rdoc/eigen.rdoc in rb-gsl-1.16.0.2 vs rdoc/eigen.rdoc in rb-gsl-1.16.0.3.rc1
- old
+ new
@@ -1,18 +1,18 @@
#
# = Eigensystems
-# === {}[link:index.html"name="0.1] Contentes
-# 1. {Modules and classes}[link:rdoc/eigen_rdoc.html#1]
-# 1. {Real Symmetric Matrices}[link:rdoc/eigen_rdoc.html#2]
-# 1. {Complex Hermitian Matrices}[link:rdoc/eigen_rdoc.html#3]
-# 1. {Real Nonsymmetric Matrices}[link:rdoc/eigen_rdoc.html#4] (>= GSL-1.9)
-# 1. {Real Generalized Symmetric-Definite Eigensystems}[link:rdoc/eigen_rdoc.html#5] (>= GSL-1.10)
-# 1. {Complex Generalized Hermitian-Definite Eigensystems}[link:rdoc/eigen_rdoc.html#6] (>= GSL-1.10)
-# 1. {Real Generalized Nonsymmetric Eigensystems}[link:rdoc/eigen_rdoc.html#7] (>= GSL-1.10)
-# 1. {Sorting Eigenvalues and Eigenvectors }[link:rdoc/eigen_rdoc.html#8]
+# === Contentes
+# 1. {Modules and classes}[link:eigen_rdoc.html#label-Modules+and+classes]
+# 1. {Real Symmetric Matrices}[link:eigen_rdoc.html#label-Real+Symmetric+Matrices]
+# 1. {Complex Hermitian Matrices}[link:eigen_rdoc.html#label-Complex+Hermitian+Matrices]
+# 1. {Real Nonsymmetric Matrices}[link:eigen_rdoc.html#label-Real+Nonsymmetric+Matrices+%28%3E%3D+GSL-1.9%29] (>= GSL-1.9)
+# 1. {Real Generalized Symmetric-Definite Eigensystems}[link:eigen_rdoc.html#label-Real+Generalized+Symmetric-Definite+Eigensystems+%28GSL-1.10%29] (>= GSL-1.10)
+# 1. {Complex Generalized Hermitian-Definite Eigensystems}[link:eigen_rdoc.html#label-Complex+Generalized+Hermitian-Definite+Eigensystems+%28%3E%3D+GSL-1.10%29] (>= GSL-1.10)
+# 1. {Real Generalized Nonsymmetric Eigensystems}[link:eigen_rdoc.html#label-Real+Generalized+Nonsymmetric+Eigensystems+%28%3E%3D+GSL-1.10%29] (>= GSL-1.10)
+# 1. {Sorting Eigenvalues and Eigenvectors }[link:eigen_rdoc.html#label-Sorting+Eigenvalues+and+Eigenvectors]
#
-# == {}[link:index.html"name="1] Modules and classes
+# == Modules and classes
#
# * GSL
# * Eigen
# * EigenValues < Vector
# * EigenVectors < Matrix
@@ -40,37 +40,37 @@
# * Gen (Module, >= GSL-1.10)
# * Workspace (Class)
# * Genv (Module, >= GSL-1.10)
# * Workspace (Class)
#
-# == {}[link:index.html"name="2] Real Symmetric Matrices, GSL::Eigen::Symm module
-# === {}[link:index.html"name="2.1] Workspace classes
+# == Real Symmetric Matrices
+# === Workspace classes
# ---
# * GSL::Eigen::Symm::Workspace.alloc(n)
# * GSL::Eigen::Symmv::Workspace.alloc(n)
# * GSL::Eigen::Herm::Workspace.alloc(n)
# * GSL::Eigen::Hermv::Workspace.alloc(n)
#
#
-# === {}[link:index.html"name="2.2] Methods to solve eigensystems
+# === Methods to solve eigensystems
# ---
# * GSL::Eigen::symm(A)
# * GSL::Eigen::symm(A, workspace)
# * GSL::Matrix#eigen_symm
# * GSL::Matrix#eigen_symm(workspace)
#
-# These methods compute the eigenvalues of the real symmetric matrix.
