lib/matrix.rb in matrix-0.1.0 vs lib/matrix.rb in matrix-0.3.0

- old
+ new

@@ -10,21 +10,48 @@ # Current Maintainer:: Marc-André Lafortune # Original Author:: Keiju ISHITSUKA # Original Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly)) ## -require "e2mmap" +require_relative "matrix/version" module ExceptionForMatrix # :nodoc: - extend Exception2MessageMapper - def_e2message(TypeError, "wrong argument type %s (expected %s)") - def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)") + class ErrDimensionMismatch < StandardError + def initialize(val = nil) + if val + super(val) + else + super("Dimension mismatch") + end + end + end - def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch") - def_exception("ErrNotRegular", "Not Regular Matrix") - def_exception("ErrOperationNotDefined", "Operation(%s) can\\'t be defined: %s op %s") - def_exception("ErrOperationNotImplemented", "Sorry, Operation(%s) not implemented: %s op %s") + class ErrNotRegular < StandardError + def initialize(val = nil) + if val + super(val) + else + super("Not Regular Matrix") + end + end + end + + class ErrOperationNotDefined < StandardError + def initialize(vals) + if vals.is_a?(Array) + super("Operation(#{vals[0]}) can't be defined: #{vals[1]} op #{vals[2]}") + else + super(vals) + end + end + end + + class ErrOperationNotImplemented < StandardError + def initialize(vals) + super("Sorry, Operation(#{vals[0]}) not implemented: #{vals[1]} op #{vals[2]}") + end + end end # # The +Matrix+ class represents a mathematical matrix. It provides methods for creating # matrices, operating on them arithmetically and algebraically, @@ -43,24 +70,24 @@ protected :rows # # Creates a matrix where each argument is a row. # Matrix[ [25, 93], [-1, 66] ] - # => 25 93 - # -1 66 + # # => 25 93 + # # -1 66 # def Matrix.[](*rows) rows(rows, false) end # # Creates a matrix where +rows+ is an array of arrays, each of which is a row # of the matrix. If the optional argument +copy+ is false, use the given # arrays as the internal structure of the matrix without copying. # Matrix.rows([[25, 93], [-1, 66]]) - # => 25 93 - # -1 66 + # # => 25 93 + # # -1 66 # def Matrix.rows(rows, copy = true) rows = convert_to_array(rows, copy) rows.map! do |row| convert_to_array(row, copy) @@ -73,12 +100,12 @@ end # # Creates a matrix using +columns+ as an array of column vectors. # Matrix.columns([[25, 93], [-1, 66]]) - # => 25 -1 - # 93 66 + # # => 25 -1 + # # 93 66 # def Matrix.columns(columns) rows(columns, false).transpose end @@ -87,13 +114,13 @@ # It fills the values by calling the given block, # passing the current row and column. # Returns an enumerator if no block is given. # # m = Matrix.build(2, 4) {|row, col| col - row } - # => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]] + # # => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]] # m = Matrix.build(3) { rand } - # => a 3x3 matrix with random elements + # # => a 3x3 matrix with random elements # def Matrix.build(row_count, column_count = row_count) row_count = CoercionHelper.coerce_to_int(row_count) column_count = CoercionHelper.coerce_to_int(column_count) raise ArgumentError if row_count < 0 || column_count < 0 @@ -107,13 +134,13 @@ end # # Creates a matrix where the diagonal elements are composed of +values+. # Matrix.diagonal(9, 5, -3) - # => 9 0 0 - # 0 5 0 - # 0 0 -3 + # # => 9 0 0 + # # 0 5 0 + # # 0 0 -3 # def Matrix.diagonal(*values) size = values.size return Matrix.empty if size == 0 rows = Array.new(size) {|j| @@ -126,22 +153,22 @@ # # Creates an +n+ by +n+ diagonal matrix where each diagonal element is # +value+. # Matrix.scalar(2, 5) - # => 5 0 - # 0 5 + # # => 5 0 + # # 0 5 # def