lib/openstudio-standards/standards/Standards.Pump.rb in openstudio-standards-0.1.15 vs lib/openstudio-standards/standards/Standards.Pump.rb in openstudio-standards-0.2.0.rc1
- old
+ new
@@ -1,32 +1,43 @@
# A variety of pump calculation methods that are the same regardless of pump type.
# These methods are available to PumpConstantSpeed, PumpVariableSpeed
module Pump
+ # @!group Pump
+
# Set the pressure rise that cooresponds to the
# target power per flow number, given the standard
# pump efficiency and the default EnergyPlus pump impeller efficiency
# of 0.78.
#
# @param target_w_per_gpm [Double] the target power per flow, in W/gpm
# @return [Bool] return true if successful, false if not
# @author jmarrec
- def apply_prm_pressure_rise_and_motor_efficiency(target_w_per_gpm, template)
+ def pump_apply_prm_pressure_rise_and_motor_efficiency(pump, target_w_per_gpm)
# Eplus assumes an impeller efficiency of 0.78 to determine the total efficiency
# http://bigladdersoftware.com/epx/docs/8-4/engineering-reference/component-sizing.html#pump-sizing
# Rated_Power_Use = Rated_Volume_Flow_Rate * Rated_Pump_Head / Total_Efficiency
# Rated_Power_Use / Rated_Volume_Flow_Rate = Rated_Pump_Head / Total_Efficiency
# Total_Efficiency = Motor_Efficiency * Impeler_Efficiency
impeller_efficiency = 0.78
# Get flow rate (whether autosized or hard-sized)
flow_m3_per_s = 0
- flow_m3_per_s = if autosizedRatedFlowRate.is_initialized
- autosizedRatedFlowRate.get
- else
- ratedFlowRate.get
+ flow_m3_per_s = if pump.to_PumpVariableSpeed.is_initialized || pump.to_PumpConstantSpeed.is_initialized
+ if pump.autosizedRatedFlowRate.is_initialized
+ pump.autosizedRatedFlowRate.get
+ else
+ pump.ratedFlowRate.get
+ end
+ elsif pump.to_HeaderedPumpsVariableSpeed.is_initialized || pump.to_HeaderedPumpsConstantSpeed.is_initialized
+ if pump.autosizedTotalRatedFlowRate.is_initialized
+ pump.autosizedTotalRatedFlowRate.get / pump.numberofPumpsinBank
+ else
+ pump.totalRatedFlowRate.get / pump.numberofPumpsinBank
+ end
end
+
flow_gpm = OpenStudio.convert(flow_m3_per_s, 'm^3/s', 'gal/min').get
# Calculate the target total pump motor power consumption
target_motor_power_cons_w = target_w_per_gpm * flow_gpm
target_motor_power_cons_hp = target_motor_power_cons_w / 745.7 # 745.7 W/HP
@@ -36,63 +47,65 @@
# up based on the motor consumption, which is always actually higher
# than the brake horsepower. This will bound the possible motor efficiency
# values. If a motor is just above a nominal size, and the next size
# down has a lower efficiency value, later motor efficiency setting
# methods can mess up the W/gpm. All this nonsense avoids that.
- mot_eff_hi_end, nom_hp_hi_end = standard_minimum_motor_efficiency_and_size(template, target_motor_power_cons_hp)
+ mot_eff_hi_end, nom_hp_hi_end = pump_standard_minimum_motor_efficiency_and_size(pump, target_motor_power_cons_hp)
# Calculate the actual brake horsepower using this efficiency
target_motor_bhp = target_motor_power_cons_hp * mot_eff_hi_end
# Find the motor efficiency using actual bhp
- mot_eff_lo_end, nom_hp_lo_end = standard_minimum_motor_efficiency_and_size(template, target_motor_bhp)
+ mot_eff_lo_end, nom_hp_lo_end = pump_standard_minimum_motor_efficiency_and_size(pump, target_motor_bhp)