+# These methods compute the eigenvalues of the real symmetric matrix.
# The workspace object <tt>workspace</tt> can be omitted.
#
# ---
# * GSL::Eigen::symmv(A)
# * GSL::Matrix#eigen_symmv
#
-# These methods compute the eigenvalues and eigenvectors of the real symmetric
+# These methods compute the eigenvalues and eigenvectors of the real symmetric
# matrix, and return an array of two elements:
-# The first is a <tt>GSL::Vector</tt> object which stores all the eigenvalues.
-# The second is a <tt>GSL::Matrix object</tt>, whose columns contain
+# The first is a <tt>GSL::Vector</tt> object which stores all the eigenvalues.
+# The second is a <tt>GSL::Matrix object</tt>, whose columns contain
# eigenvectors.
#
# 1. Singleton method of the <tt>GSL::Eigen</tt> module, <tt>GSL::Eigen::symm</tt>
#
# m = GSL::Matrix.alloc([1.0, 1/2.0, 1/3.0, 1/4.0], [1/2.0, 1/3.0, 1/4.0, 1/5.0],
@@ -79,88 +79,88 @@
#
# 1. Instance method of <tt>GSL::Matrix</tt> class
#
# eigval, eigvec = m.eigen_symmv
#
-# == {}[link:index.html"name="3] Complex Hermitian Matrices
+# == Complex Hermitian Matrices
# ---
# * GSL::Eigen::herm(A)
# * GSL::Eigen::herm(A, workspace)
# * GSL::Matrix::Complex#eigen_herm
# * GSL::Matrix::Complex#eigen_herm(workspace)
#
-# These methods compute the eigenvalues of the complex hermitian matrix.
+# These methods compute the eigenvalues of the complex hermitian matrix.
#
# ---
# * GSL::Eigen::hermv(A)
# * GSL::Eigen::hermv(A, workspace)
# * GSL::Matrix::Complex#eigen_hermv
# * GSL::Matrix::Complex#eigen_hermv(workspace
#
#
-# == {}[link:index.html"name="4] Real Nonsymmetric Matrices (>= GSL-1.9)
+# == Real Nonsymmetric Matrices (>= GSL-1.9)
#
# ---
# * GSL::Eigen::Nonsymm.alloc(n)
#
-# This allocates a workspace for computing eigenvalues of n-by-n real
+# This allocates a workspace for computing eigenvalues of n-by-n real
# nonsymmetric matrices. The size of the workspace is O(2n).
#
# ---
# * GSL::Eigen::Nonsymm::params(compute_t, balance, wspace)
# * GSL::Eigen::Nonsymm::Workspace#params(compute_t, balance)
#
-# This method sets some parameters which determine how the eigenvalue
+# This method sets some parameters which determine how the eigenvalue
# problem is solved in subsequent calls to <tt>GSL::Eigen::nonsymm</tt>.
-# If <tt>compute_t</tt> is set to 1, the full Schur form <tt>T</tt> will be
-# computed by gsl_eigen_nonsymm. If it is set to 0, <tt>T</tt> will not be
-# computed (this is the default setting).
-# Computing the full Schur form <tt>T</tt> requires approximately 1.5-2 times
+# If <tt>compute_t</tt> is set to 1, the full Schur form <tt>T</tt> will be
+# computed by gsl_eigen_nonsymm. If it is set to 0, <tt>T</tt> will not be
+# computed (this is the default setting).