Matrix.scalar(n, value) diagonal(*Array.new(n, value)) end # # Creates an +n+ by +n+ identity matrix. # Matrix.identity(2) - # => 1 0 - # 0 1 + # # => 1 0 + # # 0 1 # def Matrix.identity(n) scalar(n, 1) end class << Matrix @@ -150,36 +177,36 @@ end # # Creates a zero matrix. # Matrix.zero(2) - # => 0 0 - # 0 0 + # # => 0 0 + # # 0 0 # def Matrix.zero(row_count, column_count = row_count) rows = Array.new(row_count){Array.new(column_count, 0)} new rows, column_count end # # Creates a single-row matrix where the values of that row are as given in # +row+. # Matrix.row_vector([4,5,6]) - # => 4 5 6 + # # => 4 5 6 # def Matrix.row_vector(row) row = convert_to_array(row) new [row] end # # Creates a single-column matrix where the values of that column are as given # in +column+. # Matrix.column_vector([4,5,6]) - # => 4 - # 5 - # 6 + # # => 4 + # # 5 + # # 6 # def Matrix.column_vector(column) column = convert_to_array(column) new [column].transpose, 1 end @@ -188,16 +215,16 @@ # Creates a empty matrix of +row_count+ x +column_count+. # At least one of +row_count+ or +column_count+ must be 0. # # m = Matrix.empty(2, 0) # m == Matrix[ [], [] ] - # => true + # # => true # n = Matrix.empty(0, 3) # n == Matrix.columns([ [], [], [] ]) - # => true + # # => true # m * n - # => Matrix[[0, 0, 0], [0, 0, 0]] + # # => Matrix[[0, 0, 0], [0, 0, 0]] # def Matrix.empty(row_count = 0, column_count = 0) raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0 raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0 @@ -247,10 +274,12 @@ total_column_count += m.column_count end new result, total_column_count end + # :call-seq: + # Matrix.combine(*matrices) { |*elements| ... } # # Create a matrix by combining matrices entrywise, using the given block # # x = Matrix[[6, 6], [4, 4]] # y = Matrix[[1, 2], [3, 4]] @@ -261,27 +290,36 @@ return Matrix.empty if matrices.empty? matrices.map!(&CoercionHelper.method(:coerce_to_matrix)) x = matrices.first matrices.each do |m| - Matrix.Raise ErrDimensionMismatch unless x.row_count == m.row_count && x.column_count == m.column_count + raise ErrDimensionMismatch unless x.row_count == m.row_count && x.column_count == m.column_count end rows = Array.new(x.row_count) do |i| Array.new(x.column_count) do |j| yield matrices.map{|m| m[i,j]} end end new rows, x.column_count end + # :call-seq: + # combine(*other_matrices) { |*elements| ... } + # + # Creates new matrix by combining with <i>other_matrices</i> entrywise, + # using the given block. + # + # x = Matrix[[6, 6], [4, 4]] + # y = Matrix[[1, 2], [3, 4]] + # x.combine(y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]] def combine(*matrices, &block) Matrix.combine(self, *matrices, &block) end # - # Matrix.new is private; use Matrix.rows, columns, [], etc... to create. + # Matrix.new is private; use ::rows, ::columns, ::[], etc... to create. # def initialize(rows, column_count = rows[0].size) # No checking is done at this point. rows must be an Array of Arrays. # column_count must be the size of the first row, if there is one, # otherwise it *must* be specified and can be any integer >= 0 @@ -370,16 +408,16 @@ end end private def set_row_range(row_range, col, value) if value.is_a?(Vector) - Matrix.Raise ErrDimensionMismatch unless row_range.size == value.size + raise ErrDimensionMismatch unless row_range.size == value.size set_column_vector(row_range, col, value) elsif value.is_a?(Matrix) - Matrix.Raise ErrDimensionMismatch unless value.column_count == 1 + raise ErrDimensionMismatch unless value.column_count == 1 value = value.column(0) - Matrix.Raise ErrDimensionMismatch unless row_range.size == value.size + raise ErrDimensionMismatch unless row_range.size == value.size set_column_vector(row_range, col, value) else @rows[row_range].each{|e| e[col] = value } end end @@ -393,16 +431,16 @@ private def set_col_range(row, col_range, value) value = if value.is_a?