README.md in libmf-0.2.4 vs README.md in libmf-0.2.5

- old
+ new

@@ -88,11 +88,11 @@ Pass parameters - default values below ```ruby Libmf::Model.new( - loss: 0, # loss function + loss: :real_l2, # loss function factors: 8, # number of latent factors threads: 12, # number of threads used bins: 25, # number of bins iterations: 20, # number of iterations lambda_p1: 0, # coefficient of L1-norm regularization on P @@ -109,24 +109,24 @@ ### Loss Functions For real-valued matrix factorization -- 0 - squared error (L2-norm) -- 1 - absolute error (L1-norm) -- 2 - generalized KL-divergence +- `:real_l2` - squared error (L2-norm) +- `:real_l1` - absolute error (L1-norm) +- `:real_kl` - generalized KL-divergence For binary matrix factorization -- 5 - logarithmic error -- 6 - squared hinge loss -- 7 - hinge loss +- `:binary_log` - logarithmic error +- `:binary_l2` - squared hinge loss +- `:binary_l1` - hinge loss For one-class matrix factorization -- 10 - row-oriented pair-wise logarithmic loss -- 11 - column-oriented pair-wise logarithmic loss -- 12 - squared error (L2-norm) +- `:one_class_row` - row-oriented pair-wise logarithmic loss +- `:one_class_col` - column-oriented pair-wise logarithmic loss +- `:one_class_l2` - squared error (L2-norm) ## Performance For performance, read data directly from files