vendor/v8/src/mips/assembler-mips.cc in mustang-0.0.1 vs vendor/v8/src/mips/assembler-mips.cc in mustang-0.1.0

- old
+ new

@@ -38,87 +38,45 @@ #if defined(V8_TARGET_ARCH_MIPS) #include "mips/assembler-mips-inl.h" #include "serialize.h" - namespace v8 { namespace internal { +CpuFeatures::CpuFeatures() + : supported_(0), + enabled_(0), + found_by_runtime_probing_(0) { +} +void CpuFeatures::Probe(bool portable) { + // If the compiler is allowed to use fpu then we can use fpu too in our + // code generation. +#if !defined(__mips__) + // For the simulator=mips build, use FPU when FLAG_enable_fpu is enabled. + if (FLAG_enable_fpu) { + supported_ |= 1u << FPU; + } +#else + if (portable && Serializer::enabled()) { + supported_ |= OS::CpuFeaturesImpliedByPlatform(); + return; // No features if we might serialize. + } -const Register no_reg = { -1 }; + if (OS::MipsCpuHasFeature(FPU)) { + // This implementation also sets the FPU flags if + // runtime detection of FPU returns true. + supported_ |= 1u << FPU; + found_by_runtime_probing_ |= 1u << FPU; + } -const Register zero_reg = { 0 }; -const Register at = { 1 }; -const Register v0 = { 2 }; -const Register v1 = { 3 }; -const Register a0 = { 4 }; -const Register a1 = { 5 }; -const Register a2 = { 6 }; -const Register a3 = { 7 }; -const Register t0 = { 8 }; -const Register t1 = { 9 }; -const Register t2 = { 10 }; -const Register t3 = { 11 }; -const Register t4 = { 12 }; -const Register t5 = { 13 }; -const Register t6 = { 14 }; -const Register t7 = { 15 }; -const Register s0 = { 16 }; -const Register s1 = { 17 }; -const Register s2 = { 18 }; -const Register s3 = { 19 }; -const Register s4 = { 20 }; -const Register s5 = { 21 }; -const Register s6 = { 22 }; -const Register s7 = { 23 }; -const Register t8 = { 24 }; -const Register t9 = { 25 }; -const Register k0 = { 26 }; -const Register k1 = { 27 }; -const Register gp = { 28 }; -const Register sp = { 29 }; -const Register s8_fp = { 30 }; -const Register ra = { 31 }; + if (!portable) found_by_runtime_probing_ = 0; +#endif +} -const FPURegister no_creg = { -1 }; - -const FPURegister f0 = { 0 }; -const FPURegister f1 = { 1 }; -const FPURegister f2 = { 2 }; -const FPURegister f3 = { 3 }; -const FPURegister f4 = { 4 }; -const FPURegister f5 = { 5 }; -const FPURegister f6 = { 6 }; -const FPURegister f7 = { 7 }; -const FPURegister f8 = { 8 }; -const FPURegister f9 = { 9 }; -const FPURegister f10 = { 10 }; -const FPURegister f11 = { 11 }; -const FPURegister f12 = { 12 }; -const FPURegister f13 = { 13 }; -const FPURegister f14 = { 14 }; -const FPURegister f15 = { 15 }; -const FPURegister f16 = { 16 }; -const FPURegister f17 = { 17 }; -const FPURegister f18 = { 18 }; -const FPURegister f19 = { 19 }; -const FPURegister f20 = { 20 }; -const FPURegister f21 = { 21 }; -const FPURegister f22 = { 22 }; -const FPURegister f23 = { 23 }; -const FPURegister f24 = { 24 }; -const FPURegister f25 = { 25 }; -const FPURegister f26 = { 26 }; -const FPURegister f27 = { 27 }; -const FPURegister f28 = { 28 }; -const FPURegister f29 = { 29 }; -const FPURegister f30 = { 30 }; -const FPURegister f31 = { 31 }; - int ToNumber(Register reg) { ASSERT(reg.is_valid()); const int kNumbers[] = { 0, // zero_reg 1, // at @@ -154,10 +112,11 @@ 31, // ra }; return kNumbers[reg.code()]; } + Register ToRegister(int num) { ASSERT(num >= 0 && num < kNumRegisters); const Register kRegisters[] = { zero_reg, at, @@ -179,10 +138,19 @@ // ----------------------------------------------------------------------------- // Implementation of RelocInfo. const int RelocInfo::kApplyMask = 0; + +bool RelocInfo::IsCodedSpecially() { + // The deserializer needs to know whether a pointer is specially coded. Being + // specially coded on MIPS means that it is a lui/ori instruction, and that is + // always the case inside code objects. + return true; +} + + // Patch the code at the current address with the supplied instructions. void RelocInfo::PatchCode(byte* instructions, int instruction_count) { Instr* pc = reinterpret_cast<Instr*>(pc_); Instr* instr = reinterpret_cast<Instr*>(instructions); for (int i = 0; i < instruction_count; i++) { @@ -208,41 +176,81 @@ Operand::Operand(Handle<Object> handle) { rm_ = no_reg; // Verify all Objects referred by code are NOT in new space. Object* obj = *handle; - ASSERT(!Heap::InNewSpace(obj)); + ASSERT(!HEAP->InNewSpace(obj)); if (obj->IsHeapObject()) { imm32_ = reinterpret_cast<intptr_t>(handle.location()); rmode_ = RelocInfo::EMBEDDED_OBJECT; } else { // No relocation needed. imm32_ = reinterpret_cast<intptr_t>(obj); rmode_ = RelocInfo::NONE; } } -MemOperand::MemOperand(Register rm, int16_t offset) : Operand(rm) { + +MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) { offset_ = offset; } // ----------------------------------------------------------------------------- -// Implementation of Assembler. +// Specific instructions, constants, and masks. -static const int kMinimalBufferSize = 4*KB; -static byte* spare_buffer_ = NULL; +static const int kNegOffset = 0x00008000; +// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r) +// operations as post-increment of sp. +const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift) + | (sp.code() << kRtShift) | (kPointerSize & kImm16Mask); +// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp. +const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift) + | (sp.code() << kRtShift) | (-kPointerSize & kImm16Mask); +// sw(r, MemOperand(sp, 0)) +const Instr kPushRegPattern = SW | (sp.code() << kRsShift) + | (0 & kImm16Mask); +// lw(r, MemOperand(sp, 0)) +const Instr kPopRegPattern = LW | (sp.code() << kRsShift) + | (0 & kImm16Mask); -Assembler::Assembler(void* buffer, int buffer_size) { +const Instr kLwRegFpOffsetPattern = LW | (s8_fp.code() << kRsShift) + | (0 & kImm16Mask); + +const Instr kSwRegFpOffsetPattern = SW | (s8_fp.code() << kRsShift) + | (0 & kImm16Mask); + +const Instr kLwRegFpNegOffsetPattern = LW | (s8_fp.code() << kRsShift) + | (kNegOffset & kImm16Mask); + +const Instr kSwRegFpNegOffsetPattern = SW | (s8_fp.code() << kRsShift) + | (kNegOffset & kImm16Mask); +// A mask for the Rt register for push, pop, lw, sw instructions. +const Instr kRtMask = kRtFieldMask; +const Instr kLwSwInstrTypeMask = 0xffe00000; +const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask; +const Instr kLwSwOffsetMask = kImm16Mask; + + +// Spare buffer. +static const int kMinimalBufferSize = 4 * KB; + + +Assembler::Assembler(void* buffer, int buffer_size) + : AssemblerBase(Isolate::Current()), + positions_recorder_(this), + allow_peephole_optimization_(false) { + // BUG(3245989): disable peephole optimization if crankshaft is enabled. + allow_peephole_optimization_ = FLAG_peephole_optimization; if (buffer == NULL) { // Do our own buffer management. if (buffer_size <= kMinimalBufferSize) { buffer_size = kMinimalBufferSize; - if (spare_buffer_ != NULL) { - buffer = spare_buffer_; - spare_buffer_ = NULL; + if (isolate()->assembler_spare_buffer() != NULL) { + buffer = isolate()->assembler_spare_buffer(); + isolate()->set_assembler_spare_buffer(NULL); } } if (buffer == NULL) { buffer_ = NewArray<byte>(buffer_size); } else { @@ -261,56 +269,117 @@ // Setup buffer pointers. ASSERT(buffer_ != NULL); pc_ = buffer_; reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); - current_statement_position_ = RelocInfo::kNoPosition; - current_position_ = RelocInfo::kNoPosition; - written_statement_position_ = current_statement_position_; - written_position_ = current_position_; + + last_trampoline_pool_end_ = 0; + no_trampoline_pool_before_ = 0; + trampoline_pool_blocked_nesting_ = 0; + next_buffer_check_ = kMaxBranchOffset - kTrampolineSize; } Assembler::~Assembler() { if (own_buffer_) { - if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { - spare_buffer_ = buffer_; + if (isolate()->assembler_spare_buffer() == NULL && + buffer_size_ == kMinimalBufferSize) { + isolate()->set_assembler_spare_buffer(buffer_); } else { DeleteArray(buffer_); } } } void Assembler::GetCode(CodeDesc* desc) { - ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap + ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap. // Setup code descriptor. desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); } +void Assembler::Align(int m) { + ASSERT(m >= 4 && IsPowerOf2(m)); + while ((pc_offset() & (m - 1)) != 0) { + nop(); + } +} + + +void Assembler::CodeTargetAlign() { + // No advantage to aligning branch/call targets to more than + // single instruction, that I am aware of. + Align(4); +} + + +Register Assembler::GetRt(Instr instr) { + Register rt; + rt.code_ = (instr & kRtMask) >> kRtShift; + return rt; +} + + +bool Assembler::IsPop(Instr instr) { + return (instr & ~kRtMask) == kPopRegPattern; +} + + +bool Assembler::IsPush(Instr instr) { + return (instr & ~kRtMask) == kPushRegPattern; +} + + +bool Assembler::IsSwRegFpOffset(Instr instr) { + return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern); +} + + +bool Assembler::IsLwRegFpOffset(Instr instr) { + return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern); +} + + +bool Assembler::IsSwRegFpNegOffset(Instr instr) { + return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == + kSwRegFpNegOffsetPattern); +} + + +bool Assembler::IsLwRegFpNegOffset(Instr instr) { + return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == + kLwRegFpNegOffsetPattern); +} + + // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the last // instruction using the label. +// The link chain is terminated by a value in the instruction of -1, +// which is an otherwise illegal value (branch -1 is inf loop). +// The instruction 16-bit offset field addresses 32-bit words, but in +// code is conv to an 18-bit value addressing bytes, hence the -4 value. -// The link chain is terminated by a negative code position (must be aligned). const int kEndOfChain = -4; -bool Assembler::is_branch(Instr instr) { + +bool Assembler::IsBranch(Instr instr) { uint32_t opcode = ((instr & kOpcodeMask)); uint32_t rt_field = ((instr & kRtFieldMask)); uint32_t rs_field = ((instr & kRsFieldMask)); + uint32_t label_constant = (instr & ~kImm16Mask); // Checks if the instruction is a branch. return opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ || @@ -318,28 +387,109 @@ opcode == BNEL || opcode == BLEZL || opcode == BGTZL|| (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || rt_field == BLTZAL || rt_field == BGEZAL)) || - (opcode == COP1 && rs_field == BC1); // Coprocessor branch. + (opcode == COP1 && rs_field == BC1) || // Coprocessor branch. + label_constant == 0; // Emitted label const in reg-exp engine. } +bool Assembler::IsNop(Instr instr, unsigned int type) { + // See Assembler::nop(type). + ASSERT(type < 32); + uint32_t opcode = ((instr & kOpcodeMask)); + uint32_t rt = ((instr & kRtFieldMask) >> kRtShift); + uint32_t rs = ((instr & kRsFieldMask) >> kRsShift); + uint32_t sa = ((instr & kSaFieldMask) >> kSaShift); + + // nop(type) == sll(zero_reg, zero_reg, type); + // Technically all these values will be 0 but + // this makes more sense to the reader. + + bool ret = (opcode == SLL && + rt == static_cast<uint32_t>(ToNumber(zero_reg)) && + rs == static_cast<uint32_t>(ToNumber(zero_reg)) && + sa == type); + + return ret; +} + + +int32_t Assembler::GetBranchOffset(Instr instr) { + ASSERT(IsBranch(instr)); + return ((int16_t)(instr & kImm16Mask)) << 2; +} + + +bool Assembler::IsLw(Instr instr) { + return ((instr & kOpcodeMask) == LW); +} + + +int16_t Assembler::GetLwOffset(Instr instr) { + ASSERT(IsLw(instr)); + return ((instr & kImm16Mask)); +} + + +Instr Assembler::SetLwOffset(Instr instr, int16_t offset) { + ASSERT(IsLw(instr)); + + // We actually create a new lw instruction based on the original one. + Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) + | (offset & kImm16Mask); + + return temp_instr; +} + + +bool Assembler::IsSw(Instr instr) { + return ((instr & kOpcodeMask) == SW); +} + + +Instr Assembler::SetSwOffset(Instr instr, int16_t offset) { + ASSERT(IsSw(instr)); + return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); +} + + +bool Assembler::IsAddImmediate(Instr instr) { + return ((instr & kOpcodeMask) == ADDIU); +} + + +Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) { + ASSERT(IsAddImmediate(instr)); + return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); +} + + int Assembler::target_at(int32_t pos) { Instr instr = instr_at(pos); if ((instr & ~kImm16Mask) == 0) { // Emitted label constant, not part of a branch. - return instr - (Code::kHeaderSize - kHeapObjectTag); + if (instr == 0) { + return kEndOfChain; + } else { + int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; + return (imm18 + pos); + } } // Check we have a branch instruction. - ASSERT(is_branch(instr)); + ASSERT(IsBranch(instr)); // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming // the compiler uses arithmectic shifts for signed integers. - int32_t imm18 = ((instr & - static_cast<int32_t>(kImm16Mask)) << 16) >> 14; + int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; - return pos + kBranchPCOffset + imm18; + if (imm18 == kEndOfChain) { + // EndOfChain sentinel is returned directly, not relative to pc or pos. + return kEndOfChain; + } else { + return pos + kBranchPCOffset + imm18; + } } void Assembler::target_at_put(int32_t pos, int32_t target_pos) { Instr instr = instr_at(pos); @@ -349,11 +499,11 @@ // Make label relative to Code* of generated Code object. instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); return; } - ASSERT(is_branch(instr)); + ASSERT(IsBranch(instr)); int32_t imm18 = target_pos - (pos + kBranchPCOffset); ASSERT((imm18 & 3) == 0); instr &= ~kImm16Mask; int32_t imm16 = imm18 >> 2; @@ -386,14 +536,32 @@ } } void Assembler::bind_to(Label* L, int pos) { - ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position + ASSERT(0 <= pos && pos <= pc_offset()); // Must have valid binding position. while (L->is_linked()) { int32_t fixup_pos = L->pos(); - next(L); // call next before overwriting link with target at fixup_pos + int32_t dist = pos - fixup_pos; + next(L); // Call next before overwriting link with target at fixup_pos. + if (dist > kMaxBranchOffset) { + do { + int32_t trampoline_pos = get_trampoline_entry(fixup_pos); + ASSERT((trampoline_pos - fixup_pos) <= kMaxBranchOffset); + target_at_put(fixup_pos, trampoline_pos); + fixup_pos = trampoline_pos; + dist = pos - fixup_pos; + } while (dist > kMaxBranchOffset); + } else if (dist < -kMaxBranchOffset) { + do { + int32_t trampoline_pos = get_trampoline_entry(fixup_pos, false); + ASSERT((trampoline_pos - fixup_pos) >= -kMaxBranchOffset); + target_at_put(fixup_pos, trampoline_pos); + fixup_pos = trampoline_pos; + dist = pos - fixup_pos; + } while (dist < -kMaxBranchOffset); + }; target_at_put(fixup_pos, pos); } L->bind_to(pos); // Keep track of the last bound label so we don't eliminate any instructions @@ -414,47 +582,42 @@ link = target_at(fixup_pos); } while (link > 0); ASSERT(link == kEndOfChain); target_at_put(fixup_pos, appendix->pos()); } else { - // L is empty, simply use appendix + // L is empty, simply use appendix. *L = *appendix; } } - appendix->Unuse(); // appendix should not be used anymore + appendix->Unuse(); // Appendix should not be used anymore. } void Assembler::bind(Label* L) { - ASSERT(!L->is_bound()); // label can only be bound once + ASSERT(!L->is_bound()); // Label can only be bound once. bind_to(L, pc_offset()); } void Assembler::next(Label* L) { ASSERT(L->is_linked()); int link = target_at(L->pos()); - if (link > 0) { - L->link_to(link); - } else { - ASSERT(link == kEndOfChain); + ASSERT(link > 0 || link == kEndOfChain); + if (link == kEndOfChain) { L->Unuse(); + } else if (link > 0) { + L->link_to(link); } } // We have to use a temporary register for things that can be relocated even // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction // space. There is no guarantee that the relocated location can be similarly // encoded. -bool Assembler::MustUseAt(RelocInfo::Mode rmode) { - if (rmode == RelocInfo::EXTERNAL_REFERENCE) { - return Serializer::enabled(); - } else if (rmode == RelocInfo::NONE) { - return false; - } - return true; +bool Assembler::MustUseReg(RelocInfo::Mode rmode) { + return rmode != RelocInfo::NONE; } void Assembler::GenInstrRegister(Opcode opcode, Register rs, @@ -468,18 +631,32 @@ emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, + Register rs, + Register rt, + uint16_t msb, + uint16_t lsb, + SecondaryField func) { + ASSERT(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb)); + Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) + | (msb << kRdShift) | (lsb << kSaShift) | func; + emit(instr); +} + + +void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft, FPURegister fs, FPURegister fd, SecondaryField func) { ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid()); - Instr instr = opcode | fmt | (ft.code() << 16) | (fs.code() << kFsShift) - | (fd.code() << 6) | func; + ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); + Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift) + | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, @@ -487,16 +664,30 @@ Register rt, FPURegister fs, FPURegister fd, SecondaryField func) { ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid()); + ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); Instr instr = opcode | fmt | (rt.code() << kRtShift) - | (fs.code() << kFsShift) | (fd.code() << 6) | func; + | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } +void Assembler::GenInstrRegister(Opcode opcode, + SecondaryField fmt, + Register rt, + FPUControlRegister fs, + SecondaryField func) { + ASSERT(fs.is_valid() && rt.is_valid()); + ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); + Instr instr = + opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func; + emit(instr); +} + + // Instructions with immediate value. // Registers are in the order of the instruction encoding, from left to right. void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt, @@ -521,55 +712,158 @@ void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft, int32_t j) { ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); + ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) | (j & kImm16Mask); emit(instr); } // Registers are in the order of the instruction encoding, from left to right. void Assembler::GenInstrJump(Opcode opcode, uint32_t address) { + BlockTrampolinePoolScope block_trampoline_pool(this); ASSERT(is_uint26(address)); Instr instr = opcode | address; emit(instr); + BlockTrampolinePoolFor(1); // For associated delay slot. } +// Returns the next free label entry from the next trampoline pool. +int32_t Assembler::get_label_entry(int32_t pos, bool next_pool) { + int trampoline_count = trampolines_.length(); + int32_t label_entry = 0; + ASSERT(trampoline_count > 0); + + if (next_pool) { + for (int i = 0; i < trampoline_count; i++) { + if (trampolines_[i].start() > pos) { + label_entry = trampolines_[i].take_label(); + break; + } + } + } else { // Caller needs a label entry from the previous pool. + for (int i = trampoline_count-1; i >= 0; i--) { + if (trampolines_[i].end() < pos) { + label_entry = trampolines_[i].take_label(); + break; + } + } + } + return label_entry; +} + + +// Returns the next free trampoline entry from the next trampoline pool. +int32_t Assembler::get_trampoline_entry(int32_t pos, bool next_pool) { + int trampoline_count = trampolines_.length(); + int32_t trampoline_entry = 0; + ASSERT(trampoline_count > 0); + + if (next_pool) { + for (int i = 0; i < trampoline_count; i++) { + if (trampolines_[i].start() > pos) { + trampoline_entry = trampolines_[i].take_slot(); + break; + } + } + } else { // Caller needs a trampoline entry from the previous pool. + for (int i = trampoline_count-1; i >= 0; i--) { + if (trampolines_[i].end() < pos) { + trampoline_entry = trampolines_[i].take_slot(); + break; + } + } + } + return trampoline_entry; +} + + int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { int32_t target_pos; + int32_t pc_offset_v = pc_offset(); + if (L->is_bound()) { target_pos = L->pos(); + int32_t dist = pc_offset_v - target_pos; + if (dist > kMaxBranchOffset) { + do { + int32_t trampoline_pos = get_trampoline_entry(target_pos); + ASSERT((trampoline_pos - target_pos) > 0); + ASSERT((trampoline_pos - target_pos) <= kMaxBranchOffset); + target_at_put(trampoline_pos, target_pos); + target_pos = trampoline_pos; + dist = pc_offset_v - target_pos; + } while (dist > kMaxBranchOffset); + } else if (dist < -kMaxBranchOffset) { + do { + int32_t trampoline_pos = get_trampoline_entry(target_pos, false); + ASSERT((target_pos - trampoline_pos) > 0); + ASSERT((target_pos - trampoline_pos) <= kMaxBranchOffset); + target_at_put(trampoline_pos, target_pos); + target_pos = trampoline_pos; + dist = pc_offset_v - target_pos; + } while (dist < -kMaxBranchOffset); + } } else { if (L->is_linked()) { - target_pos = L->pos(); // L's link + target_pos = L->pos(); // L's link. + int32_t dist = pc_offset_v - target_pos; + if (dist > kMaxBranchOffset) { + do { + int32_t label_pos = get_label_entry(target_pos); + ASSERT((label_pos - target_pos) < kMaxBranchOffset); + label_at_put(L, label_pos); + target_pos = label_pos; + dist = pc_offset_v - target_pos; + } while (dist > kMaxBranchOffset); + } else if (dist < -kMaxBranchOffset) { + do { + int32_t label_pos = get_label_entry(target_pos, false); + ASSERT((label_pos - target_pos) > -kMaxBranchOffset); + label_at_put(L, label_pos); + target_pos = label_pos; + dist = pc_offset_v - target_pos; + } while (dist < -kMaxBranchOffset); + } + L->link_to(pc_offset()); } else { - target_pos = kEndOfChain; + L->link_to(pc_offset()); + return kEndOfChain; } - L->link_to(pc_offset()); } int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); + ASSERT((offset & 3) == 0); + ASSERT(is_int16(offset >> 2)); + return offset; } void Assembler::label_at_put(Label* L, int at_offset) { int target_pos; if (L->is_bound()) { target_pos = L->pos(); + instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); } else { if (L->is_linked()) { - target_pos = L->pos(); // L's link + target_pos = L->pos(); // L's link. + int32_t imm18 = target_pos - at_offset; + ASSERT((imm18 & 3) == 0); + int32_t imm16 = imm18 >> 2; + ASSERT(is_int16(imm16)); + instr_at_put(at_offset, (imm16 & kImm16Mask)); } else { target_pos = kEndOfChain; + instr_at_put(at_offset, 0); } L->link_to(at_offset); - instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); } } //------- Branch and jump instructions -------- @@ -578,102 +872,266 @@ beq(zero_reg, zero_reg, offset); } void Assembler::bal(int16_t offset) { + positions_recorder()->WriteRecordedPositions(); bgezal(zero_reg, offset); } void Assembler::beq(Register rs, Register rt, int16_t offset) { + BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BEQ, rs, rt, offset); + BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgez(Register rs, int16_t offset) { + BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BGEZ, offset); + BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgezal(Register rs, int16_t offset) { + BlockTrampolinePoolScope block_trampoline_pool(this); + positions_recorder()->WriteRecordedPositions(); GenInstrImmediate(REGIMM, rs, BGEZAL, offset); + BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgtz(Register rs, int16_t offset) { + BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BGTZ, rs, zero_reg, offset); + BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::blez(Register rs, int16_t offset) { + BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BLEZ, rs, zero_reg, offset); + BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bltz(Register rs, int16_t offset) { + BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BLTZ, offset); + BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bltzal(Register rs, int16_t offset) { + BlockTrampolinePoolScope block_trampoline_pool(this); + positions_recorder()->WriteRecordedPositions(); GenInstrImmediate(REGIMM, rs, BLTZAL, offset); + BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bne(Register rs, Register rt, int16_t offset) { + BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BNE, rs, rt, offset); + BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::j(int32_t target) { ASSERT(is_uint28(target) && ((target & 3) == 0)); GenInstrJump(J, target >> 2); } void Assembler::jr(Register rs) { + BlockTrampolinePoolScope block_trampoline_pool(this); + if (rs.is(ra)) { + positions_recorder()->WriteRecordedPositions(); + } GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); + BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::jal(int32_t target) { + positions_recorder()->WriteRecordedPositions(); ASSERT(is_uint28(target) && ((target & 3) == 0)); GenInstrJump(JAL, target >> 2); } void Assembler::jalr(Register rs, Register rd) { + BlockTrampolinePoolScope block_trampoline_pool(this); + positions_recorder()->WriteRecordedPositions(); GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); + BlockTrampolinePoolFor(1); // For associated delay slot. } //-------Data-processing-instructions--------- // Arithmetic. -void Assembler::add(Register rd, Register rs, Register rt) { - GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADD); -} - - void Assembler::addu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); } -void Assembler::addi(Register rd, Register rs, int32_t j) { - GenInstrImmediate(ADDI, rs, rd, j); -} - - void Assembler::addiu(Register rd, Register rs, int32_t j) { GenInstrImmediate(ADDIU, rs, rd, j); -} + // Eliminate pattern: push(r), pop(). + // addiu(sp, sp, Operand(-kPointerSize)); + // sw(src, MemOperand(sp, 0); + // addiu(sp, sp, Operand(kPointerSize)); + // Both instructions can be eliminated. + if (can_peephole_optimize(3) && + // Pattern. + instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && + (instr_at(pc_ - 2 * kInstrSize) & ~kRtMask) == kPushRegPattern && + (instr_at(pc_ - 3 * kInstrSize)) == kPushInstruction) { + pc_ -= 3 * kInstrSize; + if (FLAG_print_peephole_optimization) { + PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); + } + } -void Assembler::sub(Register rd, Register rs, Register rt) { - GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUB); + // Eliminate pattern: push(ry), pop(rx). + // addiu(sp, sp, -kPointerSize) + // sw(ry, MemOperand(sp, 0) + // lw(rx, MemOperand(sp, 0) + // addiu(sp, sp, kPointerSize); + // Both instructions can be eliminated if ry = rx. + // If ry != rx, a register copy from ry to rx is inserted + // after eliminating the push and the pop instructions. + if (can_peephole_optimize(4)) { + Instr pre_push_sp_set = instr_at(pc_ - 4 * kInstrSize); + Instr push_instr = instr_at(pc_ - 3 * kInstrSize); + Instr