(Vector) value.to_a elsif value.is_a?(Matrix) - Matrix.Raise ErrDimensionMismatch unless value.row_count == 1 + raise ErrDimensionMismatch unless value.row_count == 1 value.row(0).to_a else Array.new(col_range.size, value) end - Matrix.Raise ErrDimensionMismatch unless col_range.size == value.size + raise ErrDimensionMismatch unless col_range.size == value.size @rows[row][col_range] = value end # # Returns the number of rows. @@ -462,12 +500,12 @@ # * :lower: yields only elements on or below the diagonal # * :strict_lower: yields only elements below the diagonal # * :strict_upper: yields only elements above the diagonal # * :upper: yields only elements on or above the diagonal # Matrix[ [1,2], [3,4] ].collect { |e| e**2 } - # => 1 4 - # 9 16 + # # => 1 4 + # # 9 16 # def collect(which = :all, &block) # :yield: e return to_enum(:collect, which) unless block_given? dup.collect!(which, &block) end @@ -508,20 +546,19 @@ # * :lower: yields only elements on or below the diagonal # * :strict_lower: yields only elements below the diagonal # * :strict_upper: yields only elements above the diagonal # * :upper: yields only elements on or above the diagonal # - # Matrix[ [1,2], [3,4] ].each { |e| puts e } - # # => prints the numbers 1 to 4 - # Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3] + # Matrix[ [1,2], [3,4] ].each { |e| puts e } + # # => prints the numbers 1 to 4 + # Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3] # - def each(which = :all) # :yield: e + def each(which = :all, &block) # :yield: e return to_enum :each, which unless block_given? last = column_count - 1 case which when :all - block = Proc.new @rows.each do |row| row.each(&block) end when :diagonal @rows.each_with_index do |row, row_index| @@ -660,12 +697,12 @@ # Returns a section of the matrix. The parameters are either: # * start_row, nrows, start_col, ncols; OR # * row_range, col_range # # Matrix.diagonal(9, 5, -3).minor(0..1, 0..2) - # => 9 0 0 - # 0 5 0 + # # => 9 0 0 + # # 0 5 0 # # Like Array#[], negative indices count backward from the end of the # row or column (-1 is the last element). Returns nil if the starting # row or column is greater than row_count or column_count respectively. # @@ -704,13 +741,13 @@ # # Returns the submatrix obtained by deleting the specified row and column. # # Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2) - # => 9 0 0 - # 0 0 0 - # 0 0 4 + # # => 9 0 0 + # # 0 0 0 + # # 0 0 4 # def first_minor(row, column) raise RuntimeError, "first_minor of empty matrix is not defined" if empty? unless 0 <= row && row < row_count @@ -733,52 +770,52 @@ # # Returns the (row, column) cofactor which is obtained by multiplying # the first minor by (-1)**(row + column). # # Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1) - # => -108 + # # => -108 # def cofactor(row, column) raise RuntimeError, "cofactor of empty matrix is not defined" if empty? - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? det_of_minor = first_minor(row, column).determinant det_of_minor * (-1) ** (row + column) end # # Returns the adjugate of the matrix. # # Matrix[ [7,6],[3,9] ].adjugate - # => 9 -6 - # -3 7 + # # => 9 -6 + # # -3 7 # def adjugate - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? Matrix.build(row_count, column_count) do |row, column| cofactor(column, row) end end # # Returns the Laplace expansion along given row or column. # # Matrix[[7,6], [3,9]].laplace_expansion(column: 1) - # => 45 + # # => 45 # # Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) - # => Vector[3, -2] + # # => Vector[3, -2] # # def laplace_expansion(row: nil, column: nil) num = row || column if !num || (row && column) raise ArgumentError, "exactly one the row or column arguments must be specified" end - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty? unless 0 <= num && num < row_count raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})" end @@ -797,11 +834,11 @@ # # Returns +true+ if this is a diagonal matrix. # Raises an error if matrix is not square. # def diagonal? - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? each(:off_diagonal).all?(&:zero?) end # # Returns +true+ if this is an empty matrix, i.e. if the number of rows @@ -814,11 +851,11 @@ # # Returns +true+ if this is an hermitian matrix. # Raises an error if matrix is not square. # def hermitian? - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? each_with_index(:upper).all? do |e, row, col| e == rows[col][row].conj end end @@ -832,11 +869,11 @@ # # Returns +true+ if this is a normal matrix. # Raises an error if matrix is not square. # def normal? - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? rows.each_with_index do |row_i, i| rows.each_with_index do |row_j, j| s = 0 rows.each_with_index do |row_k, k| s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j] @@ -850,16 +887,17 @@ # # Returns +true+ if this is an orthogonal matrix # Raises an error if matrix is not square. # def orthogonal? - Matrix.Raise ErrDimensionMismatch unless square? - rows.each_with_index do |row, i| - column_count.times do |j| + raise ErrDimensionMismatch unless square? + + rows.each_with_index do |row_i, i| + rows.each_with_index do |row_j, j| s = 0 row_count.times do |k| - s += row[k] * rows[k][j] + s += row_i[k] * row_j[k] end return false unless s == (i == j ? 1 : 0) end end true @@ -868,11 +906,11 @@ # # Returns +true+ if this is a permutation matrix # Raises an error if matrix is not square. # def permutation? - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? cols = Array.new(column_count) rows.each_with_index do |row, i| found = false row.each_with_index do |e, j| if e == 1 @@ -918,11 +956,11 @@ # # Returns +true+ if this is a symmetric matrix. # Raises an error if matrix is not square. # def symmetric? - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? each_with_index(:strict_upper) do |e, row, col| return false if e != rows[col][row] end true end @@ -930,11 +968,11 @@ # # Returns +true+ if this is an antisymmetric matrix. # Raises an error if matrix is not square. # def antisymmetric? - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? each_with_index(:upper) do |e, row, col| return false unless e == -rows[col][row] end true end @@ -943,16 +981,16 @@ # # Returns +true+ if this is a unitary matrix # Raises an error if matrix is not square. # def unitary? - Matrix.Raise ErrDimensionMismatch unless square? - rows.each_with_index do |row, i| - column_count.times do |j| + raise ErrDimensionMismatch unless square? + rows.each_with_index do |row_i, i| + rows.each_with_index do |row_j, j| s = 0 row_count.times do |k| - s += row[k].conj * rows[k][j] + s += row_i[k].conj * row_j[k] end return false unless s == (i == j ? 