builtin/shaders/functions/noise.ejs in jax-0.0.0.7 vs builtin/shaders/functions/noise.ejs in jax-0.0.0.8

- old
+ new

@@ -1,12 +1,32 @@ +/** + * Classic and 'improved' (simplex) Perlin noise. + * + * This implementation attempts to use texture-based lookups if the client + * hardware can support it. This is no problem in fragment shaders but can + * be an issue in vertex shaders, where VTL is not supported by about 20% + * of clients. + * + * In the event this is a vertex shader *and* the client doesn't support + * VTL, the functions will fall back to 'ashima' noise + * (https://github.com/ashima/webgl-noise) for a slower, non-texture-based + * implementation. + **/ + +uniform float time; // Used for texture animation + + +<%if (shader_type != 'vertex' || Jax.Shader.max_vertex_textures > 0) {%> + + /* * 2D, 3D and 4D Perlin noise, classic and simplex, in a GLSL fragment shader. * * Classic noise is implemented by the functions: - * float noise(vec2 P) - * float noise(vec3 P) - * float noise(vec4 P) + * float cnoise(vec2 P) + * float cnoise(vec3 P) + * float cnoise(vec4 P) * * Simplex noise is implemented by the functions: * float snoise(vec2 P) * float snoise(vec3 P) * float snoise(vec4 P) @@ -51,11 +71,10 @@ uniform sampler2D permTexture; // sampler1D not supported in WebGL //uniform sampler1D simplexTexture; uniform sampler2D simplexTexture; uniform sampler2D gradTexture; -uniform float time; // Used for texture animation /* * Both 2D and 3D texture coordinates are defined, for testing purposes. */ //varying vec2 v_texCoord2D; @@ -83,11 +102,11 @@ /* * 2D classic Perlin noise. Fast, but less useful than 3D noise. */ -float noise(vec2 P) +float cnoise(vec2 P) { vec2 Pi = ONE*floor(P)+ONEHALF; // Integer part, scaled and offset for texture lookup vec2 Pf = fract(P); // Fractional part for interpolation // Noise contribution from lower left corner @@ -118,11 +137,11 @@ /* * 3D classic noise. Slower, but a lot more useful than 2D noise. */ -float noise(vec3 P) +float cnoise(vec3 P) { vec3 Pi = ONE*floor(P)+ONEHALF; // Integer part, scaled so +1 moves one texel // and offset 1/2 texel to sample texel centers vec3 Pf = fract(P); // Fractional part for interpolation @@ -174,11 +193,11 @@ * * This function performs 8 texture lookups and 16 dependent texture lookups, * 16 dot products, 4 mix operations and a lot of additions and multiplications. * Needless to say, it's not super fast. But it's not dead slow either. */ -float noise(vec4 P) +float cnoise(vec4 P) { vec4 Pi = ONE*floor(P)+ONEHALF; // Integer part, scaled so +1 moves one texel // and offset 1/2 texel to sample texel centers vec4 Pf = fract(P); // Fractional part for interpolation @@ -519,5 +538,759 @@ } // Sum up and scale the result to cover the range [-1,1] return 27.0 * (n0 + n1 + n2 + n3 + n4); } + +<% +} else { +// non-texture-based implementation: +// Ian McEwan, Ashima Arts. +// Copyright (C) 2011 Ashima Arts. All rights reserved. +// Distributed under the MIT License. See LICENSE file. +%> + +vec4 permute(vec4 x) +{ + return mod(((x*34.0)+1.0)*x, 289.0); +} + +vec3 permute(vec3 x) +{ + return mod(((x*34.0)+1.0)*x, 289.0); +} + +float permute(float x) +{ + return floor(mod(((x*34.0)+1.0)*x, 289.0)); +} + +vec4 taylorInvSqrt(vec4 r) +{ + return 1.79284291400159 - 0.85373472095314 * r; +} + +float taylorInvSqrt(float r) +{ + return 