+# Computing the full Schur form <tt>T</tt> requires approximately 1.5-2 times
# the number of flops.
#
-# If <tt>balance</tt> is set to 1, a balancing transformation is applied to
-# the matrix prior to computing eigenvalues. This transformation is designed
-# to make the rows and columns of the matrix have comparable norms, and can
-# result in more accurate eigenvalues for matrices whose entries vary widely
+# If <tt>balance</tt> is set to 1, a balancing transformation is applied to
+# the matrix prior to computing eigenvalues. This transformation is designed
+# to make the rows and columns of the matrix have comparable norms, and can
+# result in more accurate eigenvalues for matrices whose entries vary widely
# in magnitude. See section Balancing for more information. Note that the
-# balancing transformation does not preserve the orthogonality of the Schur
-# vectors, so if you wish to compute the Schur vectors with
-# <tt>GSL::Eigen::nonsymm_Z</tt> you will obtain the Schur vectors of the
-# balanced matrix instead of the original matrix. The relationship will be
-# where Q is the matrix of Schur vectors for the balanced matrix, and <tt>D</tt>
-# is the balancing transformation. Then <tt>GSL::Eigen::nonsymm_Z</tt> will
-# compute a matrix <tt>Z</tt> which satisfies with <tt>Z = D Q</tt>.
+# balancing transformation does not preserve the orthogonality of the Schur
+# vectors, so if you wish to compute the Schur vectors with
+# <tt>GSL::Eigen::nonsymm_Z</tt> you will obtain the Schur vectors of the
+# balanced matrix instead of the original matrix. The relationship will be
+# where Q is the matrix of Schur vectors for the balanced matrix, and <tt>D</tt>
+# is the balancing transformation. Then <tt>GSL::Eigen::nonsymm_Z</tt> will
+# compute a matrix <tt>Z</tt> which satisfies with <tt>Z = D Q</tt>.
# Note that <tt>Z</tt> will not be orthogonal. For this reason, balancing is
# not performed by default.
#
# ---
# * GSL::Eigen::nonsymm(m, eval, wspace)
# * GSL::Eigen::nonsymm(m)
# * GSL::Matrix#eigen_nonsymm()
# * GSL::Matrix#eigen_nonsymm(wspace)
# * GSL::Matrix#eigen_nonsymm(eval, wspace)
#
-# These methods compute the eigenvalues of the real nonsymmetric matrix <tt>m</tt>
-# and return them, or store in the vector <tt>eval</tt> if it given.
-# If <tt>T</tt> is desired, it is stored in <tt>m</tt> on output, however the lower
-# triangular portion will not be zeroed out. Otherwise, on output, the diagonal
-# of <tt>m</tt> will contain the 1-by-1 real eigenvalues and 2-by-2 complex
-# conjugate eigenvalue systems, and the rest of <tt>m</tt> is destroyed.
+# These methods compute the eigenvalues of the real nonsymmetric matrix <tt>m</tt>
+# and return them, or store in the vector <tt>eval</tt> if it given.
+# If <tt>T</tt> is desired, it is stored in <tt>m</tt> on output, however the lower
+# triangular portion will not be zeroed out. Otherwise, on output, the diagonal
+# of <tt>m</tt> will contain the 1-by-1 real eigenvalues and 2-by-2 complex
+# conjugate eigenvalue systems, and the rest of <tt>m</tt> is destroyed.
