README.md in prophet-rb-0.1.1 vs README.md in prophet-rb-0.2.0

- old
+ new

@@ -8,11 +8,11 @@ - Linear and non-linear growth - Holidays and special events And gracefully handles missing data -[![Build Status](https://travis-ci.org/ankane/prophet.svg?branch=master)](https://travis-ci.org/ankane/prophet) +[![Build Status](https://travis-ci.org/ankane/prophet.svg?branch=master)](https://travis-ci.org/ankane/prophet) [![Build status](https://ci.appveyor.com/api/projects/status/8ahmsvvhum4ivnmv/branch/master?svg=true)](https://ci.appveyor.com/project/ankane/prophet/branch/master) ## Installation Add this line to your application’s Gemfile: @@ -29,11 +29,11 @@ [Explanation](https://facebook.github.io/prophet/docs/quick_start.html) Create a data frame with `ds` and `y` columns - here’s [an example](examples/example_wp_log_peyton_manning.csv) you can use ```ruby -df = Daru::DataFrame.from_csv("example_wp_log_peyton_manning.csv") +df = Rover.read_csv("example_wp_log_peyton_manning.csv") df.head(5) ``` ds | y --- | --- @@ -105,11 +105,11 @@ [Explanation](https://facebook.github.io/prophet/docs/saturating_forecasts.html) Forecast logistic growth instead of linear ```ruby -df = Daru::DataFrame.from_csv("example_wp_log_R.csv") +df = Rover.read_csv("example_wp_log_R.csv") df["cap"] = 8.5 m = Prophet.new(growth: "logistic") m.fit(df) future = m.make_future_dataframe(periods: 365) future["cap"] = 8.5 @@ -144,21 +144,21 @@ [Explanation](https://facebook.github.io/prophet/docs/seasonality,_holiday_effects,_and_regressors.html) Create a data frame with `holiday` and `ds` columns. Include all occurrences in your past data and future occurrences you’d like to forecast. ```ruby -playoffs = Daru::DataFrame.new( +playoffs = Rover::DataFrame.new( "holiday" => ["playoff"] * 14, "ds" => ["2008-01-13", "2009-01-03", "2010-01-16", "2010-01-24", "2010-02-07", "2011-01-08", "2013-01-12", "2014-01-12", "2014-01-19", "2014-02-02", "2015-01-11", "2016-01-17", "2016-01-24", "2016-02-07"], "lower_window" => [0] * 14, "upper_window" => [1] * 14 ) -superbowls = Daru::DataFrame.new( +superbowls = Rover::DataFrame.new( "holiday" => ["superbowl"] * 3, "ds" => ["2010-02-07", "2014-02-02", "2016-02-07"], "lower_window" => [0] * 3, "upper_window" => [1] * 3 ) @@ -206,11 +206,11 @@ ## Multiplicative Seasonality [Explanation](https://facebook.github.io/prophet/docs/multiplicative_seasonality.html) ```ruby -df = Daru::DataFrame.from_csv("example_air_passengers.csv") +df = Rover.read_csv("example_air_passengers.csv") m = Prophet.new(seasonality_mode: "multiplicative") m.fit(df) future = m.make_future_dataframe(periods: 50, freq: "MS") forecast = m.predict(future) ``` @@ -234,10 +234,10 @@ [Explanation](https://facebook.github.io/prophet/docs/non-daily_data.html) Sub-daily data ```ruby -df = Daru::DataFrame.from_csv("example_yosemite_temps.csv") +df = Rover.read_csv("example_yosemite_temps.csv") m = Prophet.new(changepoint_prior_scale: 0.01).fit(df) future = m.make_future_dataframe(periods: 300, freq: "H") forecast = m.predict(future) ```