley::PTree::TerminalNode.new(aToken, aTokenPosition) return node end @@ -44,26 +43,25 @@ chars << Regex::Character.new("\\") end chars << Regex::Character.new(ch) end result = Regex::Concatenation.new(*chars) + elsif to_escape && Regex::Character::MetaChars.include?(aString) + backslash = Regex::Character.new("\\") + a_string = Regex::Character.new(aString) + result = Regex::Concatenation.new(backslash, a_string) else - if to_escape && Regex::Character::MetaChars.include?(aString) - result = Regex::Concatenation.new(Regex::Character.new("\\"), - Regex::Character.new(aString)) - else - result = Regex::Character.new(aString) - end + result = Regex::Character.new(aString) end return result end def char_range(lowerBound, upperBound) # TODO fix module nesting lower = Regex::Character.new(lowerBound) - upper = Regex::Character.new(upperBound) + upper = Regex::Character.new(upperBound) return Regex::CharRange.new(lower, upper) end def char_class(toNegate, *theChildren) Regex::CharClass.new(toNegate, *theChildren) @@ -84,297 +82,301 @@ def begin_anchor return Regex::Anchor.new('^') end # rule('expression' => %w[pattern separator flags]).as 'flagged_expr' - def reduce_flagged_expr(aProduction, aRange, theTokens, theChildren) + def reduce_flagged_expr(_production, aRange, theTokens, theChildren) @options = theChildren[2] if theChildren[2] return_first_child(aRange, theTokens, theChildren) end # rule('pattern' => %w[pattern separator quantifiable]).as 'pattern_sequence' - def reduce_pattern_sequence(aProduction, aRange, theTokens, theChildren) + def reduce_pattern_sequence(_production, _range, _tokens, theChildren) return Regex::Concatenation.new(theChildren[0], theChildren[2]) end # rule('flags' => %[flags separator single_flag]).as 'flag_sequence' - def reduce_flag_sequence(aProduction, aRange, theTokens, theChildren) + def reduce_flag_sequence(_production, _range, _tokens, theChildren) theChildren[0] << theChildren[2] end # rule('single_flag' => %w[CASE INSENSITIVE]).as 'case_insensitive' - def reduce_case_insensitive(aProduction, aRange, theTokens, theChildren) - return [ Regex::MatchOption.new(:IGNORECASE, true) ] + def reduce_case_insensitive(_production, _range, _tokens, _children) + return [Regex::MatchOption.new(:IGNORECASE, true)] end # rule('single_flag' => %w[MULTI LINE]).as 'multi_line' - def reduce_multi_line(aProduction, aRange, theTokens, theChildren) - return [ Regex::MatchOption.new(:MULTILINE, true) ] + def reduce_multi_line(_production, _range, _tokens, _children) + return [Regex::MatchOption.new(:MULTILINE, true)] end # rule('single_flag' => %w[ALL LAZY]).as 'all_lazy' - def reduce_all_lazy(aProduction, aRange, theTokens, theChildren) - return [ Regex::MatchOption.new(:ALL_LAZY, true) ] + def reduce_all_lazy(_production, _range, _tokens, _children) + return [Regex::MatchOption.new(:ALL_LAZY, true)] end # rule 'quantifiable' => %w[begin_anchor anchorable end_anchor] - def reduce_pinned_quantifiable(aProduction, aRange, theTokens, theChildren) + def reduce_pinned_quantifiable(_production, _range, _tokens, theChildren) theChildren[1].begin_anchor = theChildren[0] theChildren[1].end_anchor = theChildren[2] return theChildren[1] end # rule 'quantifiable' => %w[begin_anchor anchorable] - def reduce_begin_anchor_quantifiable(aProduction, aRange, theTokens, theChildren) + def reduce_begin_anchor_quantifiable(_production, _range, _tokens, theChildren) theChildren[1].begin_anchor = theChildren[0] return theChildren[1] end # rule 'quantifiable' => %w[anchorable end_anchor] - def reduce_end_anchor_quantifiable(aProduction, aRange, theTokens, theChildren) + def reduce_end_anchor_quantifiable(_production, _range, _tokens, theChildren) theChildren[0].end_anchor = theChildren[1] return theChildren[0] end # rule 'begin_anchor' => %w[STARTS WITH] - def reduce_starts_with(aProduction, aRange, theTokens, theChildren) + def reduce_starts_with(_production, _range, _tokens, _children) begin_anchor