#
# ---
# * GSL::Eigen::nonsymm_Z(m, eval, Z, wspace)
# * GSL::Eigen::nonsymm_Z(m)
# * GSL::Matrix#eigen_nonsymm_Z()
# * GSL::Matrix#eigen_nonsymm(eval, Z, wspace)
#
-# These methods are identical to <tt>GSL::Eigen::nonsymm</tt> except they also
+# These methods are identical to <tt>GSL::Eigen::nonsymm</tt> except they also
# compute the Schur vectors and return them (or store into <tt>Z</tt>).
#
# ---
# * GSL::Eigen::Nonsymmv.alloc(n)
#
-# Allocates a workspace for computing eigenvalues and eigenvectors
+# Allocates a workspace for computing eigenvalues and eigenvectors
# of n-by-n real nonsymmetric matrices. The size of the workspace is O(5n).
# ---
# * GSL::Eigen::nonsymm(m)
# * GSL::Eigen::nonsymm(m, wspace)
# * GSL::Eigen::nonsymm(m, eval, evec)
@@ -168,85 +168,85 @@
# * GSL::Matrix#eigen_nonsymmv()
# * GSL::Matrix#eigen_nonsymmv(wspace)
# * GSL::Matrix#eigen_nonsymmv(eval, evec)
# * GSL::Matrix#eigen_nonsymmv(eval, evec, wspace)
#
-# Compute eigenvalues and right eigenvectors of the n-by-n real nonsymmetric
+# Compute eigenvalues and right eigenvectors of the n-by-n real nonsymmetric
# matrix. The computed eigenvectors are normalized to have Euclidean norm 1.
-# On output, the upper portion of <tt>m</tt> contains the Schur form <tt>T</tt>.
+# On output, the upper portion of <tt>m</tt> contains the Schur form <tt>T</tt>.
#
-# == {}[link:index.html"name="5] Real Generalized Symmetric-Definite Eigensystems (GSL-1.10)
-# The real generalized symmetric-definite eigenvalue problem is to
-# find eigenvalues <tt>lambda</tt> and eigenvectors <tt>x</tt> such that
-# where <tt>A</tt> and <tt>B</tt> are symmetric matrices, and <tt>B</tt>
+# == Real Generalized Symmetric-Definite Eigensystems (GSL-1.10)
+# The real generalized symmetric-definite eigenvalue problem is to
+# find eigenvalues <tt>lambda</tt> and eigenvectors <tt>x</tt> such that
+# where <tt>A</tt> and <tt>B</tt> are symmetric matrices, and <tt>B</tt>
# is positive-definite. This problem reduces to the standard symmetric eigenvalue
-# problem by applying the Cholesky decomposition to <tt>B</tt>:
-# Therefore, the problem becomes <tt>C y = lambda y</tt>
-# where <tt>C = L^{-1} A L^{-t}</tt> is symmetric, and <tt>y = L^t x</tt>.
-# The standard symmetric eigensolver can be applied to the matrix <tt>C</tt>.
-# The resulting eigenvectors are backtransformed to find the vectors of the
-# original problem. The eigenvalues and eigenvectors of the generalized
-# symmetric-definite eigenproblem are always real.
+# problem by applying the Cholesky decomposition to <tt>B</tt>:
+# Therefore, the problem becomes <tt>C y = lambda y</tt>
+# where <tt>C = L^{-1} A L^{-t}</tt> is symmetric, and <tt>y = L^t x</tt>.
+# The standard symmetric eigensolver can be applied to the matrix <tt>C</tt>.
+# The resulting eigenvectors are backtransformed to find the vectors of the
+# original problem. The eigenvalues and eigenvectors of the generalized
+# symmetric-definite eigenproblem are always real.
#
# ---
# * GSL::Eigen::Gensymm.alloc(n)
# * GSL::Eigen::Gensymm::Workspace.alloc(n)
#
-# Allocates a workspace for computing eigenvalues of n-by-n real
-# generalized symmetric-definite eigensystems.
-# The size of the workspace is O(2n).
+# Allocates a workspace for computing eigenvalues of n-by-n real
+# generalized symmetric-definite eigensystems.
+# The size of the workspace is O(2n).
# ---
# * GSL::Eigen::gensymm(A, B, w)
#
-# Computes the eigenvalues of the real generalized symmetric-definite matrix
-# pair <tt>A, B</tt>, and returns them as a <tt>GSL::Vector</tt>,
+# Computes the eigenvalues of the real generalized symmetric-definite matrix
+# pair <tt>A, B</tt>, and returns them as a <tt>GSL::Vector</tt>,
# using the method outlined above. On output, B contains its Cholesky
# decomposition.
# ---
# * GSL::Eigen::gensymmv(A, B, w)
#
-# Computes the eigenvalues and eigenvectors of the real generalized
-# symmetric-definite matrix pair <tt>A, B</tt>, and returns
-# them as a <tt>GSL::Vector</tt> and a <tt>GSL::Matrix</tt>.