1.79284291400159 - 0.85373472095314 * r; +} + +vec4 grad4(float j, vec4 ip) +{ + const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0); + vec4 p,s; + + p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0; + p.w = 1.5 - dot(abs(p.xyz), ones.xyz); + s = vec4(lessThan(p, vec4(0.0))); + p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www; + + return p; +} + +vec4 fade(vec4 t) { + return t*t*t*(t*(t*6.0-15.0)+10.0); +} + +vec3 fade(vec3 t) { + return t*t*t*(t*(t*6.0-15.0)+10.0); +} + +vec2 fade(vec2 t) { + return t*t*t*(t*(t*6.0-15.0)+10.0); +} + +// Classic Perlin noise +float cnoise(vec2 P) +{ + vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0); + vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0); + Pi = mod(Pi, 289.0); // To avoid truncation effects in permutation + vec4 ix = Pi.xzxz; + vec4 iy = Pi.yyww; + vec4 fx = Pf.xzxz; + vec4 fy = Pf.yyww; + + vec4 i = permute(permute(ix) + iy); + + vec4 gx = 2.0 * fract(i / 41.0) - 1.0 ; + vec4 gy = abs(gx) - 0.5 ; + vec4 tx = floor(gx + 0.5); + gx = gx - tx; + + vec2 g00 = vec2(gx.x,gy.x); + vec2 g10 = vec2(gx.y,gy.y); + vec2 g01 = vec2(gx.z,gy.z); + vec2 g11 = vec2(gx.w,gy.w); + + vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); + g00 *= norm.x; + g01 *= norm.y; + g10 *= norm.z; + g11 *= norm.w; + + float n00 = dot(g00, vec2(fx.x, fy.x)); + float n10 = dot(g10, vec2(fx.y, fy.y)); + float n01 = dot(g01, vec2(fx.z, fy.z)); + float n11 = dot(g11, vec2(fx.w, fy.w)); + + vec2 fade_xy = fade(Pf.xy); + vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x); + float n_xy = mix(n_x.x, n_x.y, fade_xy.y); + return 2.3 * n_xy; +} + +// Classic Perlin noise, periodic variant +float pnoise(vec2 P, vec2 rep) +{ + vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0); + vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0); + Pi = mod(Pi, rep.xyxy); // To create noise with explicit period + Pi = mod(Pi, 289.0); // To avoid truncation effects in permutation + vec4 ix = Pi.xzxz; + vec4 iy = Pi.yyww; + vec4 fx = Pf.xzxz; + vec4 fy = Pf.yyww; + + vec4 i = permute(permute(ix) + iy); + + vec4 gx = 2.0 * fract(i / 41.0) - 1.0 ; + vec4 gy = abs(gx) - 0.5 ; + vec4 tx = floor(gx + 0.5); + gx = gx - tx; + + vec2 g00 = vec2(gx.x,gy.x); + vec2 g10 = vec2(gx.y,gy.y); + vec2 g01 = vec2(gx.z,gy.z); + vec2 g11 = vec2(gx.w,gy.w); + + vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); + g00 *= norm.x; + g01 *= norm.y; + g10 *= norm.z; + g11 *= norm.w; + + float n00 = dot(g00, vec2(fx.x, fy.x)); + float n10 = dot(g10, vec2(fx.y, fy.y)); + float n01 = dot(g01, vec2(fx.z, fy.z)); + float n11 = dot(g11, vec2(fx.w, fy.w)); + + vec2 fade_xy = fade(Pf.xy); + vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x); + float n_xy = mix(n_x.x, n_x.y, fade_xy.y); + return 2.3 * n_xy; +} + +// Classic Perlin noise +float cnoise(vec3 P) +{ + vec3 Pi0 = floor(P); // Integer part for indexing + vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1 + Pi0 = mod(Pi0, 289.0); + Pi1 = mod(Pi1, 289.0); + vec3 Pf0 = fract(P); // Fractional part for interpolation + vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0 + vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec4 iy = vec4(Pi0.yy, Pi1.yy); + vec4 iz0 = Pi0.zzzz; + vec4 iz1 = Pi1.zzzz; + + vec4 ixy = permute(permute(ix) + iy); + vec4 ixy0 = permute(ixy + iz0); + vec4 ixy1 = permute(ixy + iz1); + + vec4 gx0 = ixy0 / 7.0; + vec4 gy0 = fract(floor(gx0) / 7.0) - 0.5; + gx0 = fract(gx0); + vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0); + vec4 sz0 = step(gz0, vec4(0.0)); + gx0 -= sz0 * (step(0.0, gx0) - 0.5); + gy0 -= sz0 * (step(0.0, gy0) - 0.5); + + vec4 gx1 = ixy1 / 7.0; + vec4 gy1 = fract(floor(gx1) / 7.0) - 0.5; + gx1 = fract(gx1); + vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1); + vec4 sz1 = step(gz1, vec4(0.0)); + gx1 -= sz1 * (step(0.0, gx1) - 0.5); + gy1 -= sz1 * (step(0.0, gy1) - 0.5); + + vec3 g000 = vec3(gx0.x,gy0.x,gz0.x); + vec3 g100 = vec3(gx0.y,gy0.y,gz0.y); + vec3 g010 = vec3(gx0.z,gy0.z,gz0.z); + vec3 g110 = vec3(gx0.w,gy0.w,gz0.w); + vec3 g001 = vec3(gx1.x,gy1.x,gz1.x); + vec3 g101 = vec3(gx1.y,gy1.y,gz1.y); + vec3 g011 = vec3(gx1.z,gy1.z,gz1.z); + vec3 g111 = vec3(gx1.w,gy1.w,gz1.w); + + vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + g000 *= norm0.x; + g010 *= norm0.y; + g100 *= norm0.z; + g110 *= norm0.w; + vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + g001 *= norm1.x; + g011 *= norm1.y; + g101 *= norm1.z; + g111 *= norm1.w; + + float n000 = dot(g000, Pf0); + float n100 = dot(g100, vec3(Pf1.x, Pf0.yz)); + float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z)); + float n110 = dot(g110, vec3(Pf1.xy, Pf0.z)); + float n001 = dot(g001, vec3(Pf0.xy, Pf1.z)); + float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z)); + float n011 = dot(g011, vec3(Pf0.x, Pf1.yz)); + float n111 = dot(g111, Pf1); + + vec3 fade_xyz = fade(Pf0); + vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z); + vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y); + float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + return 2.2 * n_xyz; +} + +// Classic Perlin noise, periodic variant +float pnoise(vec3 P, vec3 rep) +{ + vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period + vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period + Pi0 = mod(Pi0, 289.0); + Pi1 = mod(Pi1, 289.0); + vec3 Pf0 = fract(P); // Fractional part for interpolation + vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0 + vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec4 iy = vec4(Pi0.yy, Pi1.yy); + vec4 iz0 = Pi0.zzzz; + vec4 iz1 = Pi1.zzzz; + + vec4 ixy = permute(permute(ix) + iy); + vec4 ixy0 = permute(ixy + iz0); + vec4 ixy1 = permute(ixy + iz1); + + vec4 gx0 = ixy0 / 7.0; + vec4 gy0 = fract(floor(gx0) / 7.0) - 0.5; + gx0 = fract(gx0); + vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0); + vec4 sz0 = step(gz0, vec4(0.0)); + gx0 -= sz0 * (step(0.0, gx0) - 0.5); + gy0 -= sz0 * (step(0.0, gy0) - 0.5); + + vec4 gx1 = ixy1 / 7.0; + vec4 gy1 = fract(floor(gx1) / 7.0) - 0.5; + gx1 = fract(gx1); + vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1); + vec4 sz1 = step(gz1, vec4(0.0)); + gx1 -= sz1 * (step(0.0, gx1) - 0.5); + gy1 -= sz1 * (step(0.0, gy1) - 0.5); + + vec3 g000 = vec3(gx0.x,gy0.x,gz0.x); + vec3 g100 = vec3(gx0.y,gy0.y,gz0.y); + vec3 g010 = vec3(gx0.z,gy0.z,gz0.z); + vec3 g110 = vec3(gx0.w,gy0.w,gz0.w); + vec3 g001 = vec3(gx1.x,gy1.x,gz1.x); + vec3 g101 = vec3(gx1.y,gy1.y,gz1.y); + vec3 g011 = vec3(gx1.z,gy1.z,gz1.z); + vec3 g111 = vec3(gx1.w,gy1.w,gz1.w); + + vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + g000 *= norm0.x; + g010 *= norm0.y; + g100 *= norm0.z; + g110 *= norm0.w; + vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + g001 *= norm1.x; + g011 *= norm1.y; + g101 *= norm1.z; + g111 *= norm1.w; + + float n000 = dot(g000, Pf0); + float n100 = dot(g100, vec3(Pf1.x, Pf0.yz)); + float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z)); + float n110 = dot(g110, vec3(Pf1.xy, Pf0.z)); + float n001 = dot(g001, vec3(Pf0.xy, Pf1.z)); + float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z)); + float n011 = dot(g011, vec3(Pf0.x, Pf1.yz)); + float n111 = dot(g111, Pf1); + + vec3 fade_xyz = fade(Pf0); + vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z); + vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y); + float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + return 2.2 * n_xyz; +} + +// Classic Perlin noise +float cnoise(vec4 P) +{ + vec4 Pi0 = floor(P); // Integer part for indexing + vec4 Pi1 = Pi0 + 1.0; // Integer part + 1 + Pi0 = mod(Pi0, 289.0); + Pi1 = mod(Pi1, 289.0); + vec4 Pf0 = fract(P); // Fractional part for interpolation + vec4 Pf1 = Pf0 - 1.0; // Fractional part - 1.0 + vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec4 iy = vec4(Pi0.yy, Pi1.yy); + vec4 iz0 = vec4(Pi0.zzzz); + vec4 iz1 = vec4(Pi1.zzzz); + vec4 iw0 = vec4(Pi0.wwww); + vec4 iw1 = vec4(Pi1.wwww); + + vec4 ixy = permute(permute(ix) + iy); + vec4 ixy0 = permute(ixy + iz0); + vec4 ixy1 = permute(ixy + iz1); + vec4 ixy00 = permute(ixy0 + iw0); + vec4 ixy01 = permute(ixy0 + iw1); + vec4 ixy10 = permute(ixy1 + iw0); + vec4 ixy11 = permute(ixy1 + iw1); + + vec4 gx00 = ixy00 / 7.0; + vec4 gy00 = floor(gx00) / 7.0; + vec4 gz00 = floor(gy00) / 6.0; + gx00 = fract(gx00) - 0.5; + gy00 = fract(gy00) - 0.5; + gz00 = fract(gz00) - 0.5; + vec4 gw00 = vec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00); + vec4 sw00 = step(gw00, vec4(0.0)); + gx00 -= sw00 * (step(0.0, gx00) - 0.5); + gy00 -= sw00 * (step(0.0, gy00) - 0.5); + + vec4 gx01 = ixy01 / 7.0; + vec4 gy01 = floor(gx01) / 7.0; + vec4 gz01 = floor(gy01) / 6.0; + gx01 = fract(gx01) - 0.5; + gy01 = fract(gy01) - 0.5; + gz01 = fract(gz01) - 0.5; + vec4 gw01 = vec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01); + vec4 sw01 = step(gw01, vec4(0.0)); + gx01 -= sw01 * (step(0.0, gx01) - 0.5); + gy01 -= sw01 * (step(0.0, gy01) - 0.5); + + vec4 gx10 = ixy10 / 7.0; + vec4 gy10 = floor(gx10) / 7.0; + vec4 gz10 = floor(gy10) / 6.0; + gx10 = fract(gx10) - 0.5; + gy10 = fract(gy10) - 0.5; + gz10 = fract(gz10) - 0.5; + vec4 gw10 = vec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10); + vec4 sw10 = step(gw10, vec4(0.0)); + gx10 -= sw10 * (step(0.0, gx10) - 0.5); + gy10 -= sw10 * (step(0.0, gy10) - 0.5); + + vec4 gx11 = ixy11 / 7.0; + vec4 gy11 = floor(gx11) / 7.0; + vec4 gz11 = floor(gy11) / 6.0; + gx11 = fract(gx11) - 0.5; + gy11 = fract(gy11) - 0.5; + gz11 = fract(gz11) - 0.5; + vec4 gw11 = vec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11); + vec4 sw11 = step(gw11, vec4(0.0)); + gx11 -= sw11 * (step(0.0, gx11) - 0.5); + gy11 -= sw11 * (step(0.0, gy11) - 0.5); + + vec4 g0000 = vec4(gx00.x,gy00.x,gz00.x,gw00.x); + vec4 g1000 = vec4(gx00.y,gy00.y,gz00.y,gw00.y); + vec4 g0100 = vec4(gx00.z,gy00.z,gz00.z,gw00.z); + vec4 g1100 = vec4(gx00.w,gy00.w,gz00.w,gw00.w); + vec4 g0010 = vec4(gx10.x,gy10.x,gz10.x,gw10.x); + vec4 g1010 = vec4(gx10.y,gy10.y,gz10.y,gw10.y); + vec4 g0110 = vec4(gx10.z,gy10.z,gz10.z,gw10.z); + vec4 g1110 = vec4(gx10.w,gy10.w,gz10.w,gw10.w); + vec4 