end # rule 'begin_anchor' => %w[BEGIN WITH] - def reduce_begin_with(aProduction, aRange, theTokens, theChildren) + def reduce_begin_with(_production, _range, _tokens, _children) begin_anchor end # rule 'end_anchor' => %w[MUST END].as 'end_anchor' - def reduce_end_anchor(aProduction, aRange, theTokens, theChildren) + def reduce_end_anchor(_production, _range, _tokens, _children) return Regex::Anchor.new('$') end # rule('anchorable' => %w[assertable assertion]).as 'asserted_anchorable' - def reduce_asserted_anchorable(aProduction, aRange, theTokens, theChildren) + def reduce_asserted_anchorable(_production, _range, _tokens, theChildren) assertion = theChildren.last assertion.children.unshift(theChildren[0]) return assertion end # rule('assertion' => %w[IF FOLLOWED BY assertable]).as 'if_followed' - def reduce_if_followed(aProduction, aRange, theTokens, theChildren) + def reduce_if_followed(_production, _range, _tokens, theChildren) return Regex::Lookaround.new(theChildren.last, :ahead, :positive) end # rule('assertion' => %w[IF NOT FOLLOWED BY assertable]).as 'if_not_followed' - def reduce_if_not_followed(aProduction, aRange, theTokens, theChildren) + def reduce_if_not_followed(_production, _range, _tokens, theChildren) return Regex::Lookaround.new(theChildren.last, :ahead, :negative) end # rule('assertion' => %w[IF ALREADY HAD assertable]).as 'if_had' - def reduce_if_had(aProduction, aRange, theTokens, theChildren) + def reduce_if_had(_production, _range, _tokens, theChildren) return Regex::Lookaround.new(theChildren.last, :behind, :positive) end # rule('assertion' => %w[IF NOT ALREADY HAD assertable]).as 'if_not_had' - def reduce_if_not_had(aProduction, aRange, theTokens, theChildren) + def reduce_if_not_had(_production, _range, _tokens, theChildren) return Regex::Lookaround.new(theChildren.last, :behind, :negative) end # rule('assertable' => %w[term quantifier]).as 'quantified_assertable' - def reduce_quantified_assertable(aProduction, aRange, theTokens, theChildren) + def reduce_quantified_assertable(_production, _range, _tokens, theChildren) quantifier = theChildren[1] term = theChildren[0] repetition(term, quantifier) end # rule('letter_range' => %w[LETTER FROM LETTER_LIT TO LETTER_LIT]).as 'lowercase_from_to' - def reduce_lowercase_from_to(aProduction, aRange, theTokens, theChildren) + def reduce_lowercase_from_to(_production, _range, _tokens, theChildren) lower = theChildren[2].token.lexeme upper = theChildren[4].token.lexeme ch_range = char_range(lower, upper) char_class(false, ch_range) end # rule('letter_range' => %w[UPPERCASE LETTER FROM LETTER_LIT TO LETTER_LIT]).as 'uppercase_from_to' - def reduce_uppercase_from_to(aProduction, aRange, theTokens, theChildren) + def reduce_uppercase_from_to(_production, _range, _tokens, theChildren) lower = theChildren[3].token.lexeme upper = theChildren[5].token.lexeme ch_range = char_range(lower.upcase, upper.upcase) char_class(false, ch_range) end # rule('letter_range' => 'LETTER').as 'any_lowercase' - def reduce_any_lowercase(aProduction, aRange, theTokens, theChildren) + def reduce_any_lowercase(_production, _range, _tokens, _children) ch_range = char_range('a', 'z') char_class(false, ch_range) end # rule('letter_range' => %w[UPPERCASE LETTER]).as 'any_uppercase' - def reduce_any_uppercase(aProduction, aRange, theTokens, theChildren) + def reduce_any_uppercase(_production, _range, _tokens, _children) ch_range = char_range('A', 'Z') char_class(false, ch_range) end # rule('digit_range' => %w[digit_or_number FROM DIGIT_LIT TO DIGIT_LIT]).as 'digits_from_to' def reduce_digits_from_to(aProduction, aRange, theTokens, theChildren) reduce_lowercase_from_to(aProduction, aRange, theTokens, theChildren) end # rule('digit_range' => 'digit_or_number').as 'simple_digit_range' - def reduce_simple_digit_range(aProduction, aRange, theTokens, theChildren) + def