-# The computed eigenvectors are normalized to have unit magnitude.
+# Computes the eigenvalues and eigenvectors of the real generalized
+# symmetric-definite matrix pair <tt>A, B</tt>, and returns
+# them as a <tt>GSL::Vector</tt> and a <tt>GSL::Matrix</tt>.
+# The computed eigenvectors are normalized to have unit magnitude.
# On output, <tt>B</tt> contains its Cholesky decomposition.
#
-# == {}[link:index.html"name="6] Complex Generalized Hermitian-Definite Eigensystems (>= GSL-1.10)
-# The complex generalized hermitian-definite eigenvalue problem is to
-# find eigenvalues <tt>lambda</tt> and eigenvectors <tt>x</tt> such that
-# where <tt>A</tt> and <tt>B</tt> are hermitian matrices, and <tt>B</tt>
-# is positive-definite. Similarly to the real case, this can be reduced to
-# <tt>C y = lambda y</tt> where <tt>C = L^{-1} A L^{-H}</tt> is hermitian,
-# and <tt>y = L^H x</tt>. The standard hermitian eigensolver can be applied to
-# the matrix <tt>C</tt>. The resulting eigenvectors are backtransformed
-# to find the vectors of the original problem.
-# The eigenvalues of the generalized hermitian-definite eigenproblem are always
-# real.
+# == Complex Generalized Hermitian-Definite Eigensystems (>= GSL-1.10)
+# The complex generalized hermitian-definite eigenvalue problem is to
+# find eigenvalues <tt>lambda</tt> and eigenvectors <tt>x</tt> such that
+# where <tt>A</tt> and <tt>B</tt> are hermitian matrices, and <tt>B</tt>
+# is positive-definite. Similarly to the real case, this can be reduced to
+# <tt>C y = lambda y</tt> where <tt>C = L^{-1} A L^{-H}</tt> is hermitian,
+# and <tt>y = L^H x</tt>. The standard hermitian eigensolver can be applied to
+# the matrix <tt>C</tt>. The resulting eigenvectors are backtransformed
+# to find the vectors of the original problem.
+# The eigenvalues of the generalized hermitian-definite eigenproblem are always
+# real.
#
# ---
# * GSL::Eigen::Genherm.alloc(n)
#
-# Allocates a workspace for computing eigenvalues of n-by-n complex
-# generalized hermitian-definite eigensystems.
-# The size of the workspace is O(3n).
+# Allocates a workspace for computing eigenvalues of n-by-n complex
+# generalized hermitian-definite eigensystems.
+# The size of the workspace is O(3n).
# ---
# * GSL::Eigen::genherm(A, B, w)
#
-# Computes the eigenvalues of the complex generalized hermitian-definite
-# matrix pair <tt>A, B</tt>, and returns them as a <tt>GSL::Vector</tt>,
-# using the method outlined above.
+# Computes the eigenvalues of the complex generalized hermitian-definite
+# matrix pair <tt>A, B</tt>, and returns them as a <tt>GSL::Vector</tt>,
+# using the method outlined above.
# On output, <tt>B</tt> contains its Cholesky decomposition.
# ---
# * GSL::Eigen::genherm(A, B, w)
#
-# Computes the eigenvalues and eigenvectors of the complex generalized
-# hermitian-definite matrix pair <tt>A, B</tt>,
-# and returns them as a <tt>GSL::Vector</tt> and a <tt>GSL::Matrix::Complex</tt>.
-# The computed eigenvectors are normalized to have unit magnitude.
+# Computes the eigenvalues and eigenvectors of the complex generalized
+# hermitian-definite matrix pair <tt>A, B</tt>,
+# and returns them as a <tt>GSL::Vector</tt> and a <tt>GSL::Matrix::Complex</tt>.
+# The computed eigenvectors are normalized to have unit magnitude.