1 : 0) end end true @@ -1011,58 +1049,60 @@ #++ # # Matrix multiplication. # Matrix[[2,4], [6,8]] * Matrix.identity(2) - # => 2 4 - # 6 8 + # # => 2 4 + # # 6 8 # def *(m) # m is matrix or vector or number case(m) when Numeric - rows = @rows.collect {|row| + new_rows = @rows.collect {|row| row.collect {|e| e * m } } - return new_matrix rows, column_count + return new_matrix new_rows, column_count when Vector m = self.class.column_vector(m) r = self * m return r.column(0) when Matrix - Matrix.Raise ErrDimensionMismatch if column_count != m.row_count - - rows = Array.new(row_count) {|i| - Array.new(m.column_count) {|j| - (0 ... column_count).inject(0) do |vij, k| - vij + self[i, k] * m[k, j] + raise ErrDimensionMismatch if column_count != m.row_count + m_rows = m.rows + new_rows = rows.map do |row_i| + Array.new(m.column_count) do |j| + vij = 0 + column_count.times do |k| + vij += row_i[k] * m_rows[k][j] end - } - } - return new_matrix rows, m.column_count + vij + end + end + return new_matrix new_rows, m.column_count else return apply_through_coercion(m, __method__) end end # # Matrix addition. # Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]] - # => 6 0 - # -4 12 + # # => 6 0 + # # -4 12 # def +(m) case m when Numeric - Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class + raise ErrOperationNotDefined, ["+", self.class, m.class] when Vector m = self.class.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end - Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count + raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count rows = Array.new(row_count) {|i| Array.new(column_count) {|j| self[i, j] + m[i, j] } @@ -1071,25 +1111,25 @@ end # # Matrix subtraction. # Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]] - # => -8 2 - # 8 1 + # # => -8 2 + # # 8 1 # def -(m) case m when Numeric - Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class + raise ErrOperationNotDefined, ["-", self.class, m.class] when Vector m = self.class.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end - Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count + raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count rows = Array.new(row_count) {|i| Array.new(column_count) {|j| self[i, j] - m[i, j] } @@ -1098,12 +1138,12 @@ end # # Matrix division (multiplication by the inverse). # Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]] - # => -7 1 - # -3 -6 + # # => -7 1 + # # -3 -6 # def /(other) case other when Numeric rows = @rows.collect {|row| @@ -1118,26 +1158,26 @@ end # # Hadamard product # Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) - # => 1 4 - # 9 8 + # # => 1 4 + # # 9 8 # def hadamard_product(m) combine(m){|a, b| a * b} end alias_method :entrywise_product, :hadamard_product # # Returns the inverse of the matrix. # Matrix[[-1, -1], [0, -1]].inverse - # => -1 1 - # 0 -1 + # # => -1 1 + # # 0 -1 # def inverse - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? self.class.I(row_count).send(:inverse_from, self) end alias_method :inv, :inverse private def inverse_from(src) # :nodoc: @@ -1152,11 +1192,11 @@ if v > akk i = j akk = v end end - Matrix.Raise ErrNotRegular if akk == 0 + raise ErrNotRegular if akk == 0 if i != k a[i], a[k] = a[k], a[i] @rows[i], @rows[k] = @rows[k], @rows[i] end akk = a[k][k] @@ -1188,12 +1228,12 @@ # Matrix exponentiation. # Equivalent to multiplying the matrix by itself N times. # Non integer exponents will be handled by diagonalizing the matrix. # # Matrix[[7,6], [3,9]] ** 2 - # => 67 96 - # 48 99 + # # => 67 96 + # # 48 99 # def **(other) case other when Integer x = self @@ -1210,22 +1250,34 @@ end when Numeric v, d, v_inv = eigensystem v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv else - Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class + raise ErrOperationNotDefined, ["**", self.class, other.class] end end def +@ self end + # Unary matrix negation. + # + # -Matrix[[1,5], [4,2]] + # # => -1 -5 + # # -4 -2 def -@ collect {|e| -e } end + # + # Returns the absolute value elementwise + # + def abs + collect(&:abs) + end + #-- # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # @@ -1234,14 +1286,14 @@ # Beware that using Float values can