reduce_simple_digit_range(_production, _range, _tokens, _children) char_shorthand('d') end # rule('character_class' => %w[ANY CHARACTER]).as 'any_character' - def reduce_any_character(aProduction, aRange, theTokens, theChildren) + def reduce_any_character(_production, _range, _tokens, _children) char_shorthand('w') end # rule('character_class' => %w[NO CHARACTER]).as 'no_character' - def reduce_no_character(aProduction, aRange, theTokens, theChildren) + def reduce_no_character(_production, _range, _tokens, _children) char_shorthand('W') end # rule('character_class' => 'WHITESPACE').as 'whitespace' - def reduce_whitespace(aProduction, aRange, theTokens, theChildren) + def reduce_whitespace(_production, _range, _tokens, _children) char_shorthand('s') end # rule('character_class' => %w[NO WHITESPACE]).as 'no_whitespace' - def reduce_no_whitespace(aProduction, aRange, theTokens, theChildren) + def reduce_no_whitespace(_production, _range, _tokens, _children) char_shorthand('S') end # rule('character_class' => 'ANYTHING').as 'anything' - def reduce_anything(aProduction, aRange, theTokens, theChildren) + def reduce_anything(_production, _range, _tokens, _children) wildcard end # rule('alternation' => %w[ANY OF LPAREN alternatives RPAREN]).as 'any_of' - def reduce_one_of(aProduction, aRange, theTokens, theChildren) + def reduce_one_of(_production, _range, _tokens, theChildren) raw_literal = theChildren[-1].token.lexeme.dup alternatives = raw_literal.chars.map { |ch| Regex::Character.new(ch) } - return Regex::CharClass.new(false, *alternatives) # TODO check other implementations + # TODO check other implementations + return Regex::CharClass.new(false, *alternatives) end # rule('special_char' => 'TAB').as 'tab' - def reduce_tab(aProduction, aRange, theTokens, theChildren) + def reduce_tab(_production, _range, _tokens, _children) Regex::Character.new('\t') end # rule('special_char' => 'BACKSLASH').as 'backslash' - def reduce_backslash(aProduction, aRange, theTokens, theChildren) + def reduce_backslash(_production, _range, _tokens, _children) Regex::Character.new('\\') end # rule('special_char' => %w[NEW LINE]).as 'new_line' - def reduce_new_line(aProduction, aRange, theTokens, theChildren) + def reduce_new_line(_production, _range, _tokens, _children) # TODO: control portability Regex::Character.new('\n') end # rule('literal' => %w[LITERALLY STRING_LIT]).as 'literally' - def reduce_literally(aProduction, aRange, theTokens, theChildren) + def reduce_literally(_production, _range, _tokens, theChildren) # What if literal is empty?... raw_literal = theChildren[-1].token.lexeme.dup return string_literal(raw_literal) end - #rule('alternation' => %w[ANY OF LPAREN alternatives RPAREN]).as 'any_of' - def reduce_any_of(aProduction, aRange, theTokens, theChildren) + # rule('alternation' => %w[ANY OF LPAREN alternatives RPAREN]).as 'any_of' + def reduce_any_of(_production, _range, _tokens, theChildren) return Regex::Alternation.new(*theChildren[3]) end # rule('alternatives' => %w[alternatives separator quantifiable]).as 'alternative_list' - def reduce_alternative_list(aProduction, aRange, theTokens, theChildren) + def reduce_alternative_list(_production, _range, _tokens, theChildren) return theChildren[0] << theChildren[-1] end # rule('alternatives' => 'quantifiable').as 'simple_alternative' - def reduce_simple_alternative(aProduction, aRange, theTokens, theChildren) + def reduce_simple_alternative(_production, _range, _tokens, theChildren) return [theChildren.last] end # rule('grouping' => %w[LPAREN pattern RPAREN]).as 'grouping_parenthenses' - def reduce_grouping_parenthenses(aProduction, aRange, theTokens, theChildren) + def reduce_grouping_parenthenses(_production, _range, _tokens, theChildren) return Regex::NonCapturingGroup.new(theChildren[1]) end # rule('capturing_group' => %w[CAPTURE assertable]).as 'capture' - def reduce_capture(aProduction, aRange, theTokens, theChildren) + def reduce_capture(_production, _range, _tokens, theChildren) return