# If the efficiency drops you down into a lower band with
# a lower efficiency value, use that for the motor efficiency.
motor_efficiency = [mot_eff_lo_end, mot_eff_hi_end].min
nominal_hp = [nom_hp_lo_end, nom_hp_hi_end].min
# Calculate the brake horsepower that was assumed
target_brake_power_hp = target_motor_power_cons_hp * motor_efficiency
# Change the motor efficiency
- setMotorEfficiency(motor_efficiency)
+ pump.setMotorEfficiency(motor_efficiency)
total_efficiency = impeller_efficiency * motor_efficiency
desired_power_per_m3_s = OpenStudio.convert(target_w_per_gpm, 'W*min/gal', 'W*s/m^3').get
pressure_rise_pa = desired_power_per_m3_s * total_efficiency
pressure_rise_ft_h2o = OpenStudio.convert(pressure_rise_pa, 'Pa', 'ftH_{2}O').get
# Change pressure rise
- setRatedPumpHead(pressure_rise_pa)
+ pump.setRatedPumpHead(pressure_rise_pa)
# Report
- OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Pump', "For #{name}: motor nameplate = #{nominal_hp}HP, motor eff = #{(motor_efficiency * 100).round(2)}%; #{target_w_per_gpm.round} W/gpm translates to a pressure rise of #{pressure_rise_ft_h2o.round(2)} ftH2O.")
+ OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Pump', "For #{pump.name}: motor nameplate = #{nominal_hp}HP, motor eff = #{(motor_efficiency * 100).round(2)}%; #{target_w_per_gpm.round} W/gpm translates to a pressure rise of #{pressure_rise_ft_h2o.round(2)} ftH2O.")
# Calculate the W/gpm for verification
- calculated_w = pump_power
+ calculated_w = pump_pumppower(pump)
calculated_w_per_gpm = calculated_w / flow_gpm
- OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.Pump', "For #{name}: calculated W/gpm = #{calculated_w_per_gpm.round(1)}.")
+ OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.Pump', "For #{pump.name}: calculated W/gpm = #{calculated_w_per_gpm.round(1)}.")
return true
end
- def apply_standard_minimum_motor_efficiency(template)
+ # Applies the minimum motor efficiency for this pump
+ # based on the motor's brake horsepower.
+ def pump_apply_standard_minimum_motor_efficiency(pump)
# Get the horsepower
- bhp = brake_horsepower
+ bhp = pump_brake_horsepower(pump)
# Find the motor efficiency
- motor_eff, nominal_hp = standard_minimum_motor_efficiency_and_size(template, bhp)
+ motor_eff, nominal_hp = pump_standard_minimum_motor_efficiency_and_size(pump, bhp)
# Change the motor efficiency
- setMotorEfficiency(motor_eff)
+ pump.setMotorEfficiency(motor_eff)
- OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Pump', "For #{name}: brake hp = #{bhp.round(2)}HP, motor nameplate = #{nominal_hp.round(2)}HP, motor eff = #{(motor_eff * 100).round(2)}%.")
+ OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Pump', "For #{pump.name}: brake hp = #{bhp.round(2)}HP, motor nameplate = #{nominal_hp.round(2)}HP, motor eff = #{(motor_eff * 100).round(2)}%.")
return true
end
# Determines the minimum pump motor efficiency and nominal size
@@ -104,32 +117,32 @@
# for 90.1-2010 will be 91.7% from Table 10.8B. This method assumes
# 4-pole, 1800rpm totally-enclosed fan-cooled motors.
#
# @param motor_bhp [Double] motor brake horsepower (hp)
# @return [Array<Double>] minimum motor efficiency (0.0 to 1.0), nominal horsepower
- def standard_minimum_motor_efficiency_and_size(template, motor_bhp)
+ def pump_standard_minimum_motor_efficiency_and_size(pump, motor_bhp)
motor_eff = 0.85
nominal_hp = motor_bhp
# Don't attempt to look up motor efficiency
# for zero-hp pumps (required for circulation-pump-free
# service water heating systems).
return [1.0, 0] if motor_bhp == 0.0
# Lookup the minimum motor efficiency
- motors = $os_standards['motors']
+ motors = standards_data['motors']
# Assuming all pump motors are 4-pole ODP
search_criteria = {
'template' => template,
'number_of_poles' => 4.0,
'type' => 'Enclosed'
}
- motor_properties = model.find_object(motors, search_criteria, motor_bhp)
+ motor_properties = model_find_object(motors, search_criteria, motor_bhp)
if motor_properties.nil?
- OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Pump', "For #{name}, could not find motor properties using search criteria: #{search_criteria}, motor_bhp = #{motor_bhp} hp.")
+ OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Pump', "For #{pump.name}, could not find motor properties using search criteria: #{search_criteria}, motor_bhp = #{motor_bhp} hp.")
return [motor_eff, nominal_hp]
end
motor_eff = motor_properties['nominal_full_load_efficiency']
nominal_hp = motor_properties['maximum_capacity'].to_f.round(1)
@@ -138,13 +151,13 @@
nominal_hp = nominal_hp.round
end
# Get the efficiency based on the nominal horsepower
# Add 0.01 hp to avoid search errors.
- motor_properties = model.find_object(motors, search_criteria, nominal_hp + 0.01)
+ motor_properties = model_find_object(motors, search_criteria, nominal_hp + 0.01)
if motor_properties.nil?
- OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Fan', "For #{name}, could not find nominal motor properties using search criteria: #{search_criteria}, motor_hp = #{nominal_hp} hp.")
+ OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Fan', "For #{pump.name}, could not find nominal motor properties using search criteria: #{search_criteria}, motor_hp = #{nominal_hp} hp.")
return [motor_eff, nominal_hp]
end
motor_eff = motor_properties['nominal_full_load_efficiency']
return [motor_eff, nominal_hp]
@@ -154,33 +167,41 @@
# flow rate, pressure rise, and total pump efficiency(impeller eff * motor eff).
# Uses the E+ default assumption of 0.78 impeller efficiency.
#
# @return [Double] pump power
# @units Watts (W)
- def pump_power
+ def pump_pumppower(pump)
# Get flow rate (whether autosized or hard-sized)
flow_m3_per_s = 0
- flow_m3_per_s = if autosizedRatedFlowRate.is_initialized
- autosizedRatedFlowRate.get
- else
- ratedFlowRate.get
+ flow_m3_per_s = if pump.to_PumpVariableSpeed.is_initialized || pump.to_PumpConstantSpeed.is_initialized
+ if pump.autosizedRatedFlowRate.is_initialized
+ pump.autosizedRatedFlowRate.get
+ else
+ pump.ratedFlowRate.get
+ end
+ elsif pump.to_HeaderedPumpsVariableSpeed.is_initialized || pump.to_HeaderedPumpsConstantSpeed.is_initialized