# On output, <tt>B</tt> contains its Cholesky decomposition.
#
-# == {}[link:index.html"name="7] Real Generalized Nonsymmetric Eigensystems (>= GSL-1.10)
+# == Real Generalized Nonsymmetric Eigensystems (>= GSL-1.10)
#
# ---
# * GSL::Eigen::Gen.alloc(n)
# * GSL::Eigen::Gen::Workspace.alloc(n)
#
@@ -255,83 +255,83 @@
#
# ---
# * GSL::Eigen::Gen::params(compute_s, compute_t, balance, w)
# * GSL::Eigen::gen_params(compute_s, compute_t, balance, w)
#
-# Set some parameters which determine how the eigenvalue problem is solved
+# Set some parameters which determine how the eigenvalue problem is solved
# in subsequent calls to <tt>GSL::Eigen::gen</tt>.
#
-# If <tt>compute_s</tt> is set to 1, the full Schur form <tt>S</tt> will be
-# computed by <tt>GSL::Eigen::gen</tt>. If it is set to 0, <tt>S</tt> will
-# not be computed (this is the default setting). <tt>S</tt> is a quasi upper
-# triangular matrix with 1-by-1 and 2-by-2 blocks on its diagonal.
-# 1-by-1 blocks correspond to real eigenvalues, and 2-by-2 blocks
-# correspond to complex eigenvalues.
+# If <tt>compute_s</tt> is set to 1, the full Schur form <tt>S</tt> will be
+# computed by <tt>GSL::Eigen::gen</tt>. If it is set to 0, <tt>S</tt> will
+# not be computed (this is the default setting). <tt>S</tt> is a quasi upper
+# triangular matrix with 1-by-1 and 2-by-2 blocks on its diagonal.
+# 1-by-1 blocks correspond to real eigenvalues, and 2-by-2 blocks
+# correspond to complex eigenvalues.
#
-# If <tt>compute_t</tt> is set to 1, the full Schur form <tt>T</tt> will
-# be computed by <tt>GSL::Eigen::gen</tt>. If it is set to 0, <tt>T</tt>
-# will not be computed (this is the default setting). <tt>T</tt>
-# is an upper triangular matrix with non-negative elements on its diagonal.
-# Any 2-by-2 blocks in <tt>S</tt> will correspond to a 2-by-2 diagonal block
-# in <tt>T</tt>.
+# If <tt>compute_t</tt> is set to 1, the full Schur form <tt>T</tt> will
+# be computed by <tt>GSL::Eigen::gen</tt>. If it is set to 0, <tt>T</tt>
+# will not be computed (this is the default setting). <tt>T</tt>
+# is an upper triangular matrix with non-negative elements on its diagonal.
+# Any 2-by-2 blocks in <tt>S</tt> will correspond to a 2-by-2 diagonal block
+# in <tt>T</tt>.
#
-# The <tt>balance</tt> parameter is currently ignored, since generalized
-# balancing is not yet implemented.
+# The <tt>balance</tt> parameter is currently ignored, since generalized
+# balancing is not yet implemented.
#
# ---
# * GSL::Eigen::gen(A, B, w)
#
# Computes the eigenvalues of the real generalized nonsymmetric matrix pair
-# <tt>A, B</tt>, and returns them as pairs in (alpha, beta),
-# where alpha is <tt>GSL::Vector::Complex</tt> and beta is <tt>GSL::Vector</tt>.
+# <tt>A, B</tt>, and returns them as pairs in (alpha, beta),
+# where alpha is <tt>GSL::Vector::Complex</tt> and beta is <tt>GSL::Vector</tt>.
# If beta_i is non-zero, then lambda = alpha_i / beta_i is an eigenvalue.
-# Likewise, if alpha_i is non-zero, then mu = beta_i / alpha_i is an
-# eigenvalue of the alternate problem mu A y = B y.
-# The elements of <tt>beta</tt> are normalized to be non-negative.