g0001 = vec4(gx01.x,gy01.x,gz01.x,gw01.x); + vec4 g1001 = vec4(gx01.y,gy01.y,gz01.y,gw01.y); + vec4 g0101 = vec4(gx01.z,gy01.z,gz01.z,gw01.z); + vec4 g1101 = vec4(gx01.w,gy01.w,gz01.w,gw01.w); + vec4 g0011 = vec4(gx11.x,gy11.x,gz11.x,gw11.x); + vec4 g1011 = vec4(gx11.y,gy11.y,gz11.y,gw11.y); + vec4 g0111 = vec4(gx11.z,gy11.z,gz11.z,gw11.z); + vec4 g1111 = vec4(gx11.w,gy11.w,gz11.w,gw11.w); + + vec4 norm00 = taylorInvSqrt(vec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); + g0000 *= norm00.x; + g0100 *= norm00.y; + g1000 *= norm00.z; + g1100 *= norm00.w; + + vec4 norm01 = taylorInvSqrt(vec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); + g0001 *= norm01.x; + g0101 *= norm01.y; + g1001 *= norm01.z; + g1101 *= norm01.w; + + vec4 norm10 = taylorInvSqrt(vec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); + g0010 *= norm10.x; + g0110 *= norm10.y; + g1010 *= norm10.z; + g1110 *= norm10.w; + + vec4 norm11 = taylorInvSqrt(vec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); + g0011 *= norm11.x; + g0111 *= norm11.y; + g1011 *= norm11.z; + g1111 *= norm11.w; + + float n0000 = dot(g0000, Pf0); + float n1000 = dot(g1000, vec4(Pf1.x, Pf0.yzw)); + float n0100 = dot(g0100, vec4(Pf0.x, Pf1.y, Pf0.zw)); + float n1100 = dot(g1100, vec4(Pf1.xy, Pf0.zw)); + float n0010 = dot(g0010, vec4(Pf0.xy, Pf1.z, Pf0.w)); + float n1010 = dot(g1010, vec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); + float n0110 = dot(g0110, vec4(Pf0.x, Pf1.yz, Pf0.w)); + float n1110 = dot(g1110, vec4(Pf1.xyz, Pf0.w)); + float n0001 = dot(g0001, vec4(Pf0.xyz, Pf1.w)); + float n1001 = dot(g1001, vec4(Pf1.x, Pf0.yz, Pf1.w)); + float n0101 = dot(g0101, vec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); + float n1101 = dot(g1101, vec4(Pf1.xy, Pf0.z, Pf1.w)); + float n0011 = dot(g0011, vec4(Pf0.xy, Pf1.zw)); + float n1011 = dot(g1011, vec4(Pf1.x, Pf0.y, Pf1.zw)); + float n0111 = dot(g0111, vec4(Pf0.x, Pf1.yzw)); + float n1111 = dot(g1111, Pf1); + + vec4 fade_xyzw = fade(Pf0); + vec4 n_0w = mix(vec4(n0000, n1000, n0100, n1100), vec4(n0001, n1001, n0101, n1101), fade_xyzw.w); + vec4 n_1w = mix(vec4(n0010, n1010, n0110, n1110), vec4(n0011, n1011, n0111, n1111), fade_xyzw.w); + vec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z); + vec2 n_yzw = mix(n_zw.xy, n_zw.zw, fade_xyzw.y); + float n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); + return 2.2 * n_xyzw; +} + +// Classic Perlin noise, periodic version +float cnoise(vec4 P, vec4 rep) +{ + vec4 Pi0 = mod(floor(P), rep); // Integer part modulo rep + vec4 Pi1 = mod(Pi0 + 1.0, rep); // Integer part + 1 mod rep + vec4 Pf0 = fract(P); // Fractional part for interpolation + vec4 Pf1 = Pf0 - 1.0; // Fractional part - 1.0 + vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec4 iy = vec4(Pi0.yy, Pi1.yy); + vec4 iz0 = vec4(Pi0.zzzz); + vec4 iz1 = vec4(Pi1.zzzz); + vec4 iw0 = vec4(Pi0.wwww); + vec4 iw1 = vec4(Pi1.wwww); + + vec4 ixy = permute(permute(ix) + iy); + vec4 ixy0 = permute(ixy + iz0); + vec4 ixy1 = permute(ixy + iz1); + vec4 ixy00 = permute(ixy0 + iw0); + vec4 ixy01 = permute(ixy0 + iw1); + vec4 ixy10 = permute(ixy1 + iw0); + vec4 ixy11 = permute(ixy1 + iw1); + + vec4 gx00 = ixy00 / 7.0; + vec4 gy00 = floor(gx00) / 7.0; + vec4 gz00 = floor(gy00) / 6.0; + gx00 = fract(gx00) - 0.5; + gy00 = fract(gy00) - 0.5; + gz00 = fract(gz00) - 0.5; + vec4 