rdoc/stats.rdoc in gsl-1.15.3 vs rdoc/stats.rdoc in gsl-1.16.0.6

- old
+ new

@@ -1,19 +1,19 @@ # # = Statistics -# 1. {Mean, Standard Deviation and Variance}[link:files/rdoc/stats_rdoc.html#1] -# 1. {Absolute deviation}[link:files/rdoc/stats_rdoc.html#2] -# 1. {Higher moments (skewness and kurtosis)}[link:files/rdoc/stats_rdoc.html#3] -# 1. {Autocorrelation}[link:files/rdoc/stats_rdoc.html#4] -# 1. {Covariance}[link:files/rdoc/stats_rdoc.html#5] -# 1. {Correlation}[link:files/rdoc/stats_rdoc.html#6] -# 1. {Weighted samples}[link:files/rdoc/stats_rdoc.html#7] -# 1. {Maximum and minimum values}[link:files/rdoc/stats_rdoc.html#8] -# 1. {Median and percentiles}[link:files/rdoc/stats_rdoc.html#9] -# 1. {Examples}[link:files/rdoc/stats_rdoc.html#10] +# 1. {Mean, Standard Deviation and Variance}[link:rdoc/stats_rdoc.html#label-Mean%2C+Standard+Deviation+and+Variance] +# 1. {Absolute deviation}[link:rdoc/stats_rdoc.html#label-Absolute+deviation] +# 1. {Higher moments (skewness and kurtosis)}[link:rdoc/stats_rdoc.html#label-Higher+moments+%28skewness+and+kurtosis%29] +# 1. {Autocorrelation}[link:rdoc/stats_rdoc.html#label-Autocorrelation] +# 1. {Covariance}[link:rdoc/stats_rdoc.html#label-Covariance] +# 1. {Correlation}[link:rdoc/stats_rdoc.html#label-Correlation] +# 1. {Weighted samples}[link:rdoc/stats_rdoc.html#label-Weighted+samples] +# 1. {Maximum and minimum values}[link:rdoc/stats_rdoc.html#label-Maximum+and+Minimum+values] +# 1. {Median and percentiles}[link:rdoc/stats_rdoc.html#label-Median+and+Percentiles] +# 1. {Examples}[link:rdoc/stats_rdoc.html#label-Example] # -# == {}[link:index.html"name="1] Mean, Standard Deviation and Variance +# == Mean, Standard Deviation and Variance # # --- # * GSL::Stats::mean(v) # * GSL::Vector#mean # @@ -21,11 +21,11 @@ # # * Ex: # >> require("gsl") # => true # >> v = Vector[1..7] -# => GSL::Vector: +# => GSL::Vector: # [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 7.000e+00 ] # >> v.mean # => 4.0 # >> Stats::mean(v) # => 4.0 @@ -41,94 +41,94 @@ # Returns the total sum of squares about <tt>mean</tt>. # (Requires GSL 1.11) # # --- # * GSL::Stats::variance_m(v[, mean]) -# * GSL::Vector#variance_m([mean]) +# * \GSL::Vector#variance_m([mean]) # # Variance of <tt>v</tt> relative to the given value of <tt>mean</tt>. # # --- # * GSL::Stats::sd(v[, mean]) -# * GSL::Vector#sd([mean]) +# * \GSL::Vector#sd([mean]) # # Standard deviation. # # --- # * GSL::Stats::tss(v[, mean]) -# * GSL::Vector#tss([mean]) +# * \GSL::Vector#tss([mean]) # -# (GSL-1.11 or later) These methods return the total sum of squares (TSS) of data about the mean. +# (GSL-1.11 or later) These methods return the total sum of squares (TSS) of data about the mean. # # --- # * GSL::Stats::variance_with_fixed_mean(v, mean) # * GSL::Vector#variance_with_fixed_mean(mean) # -# Unbiased estimate of the variance of <tt>v</tt> when the population mean +# Unbiased estimate of the variance of <tt>v</tt> when the population mean # <tt>mean</tt> of the underlying distribution is known <tt>a priori</tt>. # # --- # * GSL::Stats::variance_with_fixed_mean(v, mean) # * GSL::Vector#variance_with_fixed_mean(mean) # * GSL::Stats::sd_with_fixed_mean(v, mean) # * GSL::Vector#sd_with_fixed_mean(mean) # -# Unbiased estimate of the variance of <tt>v</tt> when the population mean +# Unbiased estimate of the variance of <tt>v</tt> when the population mean # <tt>mean</tt> of the underlying distribution is known <tt>a priori</tt>. # -# == {}[link:index.html"name="2] Absolute deviation +# == Absolute deviation # --- # * GSL::Stats::absdev(v[, mean]) -# * GSL::Vector#absdev([mean]) +# * \GSL::Vector#absdev([mean]) # # Compute the absolute deviation (from the mean <tt>mean</tt> if given). # -# == {}[link:index.html"name="3] Higher moments (skewness and kurtosis) +# == Higher moments (skewness and kurtosis) # # --- # * GSL::Stats::skew(v[, mean, sd]) -# * GSL::Vector#skew([mean, sd]) +# * \GSL::Vector#skew([mean, sd]) # # Skewness # # --- # * GSL::Stats::kurtosis(v[, mean, sd]) -# * GSL::Vector#kurtosis([mean, sd]) +# * \GSL::Vector#kurtosis([mean, sd]) # # Kurtosis # -# == {}[link:index.html"name="4] Autocorrelation +# == Autocorrelation # --- # * GSL::Stats::lag1_autocorrelation(v[, mean]) -# * GSL::Vector#lag1_autocorrelation([mean]) +# * \GSL::Vector#lag1_autocorrelation([mean]) # # The lag-1 autocorrelation # -# == {}[link:index.html"name="5] Covariance +# == Covariance # --- # * GSL::Stats::covariance(v1, v2) # * GSL::Stats::covariance_m(v1, v2, mean1, mean2) # # Covariance of vectors <tt>v1, v2</tt>. # -# == {}[link:index.html"name="6] Correlation +# == Correlation # --- # * GSL::Stats::correlation(v1, v2) # # This efficiently computes the Pearson correlation coefficient between the vectors <tt>v1, v2</tt>. (>= GSL-1.10) # -# == {}[link:index.html"name="7] Weighted samples +# == Weighted samples # --- # * GSL::Vector#wmean(w) # * GSL::Vector#wvariance(w) # * GSL::Vector#wsd(w) # * GSL::Vector#wabsdev(w) # * GSL::Vector#wskew(w) # * GSL::Vector#wkurtosis(w) # # -# == {}[link:index.html"name="8] Maximum and Minimum values +# == Maximum and Minimum values # --- # * GSL::Stats::max(data) # * GSL::Vector#max # # Return the maximum value in data. @@ -147,53 +147,53 @@ # # --- # * GSL::Stats::max_index(data) # * GSL::Vector#max_index # -# Return the index of the maximum value in <tt>data</tt>. -# The maximum value is defined as the value of the element x_i -# which satisfies x_i >= x_j for all j. -# When there are several equal maximum elements then the first one is chosen. +# Return the index of the maximum value in <tt>data</tt>. +# The maximum value is defined as the value of the element x_i +# which satisfies x_i >= x_j for all j. +# When there are several equal maximum elements then the first one is chosen. # --- # * GSL::Stats::min_index(data) # * GSL::Vector#min_index # -# Returns the index of the minimum value in <tt>data</tt>. -# The minimum value is defined as the value of the element x_i -# which satisfies x_i >= x_j for all j. -# When there are several equal minimum elements then the first one is -# chosen. +# Returns the index of the minimum value in <tt>data</tt>. +# The minimum value is defined as the value of the element x_i +# which satisfies x_i >= x_j for all j. +# When there are several equal minimum elements then the first one is +# chosen. # # --- # * GSL::Stats::minmax_index(data) # * GSL::Vector#minmax_index # -# Return the indexes of the minimum and maximum values in <tt>data</tt> -# in a single pass. +# Return the indexes of the minimum and maximum values in <tt>data</tt> +# in a single pass. # # -# == {}[link:index.html"name="9] Median and Percentiles +# == Median and Percentiles # # --- # * GSL::Stats::median_from_sorted_data(v) # * GSL::Vector#median_from_sorted_data # -# Return the median value. The elements of the data must be -# in ascending numerical order. There are no checks to see whether -# the data are sorted, so the method <tt>GSL::Vector#sort</tt> +# Return the median value. The elements of the data must be +# in ascending numerical order. There are no checks to see whether +# the data are sorted, so the method <tt>GSL::Vector#sort</tt> # should always be used first. # # --- # * GSL::Stats::quantile_from_sorted_data(v) # * GSL::Vector#quantile_from_sorted_data # -# Return the quantile value. The elements of the data must be -# in ascending numerical order. There are no checks to see whether -# the data are sorted, so the method <tt>GSL::Vector#sort</tt> +# Return the quantile value. The elements of the data must be +# in ascending numerical order. There are no checks to see whether +# the data are sorted, so the method <tt>GSL::Vector#sort</tt> # should always be used first. # -# == {}[link:index.html"name="10] Example +# == Example # # #!/usr/bin/env ruby # require 'gsl' # # ary = [17.2, 18.1, 16.5, 18.3, 12.6] @@ -209,11 +209,11 @@ # printf("The sample mean is %g\n", mean); # printf("The estimated variance is %g\n", variance); # printf("The largest value is %g\n", largest); # printf("The smallest value is %g\n", smallest); # -# {prev}[link:files/rdoc/randist_rdoc.html] -# {next}[link:files/rdoc/hist_rdoc.html] +# {prev}[link:rdoc/randist_rdoc.html] +# {next}[link:rdoc/hist_rdoc.html] # -# {Reference index}[link:files/rdoc/ref_rdoc.html] -# {top}[link:files/rdoc/index_rdoc.html] +# {Reference index}[link:rdoc/ref_rdoc.html] +# {top}[link:index.html] #