+# Likewise, if alpha_i is non-zero, then mu = beta_i / alpha_i is an
+# eigenvalue of the alternate problem mu A y = B y.
+# The elements of <tt>beta</tt> are normalized to be non-negative.
#
-# If <tt>S</tt> is desired, it is stored in <tt>A</tt> on output.
-# If <tt>T</tt> is desired, it is stored in <tt>B</tt> on output.
-# The ordering of eigenvalues in <tt>alpha, beta</tt>
+# If <tt>S</tt> is desired, it is stored in <tt>A</tt> on output.
+# If <tt>T</tt> is desired, it is stored in <tt>B</tt> on output.
+# The ordering of eigenvalues in <tt>alpha, beta</tt>
# follows the ordering of the diagonal blocks in the Schur forms <tt>S</tt>
-# and <tt>T</tt>.
+# and <tt>T</tt>.
#
# ---
# * GSL::Eigen::gen_QZ(A, B, w)
#
-# This method is identical to <tt>GSL::Eigen::gen</tt> except it also computes
+# This method is identical to <tt>GSL::Eigen::gen</tt> except it also computes
# the left and right Schur vectors and returns them.
#
# ---
# * GSL::Eigen::Genv.alloc(n)
# * GSL::Eigen::Genv::Workspace.alloc(n)
#
-# Allocatesa workspace for computing eigenvalues and eigenvectors of
-# n-by-n real generalized nonsymmetric eigensystems.
-# The size of the workspace is O(7n).
+# Allocatesa workspace for computing eigenvalues and eigenvectors of
+# n-by-n real generalized nonsymmetric eigensystems.
+# The size of the workspace is O(7n).
#
# ---
# * GSL::Eigen::genv(A, B, w)
#
-# Computes eigenvalues and right eigenvectors of the n-by-n real generalized
-# nonsymmetric matrix pair <tt>A, B</tt>. The eigenvalues and eigenvectors
-# are returned in <tt>alpha, beta, evec</tt>.
-# On output, <tt>A, B</tt> contains the generalized Schur form <tt>S, T</tt>.
+# Computes eigenvalues and right eigenvectors of the n-by-n real generalized
+# nonsymmetric matrix pair <tt>A, B</tt>. The eigenvalues and eigenvectors
+# are returned in <tt>alpha, beta, evec</tt>.
+# On output, <tt>A, B</tt> contains the generalized Schur form <tt>S, T</tt>.
#
# ---
# * GSL::Eigen::genv_QZ(A, B, w)
#
-# This method is identical to <tt>GSL::Eigen::genv</tt> except it also computes
+# This method is identical to <tt>GSL::Eigen::genv</tt> except it also computes
# the left and right Schur vectors and returns them.
#
-# == {}[link:index.html"name="8] Sorting Eigenvalues and Eigenvectors
+# == Sorting Eigenvalues and Eigenvectors
# ---
# * GSL::Eigen::symmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
# * GSL::Eigen::Symmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
#
-# These methods simultaneously sort the eigenvalues stored in the vector
-# <tt>eval</tt> and the corresponding real eigenvectors stored in the
-# columns of the matrix <tt>evec</tt> into ascending or descending order
+# These methods simultaneously sort the eigenvalues stored in the vector
+# <tt>eval</tt> and the corresponding real eigenvectors stored in the
+# columns of the matrix <tt>evec</tt> into ascending or descending order
# according to the value of the parameter <tt>type</tt>,
#
# * <tt>GSL::Eigen::SORT_VAL_ASC</tt>
# ascending order in numerical value
# * <tt>GSL::Eigen::SORT_VAL_DESC</tt>
@@ -345,57 +345,57 @@
#
# ---
# * GSL::Eigen::hermv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
# * GSL::Eigen::Hermv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
#
-# These methods simultaneously sort the eigenvalues stored in the vector
-# <tt>eval</tt> and the corresponding complex eigenvectors stored in the columns
-# of the matrix <tt>evec</tt> into ascending or descending order according
+# These methods simultaneously sort the eigenvalues stored in the vector
+# <tt>eval</tt> and the corresponding complex eigenvectors stored in the columns