Regex::CapturingGroup.new(theChildren[1]) end - # rule('capturing_group' => %w[CAPTURE assertable UNTIL assertable]).as 'capture_until' - def reduce_capture_until(aProduction, aRange, theTokens, theChildren) + # rule('capturing_group' => %w[CAPTURE assertable UNTIL assertable]).as + # 'capture_until' + def reduce_capture_until(_production, _range, _tokens, theChildren) group = Regex::CapturingGroup.new(theChildren[1]) return Regex::Concatenation.new(group, theChildren[3]) end - # rule('capturing_group' => %w[CAPTURE assertable AS var_name]).as 'named_capture' - def reduce_named_capture(aProduction, aRange, theTokens, theChildren) + # rule('capturing_group' => %w[CAPTURE assertable AS var_name]).as + # 'named_capture' + def reduce_named_capture(_production, _range, _tokens, theChildren) name = theChildren[3].token.lexeme.dup return Regex::CapturingGroup.new(theChildren[1], name) end - # rule('capturing_group' => %w[CAPTURE assertable AS var_name UNTIL assertable]).as 'named_capture_until' - def reduce_named_capture_until(aProduction, aRange, theTokens, theChildren) + # rule('capturing_group' => %w[CAPTURE assertable AS var_name + # UNTIL assertable]).as 'named_capture_until' + def reduce_named_capture_until(_production, _range, _tokens, theChildren) name = theChildren[3].token.lexeme.dup group = Regex::CapturingGroup.new(theChildren[1], name) return Regex::Concatenation.new(group, theChildren[5]) end # rule('quantifier' => 'ONCE').as 'once' - def reduce_once(aProduction, aRange, theTokens, theChildren) + def reduce_once(_production, _range, _tokens, _children) multiplicity(1, 1) end # rule('quantifier' => 'TWICE').as 'twice' - def reduce_twice(aProduction, aRange, theTokens, theChildren) + def reduce_twice(_production, _range, _tokens, _children) multiplicity(2, 2) end # rule('quantifier' => %w[EXACTLY count TIMES]).as 'exactly' - def reduce_exactly(aProduction, aRange, theTokens, theChildren) + def reduce_exactly(_production, _range, _tokens, theChildren) count = theChildren[1].token.lexeme.to_i multiplicity(count, count) end - # rule('quantifier' => %w[BETWEEN count AND count times_suffix]).as 'between_and' - def reduce_between_and(aProduction, aRange, theTokens, theChildren) + # rule('quantifier' => %w[BETWEEN count AND count times_suffix]).as + # 'between_and' + def reduce_between_and(_production, _range, _tokens, theChildren) lower = theChildren[1].token.lexeme.to_i upper = theChildren[3].token.lexeme.to_i multiplicity(lower, upper) end # rule('quantifier' => 'OPTIONAL').as 'optional' - def reduce_optional(aProduction, aRange, theTokens, theChildren) + def reduce_optional(_production, _range, _tokens, _children) multiplicity(0, 1) end - # rule('quantifier' => %w[ONCE OR MORE]).as 'once_or_more' - def reduce_once_or_more(aProduction, aRange, theTokens, theChildren) + # rule('quantifier' => %w[ONCE OR MORE]).as 'once_or_more' + def reduce_once_or_more(_production, _range, _tokens, _children) multiplicity(1, :more) end # rule('quantifier' => %w[NEVER OR MORE]).as 'never_or_more' - def reduce_never_or_more(aProduction, aRange, theTokens, theChildren) + def reduce_never_or_more(_production, _range, _tokens, _children) multiplicity(0, :more) end # rule('quantifier' => %w[AT LEAST count TIMES]).as 'at_least' - def reduce_at_least(aProduction, aRange, theTokens, theChildren) + def reduce_at_least(_production, _range, _tokens, theChildren) count = theChildren[2].token.lexeme.to_i multiplicity(count, :more) end # rule('times_suffix' => 'TIMES').as 'times_keyword' - def reduce_times_keyword(aProduction, aRange, theTokens, theChildren) + def reduce_times_keyword(_production, _range, _tokens, _children) return nil end # rule('times_suffix' => []).as 'times_dropped' - def reduce_times_dropped(aProduction, aRange, theTokens, theChildren) + def reduce_times_dropped(_production, _range, _tokens, _children) return nil end - end # class # End of file