+ if pump.autosizedTotalRatedFlowRate.is_initialized
+ pump.autosizedTotalRatedFlowRate.get
+ else
+ pump.totalRatedFlowRate.get
+ end
end
# E+ default impeller efficiency
# http://bigladdersoftware.com/epx/docs/8-4/engineering-reference/component-sizing.html#pump-sizing
impeller_eff = 0.78
# Get the motor efficiency
- motor_eff = motorEfficiency
+ motor_eff = pump.motorEfficiency
# Calculate the total efficiency
# which includes both motor and
# impeller efficiency.
pump_total_eff = impeller_eff * motor_eff
# Get the pressure rise (Pa)
- pressure_rise_pa = ratedPumpHead
+ pressure_rise_pa = pump.ratedPumpHead
# Calculate the pump power (W)
pump_power_w = pressure_rise_pa * flow_m3_per_s / pump_total_eff
return pump_power_w
@@ -189,25 +210,34 @@
# Determines the brake horsepower of the pump
# based on flow rate, pressure rise, and impeller efficiency.
#
# @return [Double] brake horsepower
# @units horsepower (hp)
- def brake_horsepower
+ def pump_brake_horsepower(pump)
# Get flow rate (whether autosized or hard-sized)
+ # Get flow rate (whether autosized or hard-sized)
flow_m3_per_s = 0
- flow_m3_per_s = if autosizedRatedFlowRate.is_initialized
- autosizedRatedFlowRate.get
- else
- ratedFlowRate.get
+ flow_m3_per_s = if pump.to_PumpVariableSpeed.is_initialized || pump.to_PumpConstantSpeed.is_initialized
+ if pump.autosizedRatedFlowRate.is_initialized
+ pump.autosizedRatedFlowRate.get
+ else
+ pump.ratedFlowRate.get
+ end
+ elsif pump.to_HeaderedPumpsVariableSpeed.is_initialized || pump.to_HeaderedPumpsConstantSpeed.is_initialized
+ if pump.autosizedTotalRatedFlowRate.is_initialized
+ pump.autosizedTotalRatedFlowRate.get
+ else
+ pump.totalRatedFlowRate.get
+ end
end
# E+ default impeller efficiency
# http://bigladdersoftware.com/epx/docs/8-4/engineering-reference/component-sizing.html#pump-sizing
impeller_eff = 0.78
# Get the pressure rise (Pa)
- pressure_rise_pa = ratedPumpHead
+ pressure_rise_pa = pump.ratedPumpHead
# Calculate the pump power (W)
pump_power_w = pressure_rise_pa * flow_m3_per_s / impeller_eff
# Convert to HP
@@ -219,13 +249,13 @@
# Determines the horsepower of the pump
# motor, including motor efficiency and
# pump impeller efficiency.
#
# @return [Double] horsepower
- def motor_horsepower
+ def pump_motor_horsepower(pump)
# Get the pump power
- pump_power_w = pump_power
+ pump_power_w = pump_pumppower(pump)
# Convert to HP
pump_hp = pump_power_w / 745.7 # 745.7 W/HP
return pump_hp
@@ -233,28 +263,28 @@
# Determines the rated watts per GPM of the pump
#
# @return [Double] rated power consumption per flow
# @units Watts per GPM (W*min/gal)
- def rated_w_per_gpm
+ def pump_rated_w_per_gpm(pump)
# Get design power (whether autosized or hard-sized)
rated_power_w = 0
- if autosizedRatedPowerConsumption.is_initialized
- rated_power_w = autosizedRatedPowerConsumption.get
- elsif ratedPowerConsumption.is_initialized
- rated_power_w = ratedPowerConsumption.get
+ if pump.autosizedRatedPowerConsumption.is_initialized
+ rated_power_w = pump.autosizedRatedPowerConsumption.get
+ elsif pump.ratedPowerConsumption.is_initialized
+ rated_power_w = pump.ratedPowerConsumption.get
else
- OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Pump', "For #{name}, could not find rated pump power consumption, cannot determine w per gpm correctly.")
+ OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Pump', "For #{pump.name}, could not find rated pump power consumption, cannot determine w per gpm correctly.")
return 0.0
end
rated_m3_per_s = 0
- if autosizedRatedFlowRate.is_initialized
- rated_m3_per_s = autosizedRatedFlowRate.get
- elsif ratedFlowRate.is_initialized
- rated_m3_per_s = ratedFlowRate.get
+ if pump.autosizedRatedFlowRate.is_initialized
+ rated_m3_per_s = pump.autosizedRatedFlowRate.get
+ elsif pump.ratedFlowRate.is_initialized
+ rated_m3_per_s = pump.ratedFlowRate.get
else
- OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Pump', "For #{name}, could not find rated pump Flow Rate, cannot determine w per gpm correctly.")
+ OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Pump', "For #{pump.name}, could not find rated pump Flow Rate, cannot determine w per gpm correctly.")
return 0.0
end
rated_w_per_m3s = rated_power_w / rated_m3_per_s