+# of the matrix <tt>evec</tt> into ascending or descending order according
# to the value of the parameter <tt>type</tt> as shown above.
#
# ---
# * GSL::Eigen::nonsymmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
# * GSL::Eigen::Nonsymmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
#
-# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the corresponding
-# complex eigenvectors stored in the columns of the matrix <tt>evec</tt>
-# into ascending or descending order according to the value of the
-# parameter <tt>type</tt> as shown above.
-# Only <tt>GSL::EIGEN_SORT_ABS_ASC</tt> and <tt>GSL::EIGEN_SORT_ABS_DESC</tt>
-# are supported due to the eigenvalues being complex.
+# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the corresponding
+# complex eigenvectors stored in the columns of the matrix <tt>evec</tt>
+# into ascending or descending order according to the value of the
+# parameter <tt>type</tt> as shown above.
+# Only <tt>GSL::EIGEN_SORT_ABS_ASC</tt> and <tt>GSL::EIGEN_SORT_ABS_DESC</tt>
+# are supported due to the eigenvalues being complex.
#
# ---
# * GSL::Eigen::gensymmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
# * GSL::Eigen::Gensymmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
#
-# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the
-# corresponding real eigenvectors stored in the columns of the matrix
-# <tt>evec</tt> into ascending or descending order according to the value of
-# the parameter <tt>type</tt> as shown above.
+# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the
+# corresponding real eigenvectors stored in the columns of the matrix
+# <tt>evec</tt> into ascending or descending order according to the value of
+# the parameter <tt>type</tt> as shown above.
#
# ---
# * GSL::Eigen::gensymmv_sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
# * GSL::Eigen::Gensymmv::sort(eval, evec, type = GSL::Eigen::SORT_VAL_ASC)
#
-# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the
-# corresponding complex eigenvectors stored in the columns of the matrix
-# <tt>evec</tt> into ascending or descending order according to the value of
-# the parameter <tt>type</tt> as shown above.
+# Sorts the eigenvalues stored in the vector <tt>eval</tt> and the
+# corresponding complex eigenvectors stored in the columns of the matrix
+# <tt>evec</tt> into ascending or descending order according to the value of
+# the parameter <tt>type</tt> as shown above.
#
# ---
# * GSL::Eigen::genv_sort(alpha, beta, evec, type = GSL::Eigen::SORT_VAL_ASC)
# * GSL::Eigen::Genv::sort(alpha, beta, evec, type = GSL::Eigen::SORT_VAL_ASC)
#
-# Sorts the eigenvalues stored in the vectors <tt>alpha, beta</tt> and the
-# corresponding complex eigenvectors stored in the columns of the matrix
-# <tt>evec</tt> into ascending or descending order according to the value of
+# Sorts the eigenvalues stored in the vectors <tt>alpha, beta</tt> and the
+# corresponding complex eigenvectors stored in the columns of the matrix
+# <tt>evec</tt> into ascending or descending order according to the value of
# the parameter <tt>type</tt> as shown above. Only <tt>GSL::EIGEN_SORT_ABS_ASC</tt>
-# and <tt>GSL::EIGEN_SORT_ABS_DESC</tt> are supported due to the eigenvalues
-# being complex.
+# and <tt>GSL::EIGEN_SORT_ABS_DESC</tt> are supported due to the eigenvalues
+# being complex.
#
-# {prev}[link:rdoc/linalg_rdoc.html]
-# {next}[link:rdoc/fft_rdoc.html]
+# {prev}[link:linalg_rdoc.html]
+# {next}[link:fft_rdoc.html]
#
-# {Reference index}[link:rdoc/ref_rdoc.html]
+# {Reference index}[link:ref_rdoc.html]
# {top}[link:index.html]
#
#