gw00 = vec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00); + vec4 sw00 = step(gw00, vec4(0.0)); + gx00 -= sw00 * (step(0.0, gx00) - 0.5); + gy00 -= sw00 * (step(0.0, gy00) - 0.5); + + vec4 gx01 = ixy01 / 7.0; + vec4 gy01 = floor(gx01) / 7.0; + vec4 gz01 = floor(gy01) / 6.0; + gx01 = fract(gx01) - 0.5; + gy01 = fract(gy01) - 0.5; + gz01 = fract(gz01) - 0.5; + vec4 gw01 = vec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01); + vec4 sw01 = step(gw01, vec4(0.0)); + gx01 -= sw01 * (step(0.0, gx01) - 0.5); + gy01 -= sw01 * (step(0.0, gy01) - 0.5); + + vec4 gx10 = ixy10 / 7.0; + vec4 gy10 = floor(gx10) / 7.0; + vec4 gz10 = floor(gy10) / 6.0; + gx10 = fract(gx10) - 0.5; + gy10 = fract(gy10) - 0.5; + gz10 = fract(gz10) - 0.5; + vec4 gw10 = vec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10); + vec4 sw10 = step(gw10, vec4(0.0)); + gx10 -= sw10 * (step(0.0, gx10) - 0.5); + gy10 -= sw10 * (step(0.0, gy10) - 0.5); + + vec4 gx11 = ixy11 / 7.0; + vec4 gy11 = floor(gx11) / 7.0; + vec4 gz11 = floor(gy11) / 6.0; + gx11 = fract(gx11) - 0.5; + gy11 = fract(gy11) - 0.5; + gz11 = fract(gz11) - 0.5; + vec4 gw11 = vec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11); + vec4 sw11 = step(gw11, vec4(0.0)); + gx11 -= sw11 * (step(0.0, gx11) - 0.5); + gy11 -= sw11 * (step(0.0, gy11) - 0.5); + + vec4 g0000 = vec4(gx00.x,gy00.x,gz00.x,gw00.x); + vec4 g1000 = vec4(gx00.y,gy00.y,gz00.y,gw00.y); + vec4 g0100 = vec4(gx00.z,gy00.z,gz00.z,gw00.z); + vec4 g1100 = vec4(gx00.w,gy00.w,gz00.w,gw00.w); + vec4 g0010 = vec4(gx10.x,gy10.x,gz10.x,gw10.x); + vec4 g1010 = vec4(gx10.y,gy10.y,gz10.y,gw10.y); + vec4 g0110 = vec4(gx10.z,gy10.z,gz10.z,gw10.z); + vec4 g1110 = vec4(gx10.w,gy10.w,gz10.w,gw10.w); + vec4 g0001 = vec4(gx01.x,gy01.x,gz01.x,gw01.x); + vec4 g1001 = vec4(gx01.y,gy01.y,gz01.y,gw01.y); + vec4 g0101 = vec4(gx01.z,gy01.z,gz01.z,gw01.z); + vec4 g1101 = vec4(gx01.w,gy01.w,gz01.w,gw01.w); + vec4 g0011 = vec4(gx11.x,gy11.x,gz11.x,gw11.x); + vec4 g1011 = vec4(gx11.y,gy11.y,gz11.y,gw11.y); + vec4 g0111 = vec4(gx11.z,gy11.z,gz11.z,gw11.z); + vec4 g1111 = vec4(gx11.w,gy11.w,gz11.w,gw11.w); + + vec4 norm00 = taylorInvSqrt(vec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); + g0000 *= norm00.x; + g0100 *= norm00.y; + g1000 *= norm00.z; + g1100 *= norm00.w; + + vec4 norm01 = taylorInvSqrt(vec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); + g0001 *= norm01.x; + g0101 *= norm01.y; + g1001 *= norm01.z; + g1101 *= norm01.w; + + vec4 norm10 = taylorInvSqrt(vec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); + g0010 *= norm10.x; + g0110 *= norm10.y; + g1010 *= norm10.z; + g1110 *= norm10.w; + + vec4 norm11 = taylorInvSqrt(vec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); + g0011 *= norm11.x; + g0111 *= norm11.y; + g1011 *= norm11.z; + g1111 *= norm11.w; + + float n0000 = dot(g0000, Pf0); + float n1000 = dot(g1000, vec4(Pf1.x, Pf0.yzw)); + float n0100 = dot(g0100, vec4(Pf0.x, Pf1.y, Pf0.zw)); + float n1100 = dot(g1100, vec4(Pf1.xy, Pf0.zw)); + float n0010 = dot(g0010, vec4(Pf0.xy, Pf1.z, Pf0.w)); + float n1010 = dot(g1010, vec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); + float n0110 = dot(g0110, vec4(Pf0.x, Pf1.yz, Pf0.w)); + float n1110 = dot(g1110, vec4(Pf1.xyz, Pf0.w)); + float n0001 = dot(g0001, vec4(Pf0.xyz, Pf1.w)); + float n1001 = dot(g1001, vec4(Pf1.x, Pf0.yz, Pf1.w)); + float