lib/lightgbm/regressor.rb in lightgbm-0.1.3 vs lib/lightgbm/regressor.rb in lightgbm-0.1.4
- old
+ new
@@ -1,34 +1,25 @@
module LightGBM
- class Regressor
- def initialize(num_leaves: 31, learning_rate: 0.1, n_estimators: 100, objective: nil)
- @params = {
- num_leaves: num_leaves,
- learning_rate: learning_rate
- }
- @params[:objective] = objective if objective
- @n_estimators = n_estimators
+ class Regressor < Model
+ def initialize(num_leaves: 31, learning_rate: 0.1, n_estimators: 100, objective: "regression", **options)
+ super
end
- def fit(x, y)
- train_set = Dataset.new(x, label: y)
- @booster = LightGBM.train(@params, train_set, num_boost_round: @n_estimators)
+ def fit(x, y, categorical_feature: "auto", eval_set: nil, eval_names: [], early_stopping_rounds: nil, verbose: true)
+ train_set = Dataset.new(x, label: y, categorical_feature: categorical_feature)
+ valid_sets = Array(eval_set).map { |v| Dataset.new(v[0], label: v[1], reference: train_set) }
+
+ @booster = LightGBM.train(@params, train_set,
+ num_boost_round: @n_estimators,
+ early_stopping_rounds: early_stopping_rounds,
+ verbose_eval: verbose,
+ valid_sets: valid_sets,
+ valid_names: eval_names
+ )
nil
end
- def predict(data)
- @booster.predict(data)
- end
-
- def save_model(fname)
- @booster.save_model(fname)
- end
-
- def load_model(fname)
- @booster = Booster.new(params: @params, model_file: fname)
- end
-
- def feature_importances
- @booster.feature_importance
+ def predict(data, num_iteration: nil)
+ @booster.predict(data, num_iteration: num_iteration)
end
end
end