yield erroneous results # because of their lack of precision. # Consider using exact types like Rational or BigDecimal instead. # # Matrix[[7,6], [3,9]].determinant - # => 45 + # # => 45 # def determinant - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? m = @rows case row_count # Up to 4x4, give result using Laplacian expansion by minors. # This will typically be faster, as well as giving good results # in case of Floats @@ -1342,11 +1394,11 @@ # Beware that using Float values can yield erroneous results # because of their lack of precision. # Consider using exact types like Rational or BigDecimal instead. # # Matrix[[7,6], [3,9]].rank - # => 2 + # # => 2 # def rank # We currently use Bareiss' multistep integer-preserving gaussian elimination # (see comments on determinant) a = to_a @@ -1390,29 +1442,29 @@ end # # Returns the trace (sum of diagonal elements) of the matrix. # Matrix[[7,6], [3,9]].trace - # => 16 + # # => 16 # def trace - Matrix.Raise ErrDimensionMismatch unless square? + raise ErrDimensionMismatch unless square? (0...column_count).inject(0) do |tr, i| tr + @rows[i][i] end end alias_method :tr, :trace # # Returns the transpose of the matrix. # Matrix[[1,2], [3,4], [5,6]] - # => 1 2 - # 3 4 - # 5 6 + # # => 1 2 + # # 3 4 + # # 5 6 # Matrix[[1,2], [3,4], [5,6]].transpose - # => 1 3 5 - # 2 4 6 + # # => 1 3 5 + # # 2 4 6 # def transpose return self.class.empty(column_count, 0) if row_count.zero? new_matrix @rows.transpose, row_count end @@ -1467,53 +1519,64 @@ #++ # # Returns the conjugate of the matrix. # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] - # => 1+2i i 0 - # 1 2 3 + # # => 1+2i i 0 + # # 1 2 3 # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate - # => 1-2i -i 0 - # 1 2 3 + # # => 1-2i -i 0 + # # 1 2 3 # def conjugate collect(&:conjugate) end alias_method :conj, :conjugate # + # Returns the adjoint of the matrix. + # + # Matrix[ [i,1],[2,-i] ].adjoint + # # => -i 2 + # # 1 i + # + def adjoint + conjugate.transpose + end + + # # Returns the imaginary part of the matrix. # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] - # => 1+2i i 0 - # 1 2 3 + # # => 1+2i i 0 + # # 1 2 3 # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary - # => 2i i 0 - # 0 0 0 + # # => 2i i 0 + # # 0 0 0 # def imaginary collect(&:imaginary) end alias_method :imag, :imaginary # # Returns the real part of the matrix. # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] - # => 1+2i i 0 - # 1 2 3 + # # => 1+2i i 0 + # # 1 2 3 # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real - # => 1 0 0 - # 1 2 3 + # # => 1 0 0 + # # 1 2 3 # def real collect(&:real) end # # Returns an array containing matrices corresponding to the real and imaginary # parts of the matrix # - # m.rect == [m.real, m.imag] # ==> true for all matrices m + # m.rect == [m.real, m.imag] # ==> true for all matrices m # def rect [real, imag] end alias_method :rectangular, :rect @@ -1570,27 +1633,27 @@ @rows.collect(&:dup) end # Deprecated. # - # Use map(&:to_f) + # Use <code>map(&:to_f)</code> def elements_to_f warn "Matrix#elements_to_f is deprecated, use map(&:to_f)", uplevel: 1 map(&:to_f) end # Deprecated. # - # Use map(&:to_i) + # Use <code>map(&:to_i)</code> def elements_to_i warn "Matrix#elements_to_i is deprecated, use map(&:to_i)", uplevel: 1 map(&:to_i) end # Deprecated. # - # Use map(&:to_r) + # Use <code>map(&:to_r)</code> def elements_to_r warn "Matrix#elements_to_r is deprecated, use map(&:to_r)", uplevel: 1 map(&:to_r) end @@ -1726,22 +1789,22 @@ def +(other) case other when Numeric Scalar.new(@value + other) when Vector, Matrix - Scalar.Raise ErrOperationNotDefined, "+", @value.class, other.class + raise