n0101 = dot(g0101, vec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); + float n1101 = dot(g1101, vec4(Pf1.xy, Pf0.z, Pf1.w)); + float n0011 = dot(g0011, vec4(Pf0.xy, Pf1.zw)); + float n1011 = dot(g1011, vec4(Pf1.x, Pf0.y, Pf1.zw)); + float n0111 = dot(g0111, vec4(Pf0.x, Pf1.yzw)); + float n1111 = dot(g1111, Pf1); + + vec4 fade_xyzw = fade(Pf0); + vec4 n_0w = mix(vec4(n0000, n1000, n0100, n1100), vec4(n0001, n1001, n0101, n1101), fade_xyzw.w); + vec4 n_1w = mix(vec4(n0010, n1010, n0110, n1110), vec4(n0011, n1011, n0111, n1111), fade_xyzw.w); + vec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z); + vec2 n_yzw = mix(n_zw.xy, n_zw.zw, fade_xyzw.y); + float n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); + return 2.2 * n_xyzw; +} + +float snoise(vec2 v) + { + const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0 + 0.366025403784439, // 0.5*(sqrt(3.0)-1.0) + -0.577350269189626, // -1.0 + 2.0 * C.x + 0.024390243902439); // 1.0 / 41.0 +// First corner + vec2 i = floor(v + dot(v, C.yy) ); + vec2 x0 = v - i + dot(i, C.xx); + +// Other corners + vec2 i1; + //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 + //i1.y = 1.0 - i1.x; + i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); + // x0 = x0 - 0.0 + 0.0 * C.xx ; + // x1 = x0 - i1 + 1.0 * C.xx ; + // x2 = x0 - 1.0 + 2.0 * C.xx ; + vec4 x12 = x0.xyxy + C.xxzz; + x12.xy -= i1; + +// Permutations + i = mod(i, 289.0); // Avoid truncation effects in permutation + vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 )) ++ i.x + vec3(0.0, i1.x, 1.0 )); + + vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0); + m = m*m ; + m = m*m ; + +// Gradients: 41 points uniformly over a line, mapped onto a diamond. +// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) + + vec3 x = 2.0 * fract(p * C.www) - 1.0; + vec3 h = abs(x) - 0.5; + vec3 ox = floor(x + 0.5); + vec3 a0 = x - ox; + +// Normalise gradients implicitly by scaling m +// Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h ); + m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h ); + +// Compute final noise value at P + vec3 g; + g.x = a0.x * x0.x + h.x * x0.y; + g.yz = a0.yz * x12.xz + h.yz * x12.yw; + return 130.0 * dot(m, g); +} + +float snoise(vec3 v) +{ + const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; + const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); + +// First corner + vec3 i = floor(v + dot(v, C.yyy) ); + vec3 x0 = v - i + dot(i, C.xxx) ; + +// Other corners + vec3 g = step(x0.yzx, x0.xyz); + vec3 l = 1.0 - g; + vec3 i1 = min( g.xyz, l.zxy ); + vec3 i2 = max( g.xyz, l.zxy ); + + // x0 = x0 - 0.0 + 0.0 * C.xxx; + // x1 = x0 - i1 + 1.0 * C.xxx; + // x2 = x0 - i2 + 2.0 * C.xxx; + // x3 = x0 - 1.0 + 3.0 * C.xxx; + vec3 x1 = x0 - i1 + C.xxx; + vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y + vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y + +// Permutations + i = mod(i, 289.0 ); + vec4 p = permute( permute( permute( + i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); + +// Gradients: 7x7 points over a square, mapped onto an octahedron. +// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) + float n_ = 0.142857142857; // 1.0/7.0 + vec3 ns = n_ * D.wyz - D.xzx; + + vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) + + vec4 x_ = floor(j * ns.z); + vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) + + vec4 