stdlib/builtin/math.rbs in rbs-0.11.0 vs stdlib/builtin/math.rbs in rbs-0.12.0

- old
+ new

@@ -11,51 +11,51 @@ # # Codomain: [0, PI] # # Math.acos(0) == Math::PI/2 #=> true # - def self.acos: (Integer | Float | Rational | BigDecimal x) -> Float + def self.acos: (Numeric x) -> Float # Computes the inverse hyperbolic cosine of `x`. # # Domain: [1, INFINITY) # # Codomain: [0, INFINITY) # # Math.acosh(1) #=> 0.0 # - def self.acosh: (Integer | Float | Rational | BigDecimal x) -> Float + def self.acosh: (Numeric x) -> Float # Computes the arc sine of `x`. Returns -PI/2..PI/2. # # Domain: [-1, -1] # # Codomain: [-PI/2, PI/2] # # Math.asin(1) == Math::PI/2 #=> true # - def self.asin: (Integer | Float | Rational | BigDecimal x) -> Float + def self.asin: (Numeric x) -> Float # Computes the inverse hyperbolic sine of `x`. # # Domain: (-INFINITY, INFINITY) # # Codomain: (-INFINITY, INFINITY) # # Math.asinh(1) #=> 0.881373587019543 # - def self.asinh: (Integer | Float | Rational | BigDecimal x) -> Float + def self.asinh: (Numeric x) -> Float # Computes the arc tangent of `x`. Returns -PI/2..PI/2. # # Domain: (-INFINITY, INFINITY) # # Codomain: (-PI/2, PI/2) # # Math.atan(0) #=> 0.0 # - def self.atan: (Integer | Float | Rational | BigDecimal x) -> Float + def self.atan: (Numeric x) -> Float # Computes the arc tangent given `y` and `x`. Returns a Float in the range # -PI..PI. Return value is a angle in radians between the positive x-axis of # cartesian plane and the point given by the coordinates (`x`, `y`) on it. # @@ -76,21 +76,21 @@ # Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483 # Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345 # Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483 # Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345 # - def self.atan2: (Integer | Float | Rational | BigDecimal y, Integer | Float | Rational | BigDecimal x) -> Float + def self.atan2: (Numeric y, Numeric x) -> Float # Computes the inverse hyperbolic tangent of `x`. # # Domain: (-1, 1) # # Codomain: (-INFINITY, INFINITY) # # Math.atanh(1) #=> Infinity # - def self.atanh: (Integer | Float | Rational | BigDecimal x) -> Float + def self.atanh: (Numeric x) -> Float # Returns the cube root of `x`. # # Domain: (-INFINITY, INFINITY) # @@ -117,52 +117,52 @@ # # [6, 1.81712059283214, 6.0] # # [7, 1.91293118277239, 7.0] # # [8, 2.0, 8.0] # # [9, 2.0800838230519, 9.0] # - def self.cbrt: (Integer | Float | Rational | BigDecimal x) -> Float + def self.cbrt: (Numeric x) -> Float # Computes the cosine of `x` (expressed in radians). Returns a Float in the # range -1.0..1.0. # # Domain: (-INFINITY, INFINITY) # # Codomain: [-1, 1] # # Math.cos(Math::PI) #=> -1.0 # - def self.cos: (Integer | Float | Rational | BigDecimal x) -> Float + def self.cos: (Numeric x) -> Float # Computes the hyperbolic cosine of `x` (expressed in radians). # # Domain: (-INFINITY, INFINITY) # # Codomain: [1, INFINITY) # # Math.cosh(0) #=> 1.0 # - def self.cosh: (Integer | Float | Rational | BigDecimal x) -> Float + def self.cosh: (Numeric x) -> Float # Calculates the error function of `x`. # # Domain: (-INFINITY, INFINITY) # # Codomain: (-1, 1) # # Math.erf(0) #=> 0.0 # - def self.erf: (Integer | Float | Rational | BigDecimal x) -> Float + def self.erf: (Numeric x) -> Float # Calculates the complementary error function of x. # # Domain: (-INFINITY, INFINITY) # # Codomain: (0, 2) # # Math.erfc(0) #=> 1.0 # - def self.erfc: (Integer | Float | Rational | BigDecimal x) -> Float + def self.erfc: (Numeric x) -> Float # Returns e**x. # # Domain: (-INFINITY, INFINITY) # @@ -170,19 +170,19 @@ # # Math.exp(0) #=> 1.0 # Math.exp(1) #=> 2.718281828459045 # Math.exp(1.5) #=> 4.4816890703380645 # - def self.exp: (Integer | Float | Rational | BigDecimal x) -> Float + def self.exp: (Numeric x) -> Float # Returns a two-element array containing the normalized fraction (a Float) and # exponent (an Integer) of `x`. # # fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11] # fraction * 2**exponent #=> 1234.0 # - def self.frexp: (Integer | Float | Rational | BigDecimal x) -> [ Float, Integer ] + def self.frexp: (Numeric x) -> [ Float, Integer ] # Calculates the gamma function of x. # # Note that gamma(n) is same as fact(n-1) for integer n > 0. However gamma(n) # returns float and can be an approximation. @@ -214,38 +214,38 @@ # # [23, 1.1240007277776077e+21, 1124000727777607680000] # # [24, 2.5852016738885062e+22, 25852016738884976640000] # # [25, 6.204484017332391e+23, 620448401733239439360000] # # [26, 1.5511210043330954e+25, 15511210043330985984000000] # - def self.gamma: (Integer | Float | Rational | BigDecimal x) -> Float + def self.gamma: (Numeric x) -> Float # Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with # sides `x` and `y`. # # Math.hypot(3, 4) #=> 5.0 # - def self.hypot: (Integer | Float | Rational | BigDecimal x, Integer | Float | Rational | BigDecimal y) -> Float + def self.hypot: (Numeric x, Numeric y) -> Float # Returns the value of `fraction`*(2**`exponent`). # # fraction, exponent = Math.frexp(1234) # Math.ldexp(fraction, exponent) #=> 1234.0 # - def self.ldexp: (Integer | Float | Rational | BigDecimal fraction, Integer | Float | Rational | BigDecimal exponent) -> Float + def self.ldexp: (Numeric fraction, Numeric exponent) -> Float # Calculates the logarithmic gamma of `x` and the sign of gamma of `x`. # # Math.lgamma(x) is same as # [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1] # # but avoid overflow by Math.gamma(x) for large x. # # Math.lgamma(0) #=> [Infinity, 1] # - def self.lgamma: (Integer | Float | Rational | BigDecimal x) -> [ Float, Integer ] + def self.lgamma: (Numeric x) -> [ Float, Integer ] - def self.log: (Integer | Float | Rational | BigDecimal x, ?Integer | Float | Rational | BigDecimal base) -> Float + def self.log: (Numeric x, ?Numeric base) -> Float # Returns the base 10 logarithm of `x`. # # Domain: (0, INFINITY) # @@ -253,11 +253,11 @@ # # Math.log10(1) #=> 0.0 # Math.log10(10) #=> 1.0 # Math.log10(10**100) #=> 100.0 # - def self.log10: (Integer | Float | Rational | BigDecimal x) -> Float + def self.log10: (Numeric x) -> Float # Returns the base 2 logarithm of `x`. # # Domain: (0, INFINITY) # @@ -266,32 +266,32 @@ # Math.log2(1) #=> 0.0 # Math.log2(2) #=> 1.0 # Math.log2(32768) #=> 15.0 # Math.log2(65536) #=> 16.0 # - def self.log2: (Integer | Float | Rational | BigDecimal x) -> Float + def self.log2: (Numeric x) -> Float # Computes the sine of `x` (expressed in radians). Returns a Float in the range # -1.0..1.0. # # Domain: (-INFINITY, INFINITY) # # Codomain: [-1, 1] # # Math.sin(Math::PI/2) #=> 1.0 # - def self.sin: (Integer | Float | Rational | BigDecimal x) -> Float + def self.sin: (Numeric x) -> Float # Computes the hyperbolic sine of `x` (expressed in radians). # # Domain: (-INFINITY, INFINITY) # # Codomain: (-INFINITY, INFINITY) # # Math.sinh(0) #=> 0.0 # - def self.sinh: (Integer | Float | Rational | BigDecimal x) -> Float + def self.sinh: (Numeric x) -> Float # Returns the non-negative square root of `x`. # # Domain: [0, INFINITY) # @@ -317,30 +317,30 @@ # # Math.sqrt(10**46).to_i #=> 99999999999999991611392 (!) # # See also BigDecimal#sqrt and Integer.sqrt. # - def self.sqrt: (Integer | Float | Rational | BigDecimal x) -> Float + def self.sqrt: (Numeric x) -> Float # Computes the tangent of `x` (expressed in radians). # # Domain: (-INFINITY, INFINITY) # # Codomain: (-INFINITY, INFINITY) # # Math.tan(0) #=> 0.0 # - def self.tan: (Integer | Float | Rational | BigDecimal x) -> Float + def self.tan: (Numeric x) -> Float # Computes the hyperbolic tangent of `x` (expressed in radians). # # Domain: (-INFINITY, INFINITY) # # Codomain: (-1, 1) # # Math.tanh(0) #=> 0.0 # - def self.tanh: (Integer | Float | Rational | BigDecimal x) -> Float + def self.tanh: (Numeric x) -> Float end # Definition of the mathematical constant E for Euler's number (e) as a Float # number. #