ErrOperationNotDefined, ["+", @value.class, other.class] else apply_through_coercion(other, __method__) end end def -(other) case other when Numeric Scalar.new(@value - other) when Vector, Matrix - Scalar.Raise ErrOperationNotDefined, "-", @value.class, other.class + raise ErrOperationNotDefined, ["-", @value.class, other.class] else apply_through_coercion(other, __method__) end end @@ -1759,11 +1822,11 @@ def /(other) case other when Numeric Scalar.new(@value / other) when Vector - Scalar.Raise ErrOperationNotDefined, "/", @value.class, other.class + raise ErrOperationNotDefined, ["/", @value.class, other.class] when Matrix self * other.inverse else apply_through_coercion(other, __method__) end @@ -1772,14 +1835,14 @@ def **(other) case other when Numeric Scalar.new(@value ** other) when Vector - Scalar.Raise ErrOperationNotDefined, "**", @value.class, other.class + raise ErrOperationNotDefined, ["**", @value.class, other.class] when Matrix #other.powered_by(self) - Scalar.Raise ErrOperationNotImplemented, "**", @value.class, other.class + raise ErrOperationNotImplemented, ["**", @value.class, other.class] else apply_through_coercion(other, __method__) end end end @@ -1822,12 +1885,12 @@ # * #/(v) # * #+@ # * #-@ # # Vector functions: -# * #inner_product(v), dot(v) -# * #cross_product(v), cross(v) +# * #inner_product(v), #dot(v) +# * #cross_product(v), #cross(v) # * #collect # * #collect! # * #magnitude # * #map # * #map! @@ -1888,11 +1951,11 @@ end # # Return a zero vector. # - # Vector.zero(3) => Vector[0, 0, 0] + # Vector.zero(3) # => Vector[0, 0, 0] # def Vector.zero(size) raise ArgumentError, "invalid size (#{size} for 0..)" if size < 0 array = Array.new(size, 0) new convert_to_array(array, false) @@ -1951,11 +2014,11 @@ private def set_range(range, value) if value.is_a?(Vector) raise ArgumentError, "vector to be set has wrong size" unless range.size == value.size @elements[range] = value.elements elsif value.is_a?(Matrix) - Matrix.Raise ErrDimensionMismatch unless value.row_count == 1 + raise ErrDimensionMismatch unless value.row_count == 1 @elements[range] = value.row(0).elements else @elements[range] = Array.new(range.size, value) end end @@ -1990,11 +2053,11 @@ # # Iterate over the elements of this vector and +v+ in conjunction. # def each2(v) # :yield: e1, e2 raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer) - Vector.Raise ErrDimensionMismatch if size != v.size + raise ErrDimensionMismatch if size != v.size return to_enum(:each2, v) unless block_given? size.times do |i| yield @elements[i], v[i] end self @@ -2004,11 +2067,11 @@ # Collects (as in Enumerable#collect) over the elements of this vector and +v+ # in conjunction. # def collect2(v) # :yield: e1, e2 raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer) - Vector.Raise ErrDimensionMismatch if size != v.size + raise ErrDimensionMismatch if size != v.size return to_enum(:collect2, v) unless block_given? Array.new(size) do |i| yield @elements[i], v[i] end end @@ -2019,32 +2082,32 @@ # # Returns +true+ iff all of vectors are linearly independent. # # Vector.independent?(Vector[1,0], Vector[0,1]) - # => true + # # => true # # Vector.independent?(Vector[1,2], Vector[2,4]) - # => false + # # => false # def Vector.independent?(*vs) vs.each do |v| raise TypeError, "expected Vector, got #{v.class}" unless v.is_a?(Vector) - Vector.Raise ErrDimensionMismatch unless v.size == vs.first.size + raise ErrDimensionMismatch unless v.size == vs.first.size end return false if vs.count > vs.first.size Matrix[*vs].rank.eql?(vs.count) end # # Returns +true+ iff all of vectors are linearly independent. # # Vector[1,0].independent?(Vector[0,1]) - # => true + # # => true # # Vector[1,2].independent?