pop_instr = instr_at(pc_ - 2 * kInstrSize); + Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize); + + if (IsPush(push_instr) && + IsPop(pop_instr) && pre_push_sp_set == kPushInstruction && + post_pop_sp_set == kPopInstruction) { + if ((pop_instr & kRtMask) != (push_instr & kRtMask)) { + // For consecutive push and pop on different registers, + // we delete both the push & pop and insert a register move. + // push ry, pop rx --> mov rx, ry. + Register reg_pushed, reg_popped; + reg_pushed = GetRt(push_instr); + reg_popped = GetRt(pop_instr); + pc_ -= 4 * kInstrSize; + // Insert a mov instruction, which is better than a pair of push & pop. + or_(reg_popped, reg_pushed, zero_reg); + if (FLAG_print_peephole_optimization) { + PrintF("%x push/pop (diff reg) replaced by a reg move\n", + pc_offset()); + } + } else { + // For consecutive push and pop on the same register, + // both the push and the pop can be deleted. + pc_ -= 4 * kInstrSize; + if (FLAG_print_peephole_optimization) { + PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); + } + } + } + } + + if (can_peephole_optimize(5)) { + Instr pre_push_sp_set = instr_at(pc_ - 5 * kInstrSize); + Instr mem_write_instr = instr_at(pc_ - 4 * kInstrSize); + Instr lw_instr = instr_at(pc_ - 3 * kInstrSize); + Instr mem_read_instr = instr_at(pc_ - 2 * kInstrSize); + Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize); + + if (IsPush(mem_write_instr) && + pre_push_sp_set == kPushInstruction && + IsPop(mem_read_instr) && + post_pop_sp_set == kPopInstruction) { + if ((IsLwRegFpOffset(lw_instr) || + IsLwRegFpNegOffset(lw_instr))) { + if ((mem_write_instr & kRtMask) == + (mem_read_instr & kRtMask)) { + // Pattern: push & pop from/to same register, + // with a fp+offset lw in between. + // + // The following: + // addiu sp, sp, -4 + // sw rx, [sp, #0]! + // lw rz, [fp, #-24] + // lw rx, [sp, 0], + // addiu sp, sp, 4 + // + // Becomes: + // if(rx == rz) + // delete all + // else + // lw rz, [fp, #-24] + + if ((mem_write_instr & kRtMask) == (lw_instr & kRtMask)) { + pc_ -= 5 * kInstrSize; + } else { + pc_ -= 5 * kInstrSize; + // Reinsert back the lw rz. + emit(lw_instr); + } + if (FLAG_print_peephole_optimization) { + PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset()); + } + } else { + // Pattern: push & pop from/to different registers + // with a fp + offset lw in between. + // + // The following: + // addiu sp, sp ,-4 + // sw rx, [sp, 0] + // lw rz, [fp, #-24] + // lw ry, [sp, 0] + // addiu sp, sp, 4 + // + // Becomes: + // if(ry == rz) + // mov ry, rx; + // else if(rx != rz) + // lw rz, [fp, #-24] + // mov ry, rx + // else if((ry != rz) || (rx == rz)) becomes: + // mov ry, rx + // lw rz, [fp, #-24] + + Register reg_pushed, reg_popped; + if ((mem_read_instr & kRtMask) == (lw_instr & kRtMask)) { + reg_pushed = GetRt(mem_write_instr); + reg_popped = GetRt(mem_read_instr); + pc_ -= 5 * kInstrSize; + or_(reg_popped, reg_pushed, zero_reg); // Move instruction. + } else if ((mem_write_instr & kRtMask) + != (lw_instr & kRtMask)) { + reg_pushed = GetRt(mem_write_instr); + reg_popped = GetRt(mem_read_instr); + pc_ -= 5 * kInstrSize; + emit(lw_instr); + or_(reg_popped, reg_pushed, zero_reg); // Move instruction. + } else if (((mem_read_instr & kRtMask) + != (lw_instr & kRtMask)) || + ((mem_write_instr & kRtMask) + == (lw_instr & kRtMask)) ) { + reg_pushed = GetRt(mem_write_instr); + reg_popped = GetRt(mem_read_instr); + pc_ -= 5 * kInstrSize; + or_(reg_popped, reg_pushed, zero_reg); // Move instruction. + emit(lw_instr); + } + if (FLAG_print_peephole_optimization) { + PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset()); + } + } + } + } + } } void Assembler::subu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); @@ -741,11 +1199,19 @@ GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); } // Shifts. -void Assembler::sll(Register rd, Register rt, uint16_t sa) { +void Assembler::sll(Register rd, + Register rt, + uint16_t sa, + bool coming_from_nop) { + // Don't allow nop instructions in the form sll zero_reg, zero_reg to be + // generated using the sll instruction. They must be generated using + // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo + // instructions. + ASSERT(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg))); GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL); } void Assembler::sllv(Register rd, Register rt, Register rs) { @@ -771,37 +1237,206 @@ void Assembler::srav(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); } +void Assembler::rotr(Register rd, Register rt, uint16_t sa) { + // Should be called via MacroAssembler::Ror. + ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa)); + ASSERT(mips32r2); + Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) + | (rd.code() << kRdShift) | (sa << kSaShift) | SRL; + emit(instr); +} + + +void Assembler::rotrv(Register rd, Register rt, Register rs) { + // Should be called via MacroAssembler::Ror. + ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() ); + ASSERT(mips32r2); + Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) + | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV; + emit(instr); +} + + //------------Memory-instructions------------- +// Helper for base-reg + offset, when offset is larger than int16. +void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) { + ASSERT(!src.rm().is(at)); + lui(at, src.offset_ >> kLuiShift); + ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset. + addu(at, at, src.rm()); // Add base register. +} + + void Assembler::lb(Register rd, const MemOperand& rs) { - GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); + if (is_int16(rs.offset_)) { + GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); + } else { // Offset > 16 bits, use multiple instructions to load. + LoadRegPlusOffsetToAt(rs); + GenInstrImmediate(LB, at, rd, 0); // Equiv to lb(rd, MemOperand(at, 0)); + } } void Assembler::lbu(Register rd, const MemOperand& rs) { - GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); + if (is_int16(rs.offset_)) { + GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); + } else { // Offset > 16 bits, use multiple instructions to load. + LoadRegPlusOffsetToAt(rs); + GenInstrImmediate(LBU, at, rd, 0); // Equiv to lbu(rd, MemOperand(at, 0)); + } } +void Assembler::lh(Register rd, const MemOperand& rs) { + if (is_int16(rs.offset_)) { + GenInstrImmediate(LH, rs.rm(), rd, rs.offset_); + } else { // Offset > 16 bits, use multiple instructions to load. + LoadRegPlusOffsetToAt(rs); + GenInstrImmediate(LH, at, rd, 0); // Equiv to lh(rd, MemOperand(at, 0)); + } +} + + +void Assembler::lhu(Register rd, const MemOperand& rs) { + if (is_int16(rs.offset_)) { + GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_); + } else { // Offset > 16 bits, use multiple instructions to load. + LoadRegPlusOffsetToAt(rs); + GenInstrImmediate(LHU, at, rd, 0); // Equiv to lhu(rd, MemOperand(at, 0)); + } +} + + void Assembler::lw(Register rd, const MemOperand& rs) { - GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); + if (is_int16(rs.offset_)) { + GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); + } else { // Offset > 16 bits, use multiple instructions to load. + LoadRegPlusOffsetToAt(rs); + GenInstrImmediate(LW, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0)); + } + + if (can_peephole_optimize(2)) { + Instr sw_instr = instr_at(pc_ - 2 * kInstrSize); + Instr lw_instr = instr_at(pc_ - 1 * kInstrSize); + + if ((IsSwRegFpOffset(sw_instr) && + IsLwRegFpOffset(lw_instr)) || + (IsSwRegFpNegOffset(sw_instr) && + IsLwRegFpNegOffset(lw_instr))) { + if ((lw_instr & kLwSwInstrArgumentMask) == + (sw_instr & kLwSwInstrArgumentMask)) { + // Pattern: Lw/sw same fp+offset, same register. + // + // The following: + // sw rx, [fp, #-12] + // lw rx, [fp, #-12] + // + // Becomes: + // sw rx, [fp, #-12] + + pc_ -= 1 * kInstrSize; + if (FLAG_print_peephole_optimization) { + PrintF("%x sw/lw (fp + same offset), same reg\n", pc_offset()); + } + } else if ((lw_instr & kLwSwOffsetMask) == + (sw_instr & kLwSwOffsetMask)) { + // Pattern: Lw/sw same fp+offset, different register. + // + // The following: + // sw rx, [fp, #-12] + // lw ry, [fp, #-12] + // + // Becomes: + // sw rx, [fp, #-12] + // mov ry, rx + + Register reg_stored, reg_loaded; + reg_stored = GetRt(sw_instr); + reg_loaded = GetRt(lw_instr); + pc_ -= 1 * kInstrSize; + // Insert a mov instruction, which is better than lw. + or_(reg_loaded, reg_stored, zero_reg); // Move instruction. + if (FLAG_print_peephole_optimization) { + PrintF("%x sw/lw (fp + same offset), diff reg \n", pc_offset()); + } + } + } + } } +void Assembler::lwl(Register rd, const MemOperand& rs) { + GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_); +} + + +void Assembler::lwr(Register rd, const MemOperand& rs) { + GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_); +} + + void Assembler::sb(Register rd, const MemOperand& rs) { - GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); + if (is_int16(rs.offset_)) { + GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); + } else { // Offset > 16 bits, use multiple instructions to store. + LoadRegPlusOffsetToAt(rs); + GenInstrImmediate(SB, at, rd, 0); // Equiv to sb(rd, MemOperand(at, 0)); + } } +void Assembler::sh(Register rd, const MemOperand& rs) { + if (is_int16(rs.offset_)) { + GenInstrImmediate(SH, rs.rm(), rd, rs.offset_); + } else { // Offset > 16 bits, use multiple instructions to store. + LoadRegPlusOffsetToAt(rs); + GenInstrImmediate(SH, at, rd, 0); // Equiv to sh(rd, MemOperand(at, 0)); + } +} + + void Assembler::sw(Register rd, const MemOperand& rs) { - GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); + if (is_int16(rs.offset_)) { + GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); + } else { // Offset > 16 bits, use multiple instructions to store. + LoadRegPlusOffsetToAt(rs); + GenInstrImmediate(SW, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0)); + } + + // Eliminate pattern: pop(), push(r). + // addiu sp, sp, Operand(kPointerSize); + // addiu sp, sp, Operand(-kPointerSize); + // -> sw r, MemOpernad(sp, 0); + if (can_peephole_optimize(3) && + // Pattern. + instr_at(pc_ - 1 * kInstrSize) == + (kPushRegPattern | (rd.code() << kRtShift)) && + instr_at(pc_ - 2 * kInstrSize) == kPushInstruction && + instr_at(pc_ - 3 * kInstrSize) == kPopInstruction) { + pc_ -= 3 * kInstrSize; + GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); + if (FLAG_print_peephole_optimization) { + PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); + } + } } +void Assembler::swl(Register rd, const MemOperand& rs) { + GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_); +} + + +void Assembler::swr(Register rd, const MemOperand& rs) { + GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_); +} + + void Assembler::lui(Register rd, int32_t j) { GenInstrImmediate(LUI, zero_reg, rd, j); } @@ -839,11 +1474,12 @@ } void Assembler::tltu(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); - Instr instr = SPECIAL | TLTU | rs.code() << kRsShift + Instr instr = + SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } @@ -894,53 +1530,153 @@ void Assembler::sltiu(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTIU, rs, rt, j); } +// Conditional move. +void Assembler::movz(Register rd, Register rs, Register rt) { + GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ); +} + + +void Assembler::movn(Register rd, Register rs, Register rt) { + GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN); +} + + +void Assembler::movt(Register rd, Register rs, uint16_t cc) { + Register rt; + rt.code_ = (cc & 0x0003) << 2 | 1; + GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); +} + + +void Assembler::movf(Register rd, Register rs, uint16_t cc) { + Register rt; + rt.code_ = (cc & 0x0003) << 2 | 0; + GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); +} + + +// Bit twiddling. +void Assembler::clz(Register rd, Register rs) { + // Clz instr requires same GPR number in 'rd' and 'rt' fields. + GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ); +} + + +void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) { + // Should be called via MacroAssembler::Ins. + // Ins instr has 'rt' field as dest, and two uint5: msb, lsb. + ASSERT(mips32r2); + GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS); +} + + +void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) { + // Should be called via MacroAssembler::Ext. + // Ext instr has 'rt' field as dest, and two uint5: msb, lsb. + ASSERT(mips32r2); + GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT); +} + + //--------Coprocessor-instructions---------------- // Load, store, move. void Assembler::lwc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); } void Assembler::ldc1(FPURegister fd, const MemOperand& src) { - GenInstrImmediate(LDC1, src.rm(), fd, src.offset_); + // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit + // load to two 32-bit loads. + GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); + FPURegister nextfpreg; + nextfpreg.setcode(fd.code() + 1); + GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ + 4); } void Assembler::swc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); } void Assembler::sdc1(FPURegister fd, const MemOperand& src) { - GenInstrImmediate(SDC1, src.rm(), fd, src.offset_); + // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit + // store to two 32-bit stores. + GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); + FPURegister nextfpreg; + nextfpreg.setcode(fd.code() + 1); + GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ + 4); } -void Assembler::mtc1(FPURegister fs, Register rt) { +void Assembler::mtc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MTC1, rt, fs, f0); } -void Assembler::mthc1(FPURegister fs, Register rt) { - GenInstrRegister(COP1, MTHC1, rt, fs, f0); +void Assembler::mfc1(Register rt, FPURegister fs) { + GenInstrRegister(COP1, MFC1, rt, fs, f0); } -void Assembler::mfc1(FPURegister fs, Register rt) { - GenInstrRegister(COP1, MFC1, rt, fs, f0); +void Assembler::ctc1(Register rt, FPUControlRegister fs) { + GenInstrRegister(COP1, CTC1, rt, fs); } -void Assembler::mfhc1(FPURegister fs, Register rt) { - GenInstrRegister(COP1, MFHC1, rt, fs, f0); +void Assembler::cfc1(Register rt, FPUControlRegister fs) { + GenInstrRegister(COP1, CFC1, rt, fs); } +// Arithmetic. + +void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) { + GenInstrRegister(COP1, D, ft, fs, fd, ADD_D); +} + + +void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) { + GenInstrRegister(COP1, D, ft, fs, fd, SUB_D); +} + + +void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) { + GenInstrRegister(COP1, D, ft, fs, fd, MUL_D); +} + + +void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) { + GenInstrRegister(COP1, D, ft, fs, fd, DIV_D); +} + + +void Assembler::abs_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, ABS_D); +} + + +void Assembler::mov_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, MOV_D); +} + + +void Assembler::neg_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, NEG_D); +} + + +void Assembler::sqrt_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D); +} + + // Conversions. void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); } @@ -949,26 +1685,111 @@ void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); } +void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S); +} + + +void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D); +} + + +void Assembler::round_w_s(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S); +} + + +void Assembler::round_w_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D); +} + + +void Assembler::floor_w_s(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S); +} + + +void Assembler::floor_w_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D); +} + + +void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S); +} + + +void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D); +} + + void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { + ASSERT(mips32r2); GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); } void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { + ASSERT(mips32r2); GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); } +void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) { + ASSERT(mips32r2); + GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S); +} + + +void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) { + ASSERT(mips32r2); + GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D); +} + + +void Assembler::round_l_s(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S); +} + + +void Assembler::round_l_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D); +} + + +void Assembler::floor_l_s(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S); +} + + +void Assembler::floor_l_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D); +} + + +void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S); +} + + +void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) { + GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D); +} + + void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); } void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { + ASSERT(mips32r2); GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); } void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { @@ -980,10 +1801,11 @@ GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); } void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { + ASSERT(mips32r2); GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); } void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { @@ -991,103 +1813,82 @@ } // Conditions. void Assembler::c(FPUCondition cond, SecondaryField fmt, - FPURegister ft, FPURegister fs, uint16_t cc) { + FPURegister fs, FPURegister ft, uint16_t cc) { + ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); ASSERT(is_uint3(cc)); ASSERT((fmt & ~(31 << kRsShift)) == 0); Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift | cc << 8 | 3 << 4 | cond; emit(instr); } +void Assembler::fcmp(FPURegister src1, const double src2, + FPUCondition cond) { + ASSERT(isolate()->cpu_features()->IsSupported(FPU)); + ASSERT(src2 == 0.0); + mtc1(zero_reg, f14); + cvt_d_w(f14, f14); + c(cond, D, src1, f14, 0); +} + + void Assembler::bc1f(int16_t offset, uint16_t cc) { + ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); ASSERT(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); emit(instr); } void Assembler::bc1t(int16_t offset, uint16_t cc) { + ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); ASSERT(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); emit(instr); } // Debugging. void Assembler::RecordJSReturn() { - WriteRecordedPositions(); + positions_recorder()->WriteRecordedPositions(); CheckBuffer(); RecordRelocInfo(RelocInfo::JS_RETURN); } -void Assembler::RecordComment(const char* msg) { - if (FLAG_debug_code) { - CheckBuffer(); - RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); - } +void Assembler::RecordDebugBreakSlot() { + positions_recorder()->WriteRecordedPositions(); + CheckBuffer(); + RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); } -void Assembler::RecordPosition(int pos) { - if (pos == RelocInfo::kNoPosition) return; - ASSERT(pos >= 0); - current_position_ = pos; -} - - -void Assembler::RecordStatementPosition(int pos) { - if (pos == RelocInfo::kNoPosition) return; - ASSERT(pos >= 0); - current_statement_position_ = pos; -} - - -bool Assembler::WriteRecordedPositions() { - bool written = false; - - // Write the statement position if it is different from what was written last - // time. - if (current_statement_position_ != written_statement_position_) { +void Assembler::RecordComment(const char* msg) { + if (FLAG_code_comments) { CheckBuffer(); - RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); - written_statement_position_ = current_statement_position_; - written = true; + RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); } - - // Write the position if it is different from what was