x = x_ *ns.x + ns.yyyy; + vec4 y = y_ *ns.x + ns.yyyy; + vec4 h = 1.0 - abs(x) - abs(y); + + vec4 b0 = vec4( x.xy, y.xy ); + vec4 b1 = vec4( x.zw, y.zw ); + + //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; + //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; + vec4 s0 = floor(b0)*2.0 + 1.0; + vec4 s1 = floor(b1)*2.0 + 1.0; + vec4 sh = -step(h, vec4(0.0)); + + vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; + vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; + + vec3 p0 = vec3(a0.xy,h.x); + vec3 p1 = vec3(a0.zw,h.y); + vec3 p2 = vec3(a1.xy,h.z); + vec3 p3 = vec3(a1.zw,h.w); + +//Normalise gradients + vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); + p0 *= norm.x; + p1 *= norm.y; + p2 *= norm.z; + p3 *= norm.w; + +// Mix final noise value + vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); + m = m * m; + return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), + dot(p2,x2), dot(p3,x3) ) ); +} + +float snoise(vec4 v) +{ + const vec4 C = vec4( 0.138196601125011, // (5 - sqrt(5))/20 G4 + 0.276393202250021, // 2 * G4 + 0.414589803375032, // 3 * G4 + -0.447213595499958); // -1 + 4 * G4 + + // (sqrt(5) - 1)/4 = F4, used once below + #define F4 0.309016994374947451 + +// First corner + vec4 i = floor(v + dot(v, vec4(F4)) ); + vec4 x0 = v - i + dot(i, C.xxxx); + +// Other corners + +// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) + vec4 i0; + vec3 isX = step( x0.yzw, x0.xxx ); + vec3 isYZ = step( x0.zww, x0.yyz ); +// i0.x = dot( isX, vec3( 1.0 ) ); + i0.x = isX.x + isX.y + isX.z; + i0.yzw = 1.0 - isX; +// i0.y += dot( isYZ.xy, vec2( 1.0 ) ); + i0.y += isYZ.x + isYZ.y; + i0.zw += 1.0 - isYZ.xy; + i0.z += isYZ.z; + i0.w += 1.0 - isYZ.z; + + // i0 now contains the unique values 0,1,2,3 in each channel + vec4 i3 = clamp( i0, 0.0, 1.0 ); + vec4 i2 = clamp( i0-1.0, 0.0, 1.0 ); + vec4 i1 = clamp( i0-2.0, 0.0, 1.0 ); + + // x0 = x0 - 0.0 + 0.0 * C.xxxx + // x1 = x0 - i1 + 0.0 * C.xxxx + // x2 = x0 - i2 + 0.0 * C.xxxx + // x3 = x0 - i3 + 0.0 * C.xxxx + // x4 = x0 - 1.0 + 4.0 * C.xxxx + vec4 x1 = x0 - i1 + C.xxxx; + vec4 x2 = x0 - i2 + C.yyyy; + vec4 x3 = x0 - i3 + C.zzzz; + vec4 x4 = x0 + C.wwww; + + // Permutations + i = mod(i, 289.0); + float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x); + vec4 j1 = permute( permute( permute( permute ( + i.w + vec4(i1.w, i2.w, i3.w, 1.0 )) + + i.z + vec4(i1.z, i2.z, i3.z, 1.0 )) + + i.y + vec4(i1.y, i2.y, i3.y, 1.0 )) + + i.x + vec4(i1.x, i2.x, i3.x, 1.0 )); + + // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope + // 7*7*6 = 294, which is close to the ring size 17*17 = 289. + vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ; + + vec4 p0 = grad4(j0, ip); + vec4 p1 = grad4(j1.x, ip); + vec4 p2 = grad4(j1.y, ip); + vec4 p3 = grad4(j1.z, ip); + vec4 p4 = grad4(j1.w, ip); + + // Normalise gradients + vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); + p0 *= norm.x; + p1 *= norm.y; + p2 *= norm.z; + p3 *= norm.w; + p4 *= taylorInvSqrt(dot(p4,p4)); + + // Mix contributions from the five corners + vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0); + vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0); + m0 = m0 * m0; + m1 = m1 * m1; + return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 ))) + + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ; + +} + +<% } %>