(Vector[2,4]) - # => false + # # => false # def independent?(*vs) self.class.independent?(self, *vs) end @@ -2106,11 +2169,11 @@ els = @elements.collect{|e| e * x} self.class.elements(els, false) when Matrix Matrix.column_vector(self) * x when Vector - Vector.Raise ErrOperationNotDefined, "*", self.class, x.class + raise ErrOperationNotDefined, ["*", self.class, x.class] else apply_through_coercion(x, __method__) end end @@ -2118,11 +2181,11 @@ # Vector addition. # def +(v) case v when Vector - Vector.Raise ErrDimensionMismatch if size != v.size + raise ErrDimensionMismatch if size != v.size els = collect2(v) {|v1, v2| v1 + v2 } self.class.elements(els, false) when Matrix @@ -2136,11 +2199,11 @@ # Vector subtraction. # def -(v) case v when Vector - Vector.Raise ErrDimensionMismatch if size != v.size + raise ErrDimensionMismatch if size != v.size els = collect2(v) {|v1, v2| v1 - v2 } self.class.elements(els, false) when Matrix @@ -2157,11 +2220,11 @@ case x when Numeric els = @elements.collect{|e| e / x} self.class.elements(els, false) when Matrix, Vector - Vector.Raise ErrOperationNotDefined, "/", self.class, x.class + raise ErrOperationNotDefined, ["/", self.class, x.class] else apply_through_coercion(x, __method__) end end @@ -2177,14 +2240,14 @@ # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns the inner product of this vector with the other. - # Vector[4,7].inner_product Vector[10,1] => 47 + # Vector[4,7].inner_product Vector[10,1] # => 47 # def inner_product(v) - Vector.Raise ErrDimensionMismatch if size != v.size + raise ErrDimensionMismatch if size != v.size p = 0 each2(v) {|v1, v2| p += v1 * v2.conj } @@ -2192,11 +2255,11 @@ end alias_method :dot, :inner_product # # Returns the cross product of this vector with the others. - # Vector[1, 0, 0].cross_product Vector[0, 1, 0] => Vector[0, 0, 1] + # Vector[1, 0, 0].cross_product Vector[0, 1, 0] # => Vector[0, 0, 1] # # It is generalized to other dimensions to return a vector perpendicular # to the arguments. # Vector[1, 2].cross_product # => Vector[-2, 1] # Vector[1, 0, 0, 0].cross_product( @@ -2207,11 +2270,11 @@ def cross_product(*vs) raise ErrOperationNotDefined, "cross product is not defined on vectors of dimension #{size}" unless size >= 2 raise ArgumentError, "wrong number of arguments (#{vs.size} for #{size - 2})" unless vs.size == size - 2 vs.each do |v| raise TypeError, "expected Vector, got #{v.class}" unless v.is_a? Vector - Vector.Raise ErrDimensionMismatch unless v.size == size + raise ErrDimensionMismatch unless v.size == size end case size when 2 Vector[-@elements[1], @elements[0]] when 3 @@ -2247,11 +2310,11 @@ end alias map! collect! # # Returns the modulus (Pythagorean distance) of the vector. - # Vector[5,8,2].r => 9.643650761 + # Vector[5,8,2].r # => 9.643650761 # def magnitude Math.sqrt(@elements.inject(0) {|v, e| v + e.abs2}) end alias_method :r, :magnitude @@ -2270,11 +2333,11 @@ end # # Returns a new vector with the same direction but with norm 1. # v = Vector[5,8,2].normalize # # => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505] - # v.norm => 1.0 + # v.norm # => 1.0 # def normalize n = magnitude raise ZeroVectorError, "Zero vectors can not be normalized" if n == 0 self / n @@ -2285,10 +2348,10 @@ # Vector[1,0].angle_with(Vector[0,1]) # # => Math::PI / 2 # def angle_with(v) raise TypeError, "Expected a Vector, got a #{v.class}" unless v.is_a?(Vector) - Vector.Raise ErrDimensionMismatch if size != v.size + raise ErrDimensionMismatch if size != v.size prod = magnitude * v.magnitude raise ZeroVectorError, "Can't get angle of zero vector" if prod == 0 dot = inner_product(v) if dot.abs >= prod dot.positive? ? 0 : Math::PI