README.md in libmf-0.2.4 vs README.md in libmf-0.2.5
- old
+ new
@@ -88,11 +88,11 @@
Pass parameters - default values below
```ruby
Libmf::Model.new(
- loss: 0, # loss function
+ loss: :real_l2, # loss function
factors: 8, # number of latent factors
threads: 12, # number of threads used
bins: 25, # number of bins
iterations: 20, # number of iterations
lambda_p1: 0, # coefficient of L1-norm regularization on P
@@ -109,24 +109,24 @@
### Loss Functions
For real-valued matrix factorization
-- 0 - squared error (L2-norm)
-- 1 - absolute error (L1-norm)
-- 2 - generalized KL-divergence
+- `:real_l2` - squared error (L2-norm)
+- `:real_l1` - absolute error (L1-norm)
+- `:real_kl` - generalized KL-divergence
For binary matrix factorization
-- 5 - logarithmic error
-- 6 - squared hinge loss
-- 7 - hinge loss
+- `:binary_log` - logarithmic error
+- `:binary_l2` - squared hinge loss
+- `:binary_l1` - hinge loss
For one-class matrix factorization
-- 10 - row-oriented pair-wise logarithmic loss
-- 11 - column-oriented pair-wise logarithmic loss
-- 12 - squared error (L2-norm)
+- `:one_class_row` - row-oriented pair-wise logarithmic loss
+- `:one_class_col` - column-oriented pair-wise logarithmic loss
+- `:one_class_l2` - squared error (L2-norm)
## Performance
For performance, read data directly from files