written last time and - // also different from the written statement position. - if (current_position_ != written_position_ && - current_position_ != written_statement_position_) { - CheckBuffer(); - RecordRelocInfo(RelocInfo::POSITION, current_position_); - written_position_ = current_position_; - written = true; - } - - // Return whether something was written. - return written; } void Assembler::GrowBuffer() { if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. - CodeDesc desc; // the new buffer + CodeDesc desc; // The new buffer. if (buffer_size_ < 4*KB) { desc.buffer_size = 4*KB; } else if (buffer_size_ < 1*MB) { desc.buffer_size = 2*buffer_size_; } else { desc.buffer_size = buffer_size_ + 1*MB; } - CHECK_GT(desc.buffer_size, 0); // no overflow + CHECK_GT(desc.buffer_size, 0); // No overflow. // Setup new buffer. desc.buffer = NewArray<byte>(desc.buffer_size); desc.instr_size = pc_offset(); @@ -1106,24 +1907,38 @@ buffer_size_ = desc.buffer_size; pc_ += pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); - // On ia32 and ARM pc relative addressing is used, and we thus need to apply a // shift by pc_delta. But on MIPS the target address it directly loaded, so // we do not need to relocate here. ASSERT(!overflow()); } +void Assembler::db(uint8_t data) { + CheckBuffer(); + *reinterpret_cast<uint8_t*>(pc_) = data; + pc_ += sizeof(uint8_t); +} + + +void Assembler::dd(uint32_t data) { + CheckBuffer(); + *reinterpret_cast<uint32_t*>(pc_) = data; + pc_ += sizeof(uint32_t); +} + + void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { - RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants - if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { + RelocInfo rinfo(pc_, rmode, data); // We do not try to reuse pool constants. + if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) { // Adjust code for new modes. - ASSERT(RelocInfo::IsJSReturn(rmode) + ASSERT(RelocInfo::IsDebugBreakSlot(rmode) + || RelocInfo::IsJSReturn(rmode) || RelocInfo::IsComment(rmode) || RelocInfo::IsPosition(rmode)); // These modes do not need an entry in the constant pool. } if (rinfo.rmode() != RelocInfo::NONE) { @@ -1131,16 +1946,76 @@ if (rmode == RelocInfo::EXTERNAL_REFERENCE && !Serializer::enabled() && !FLAG_debug_code) { return; } - ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here + ASSERT(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here. reloc_info_writer.Write(&rinfo); } } +void Assembler::BlockTrampolinePoolFor(int instructions) { + BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize); +} + + +void Assembler::CheckTrampolinePool(bool force_emit) { + // Calculate the offset of the next check. + next_buffer_check_ = pc_offset() + kCheckConstInterval; + + int dist = pc_offset() - last_trampoline_pool_end_; + + if (dist <= kMaxDistBetweenPools && !force_emit) { + return; + } + + // Some small sequences of instructions must not be broken up by the + // insertion of a trampoline pool; such sequences are protected by setting + // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, + // which are both checked here. Also, recursive calls to CheckTrampolinePool + // are blocked by trampoline_pool_blocked_nesting_. + if ((trampoline_pool_blocked_nesting_ > 0) || + (pc_offset() < no_trampoline_pool_before_)) { + // Emission is currently blocked; make sure we try again as soon as + // possible. + if (trampoline_pool_blocked_nesting_ > 0) { + next_buffer_check_ = pc_offset() + kInstrSize; + } else { + next_buffer_check_ = no_trampoline_pool_before_; + } + return; + } + + // First we emit jump (2 instructions), then we emit trampoline pool. + { BlockTrampolinePoolScope block_trampoline_pool(this); + Label after_pool; + b(&after_pool); + nop(); + + int pool_start = pc_offset(); + for (int i = 0; i < kSlotsPerTrampoline; i++) { + b(&after_pool); + nop(); + } + for (int i = 0; i < kLabelsPerTrampoline; i++) { + emit(0); + } + last_trampoline_pool_end_ = pc_offset() - kInstrSize; + bind(&after_pool); + trampolines_.Add(Trampoline(pool_start, + kSlotsPerTrampoline, + kLabelsPerTrampoline)); + + // Since a trampoline pool was just emitted, + // move the check offset forward by the standard interval. + next_buffer_check_ = last_trampoline_pool_end_ + kMaxDistBetweenPools; + } + return; +} + + Address Assembler::target_address_at(Address pc) { Instr instr1 = instr_at(pc); Instr instr2 = instr_at(pc + kInstrSize); // Check we have 2 instructions generated by li. ASSERT(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || @@ -1155,11 +2030,11 @@ return reinterpret_cast<Address>(instr2 & kImm16Mask); } else if ((instr2 & kOpcodeMask) == LUI) { return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16); } } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) { - // 32 bits value. + // 32 bit value. return reinterpret_cast<Address>( (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask)); } // We should never get here. @@ -1174,41 +2049,40 @@ // First check we have a li. Instr instr2 = instr_at(pc + kInstrSize); #ifdef DEBUG Instr instr1 = instr_at(pc); - // Check we have indeed the result from a li with MustUseAt true. + // Check we have indeed the result from a li with MustUseReg true. CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU || (instr2 & kOpcodeMask)== ORI || (instr2 & kOpcodeMask)== LUI))); #endif - uint32_t rt_code = (instr2 & kRtFieldMask); uint32_t* p = reinterpret_cast<uint32_t*>(pc); uint32_t itarget = reinterpret_cast<uint32_t>(target); if (is_int16(itarget)) { - // nop - // addiu rt zero_reg j + // nop. + // addiu rt zero_reg j. *p = nopInstr; - *(p+1) = ADDIU | rt_code | (itarget & LOMask); - } else if (!(itarget & HIMask)) { - // nop - // ori rt zero_reg j + *(p+1) = ADDIU | rt_code | (itarget & kImm16Mask); + } else if (!(itarget & kHiMask)) { + // nop. + // ori rt zero_reg j. *p = nopInstr; - *(p+1) = ORI | rt_code | (itarget & LOMask); - } else if (!(itarget & LOMask)) { - // nop - // lui rt (HIMask & itarget)>>16 + *(p+1) = ORI | rt_code | (itarget & kImm16Mask); + } else if (!(itarget & kImm16Mask)) { + // nop. + // lui rt (kHiMask & itarget) >> kLuiShift. *p = nopInstr; - *(p+1) = LUI | rt_code | ((itarget & HIMask)>>16); + *(p+1) = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); } else { - // lui rt (HIMask & itarget)>>16 - // ori rt rt, (LOMask & itarget) - *p = LUI | rt_code | ((itarget & HIMask)>>16); - *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & LOMask); + // lui rt (kHiMask & itarget) >> kLuiShift. + // ori rt rt, (kImm16Mask & itarget). + *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); + *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask); } CPU::FlushICache(pc, 2 * sizeof(int32_t)); }