core/numeric.rbs in rbs-3.3.2 vs core/numeric.rbs in rbs-3.4.0.pre.1

- old
+ new

@@ -194,12 +194,10 @@ # r % r2 # => (21/100) # r % -r2 # => (-119/100) # (-r) % r2 # => (119/100) # (-r) %-r2 # => (-21/100) # - # Numeric#modulo is an alias for Numeric#%. - # def %: (Numeric) -> Numeric # Performs addition: the class of the resulting object depends on the class of # `numeric`. # @@ -244,12 +242,10 @@ # # 12.abs #=> 12 # (-34.56).abs #=> 34.56 # -34.56.abs #=> 34.56 # - # Numeric#magnitude is an alias for Numeric#abs. - # def abs: () -> Numeric # <!-- # rdoc-file=complex.c # - num.abs2 -> real @@ -327,14 +323,13 @@ # def conj: () -> Numeric # <!-- # rdoc-file=numeric.rb - # - num.conj -> self - # - num.conjugate -> self + # - conj -> self # --> - # Returns self. + # Returns `self`. # def conjugate: () -> Numeric # <!-- # rdoc-file=rational.c @@ -419,13 +414,13 @@ # def fdiv: (Numeric) -> Numeric # <!-- # rdoc-file=numeric.rb - # - num.finite? -> true or false + # - finite? -> true or false # --> - # Returns `true` if `num` is a finite number, otherwise returns `false`. + # Returns `true` if `self` is a finite number, `false` otherwise. # def finite?: () -> bool # <!-- # rdoc-file=numeric.c @@ -461,46 +456,43 @@ # def imag: () -> Numeric # <!-- # rdoc-file=numeric.rb - # - num.imag -> 0 - # - num.imaginary -> 0 + # - imag -> 0 # --> # Returns zero. # def imaginary: () -> Numeric # <!-- # rdoc-file=numeric.rb - # - num.infinite? -> -1, 1, or nil + # - infinite? -> -1, 1, or nil # --> - # Returns `nil`, -1, or 1 depending on whether the value is finite, `-Infinity`, - # or `+Infinity`. + # Returns `nil`, -1, or 1 depending on whether `self` is finite, `-Infinity`, or + # `+Infinity`. # def infinite?: () -> Integer? # <!-- # rdoc-file=numeric.rb - # - num.integer? -> true or false + # - integer? -> true or false # --> - # Returns `true` if `num` is an Integer. + # Returns `true` if `self` is an Integer. # - # 1.0.integer? #=> false - # 1.integer? #=> true + # 1.0.integer? # => false + # 1.integer? # => true # def integer?: () -> bool # <!-- rdoc-file=numeric.c --> # Returns the absolute value of `self`. # # 12.abs #=> 12 # (-34.56).abs #=> 34.56 # -34.56.abs #=> 34.56 # - # Numeric#magnitude is an alias for Numeric#abs. - # alias magnitude abs # <!-- rdoc-file=numeric.c --> # Returns `self` modulo `other` as a real number. # @@ -528,12 +520,10 @@ # r % r2 # => (21/100) # r % -r2 # => (-119/100) # (-r) % r2 # => (119/100) # (-r) %-r2 # => (-21/100) # - # Numeric#modulo is an alias for Numeric#%. - # def modulo: (Numeric) -> Numeric # <!-- # rdoc-file=numeric.c # - negative? -> true or false @@ -598,21 +588,21 @@ # def quo: (Numeric) -> Numeric # <!-- # rdoc-file=numeric.rb - # - num.real -> self + # - real -> self # --> - # Returns self. + # Returns `self`. # def real: () -> Numeric # <!-- # rdoc-file=numeric.rb - # - num.real? -> true or false + # - real? -> true or false # --> - # Returns `true` if `num` is a real number (i.e. not Complex). + # Returns `true` if `self` is a real number (i.e. not Complex). # def real?: () -> bool # <!-- rdoc-file=complex.c --> # Returns an array; [num, 0]. @@ -695,15 +685,15 @@ # squares # => [1, 9, 25, 49, 81] # # The generated sequence: # # - Begins with +self+. - # - Continues at intervals of +step+ (which may not be zero). - # - Ends with the last number that is within or equal to +limit+; - # that is, less than or equal to +limit+ if +step+ is positive, - # greater than or equal to +limit+ if +step+ is negative. - # If +limit+ is not given, the sequence is of infinite length. + # - Continues at intervals of +by+ (which may not be zero). + # - Ends with the last number that is within or equal to +to+; + # that is, less than or equal to +to+ if +by+ is positive, + # greater than or equal to +to+ if +by+ is negative. + # If +to+ is +nil+, the sequence is of infinite length. # # If a block is given, calls the block with each number in the sequence; # returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence. # # <b>Keyword Arguments</b> @@ -741,10 +731,10 @@ # e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3)) # e.class # => Enumerator::ArithmeticSequence # # <b>Positional Arguments</b> # - # With optional positional arguments +limit+ and +step+, + # With optional positional arguments +to+ and +by+, # their values (or defaults) determine the step and limit: # # squares = [] # 4.step(10, 2) {|i| squares.push(i*i) } # => 4 # squares # => [16, 36, 64, 100]