rdoc/stats.rdoc in gsl-1.15.3 vs rdoc/stats.rdoc in gsl-1.16.0.6
- old
+ new
@@ -1,19 +1,19 @@
#
# = Statistics
-# 1. {Mean, Standard Deviation and Variance}[link:files/rdoc/stats_rdoc.html#1]
-# 1. {Absolute deviation}[link:files/rdoc/stats_rdoc.html#2]
-# 1. {Higher moments (skewness and kurtosis)}[link:files/rdoc/stats_rdoc.html#3]
-# 1. {Autocorrelation}[link:files/rdoc/stats_rdoc.html#4]
-# 1. {Covariance}[link:files/rdoc/stats_rdoc.html#5]
-# 1. {Correlation}[link:files/rdoc/stats_rdoc.html#6]
-# 1. {Weighted samples}[link:files/rdoc/stats_rdoc.html#7]
-# 1. {Maximum and minimum values}[link:files/rdoc/stats_rdoc.html#8]
-# 1. {Median and percentiles}[link:files/rdoc/stats_rdoc.html#9]
-# 1. {Examples}[link:files/rdoc/stats_rdoc.html#10]
+# 1. {Mean, Standard Deviation and Variance}[link:rdoc/stats_rdoc.html#label-Mean%2C+Standard+Deviation+and+Variance]
+# 1. {Absolute deviation}[link:rdoc/stats_rdoc.html#label-Absolute+deviation]
+# 1. {Higher moments (skewness and kurtosis)}[link:rdoc/stats_rdoc.html#label-Higher+moments+%28skewness+and+kurtosis%29]
+# 1. {Autocorrelation}[link:rdoc/stats_rdoc.html#label-Autocorrelation]
+# 1. {Covariance}[link:rdoc/stats_rdoc.html#label-Covariance]
+# 1. {Correlation}[link:rdoc/stats_rdoc.html#label-Correlation]
+# 1. {Weighted samples}[link:rdoc/stats_rdoc.html#label-Weighted+samples]
+# 1. {Maximum and minimum values}[link:rdoc/stats_rdoc.html#label-Maximum+and+Minimum+values]
+# 1. {Median and percentiles}[link:rdoc/stats_rdoc.html#label-Median+and+Percentiles]
+# 1. {Examples}[link:rdoc/stats_rdoc.html#label-Example]
#
-# == {}[link:index.html"name="1] Mean, Standard Deviation and Variance
+# == Mean, Standard Deviation and Variance
#
# ---
# * GSL::Stats::mean(v)
# * GSL::Vector#mean
#
@@ -21,11 +21,11 @@
#
# * Ex:
# >> require("gsl")
# => true
# >> v = Vector[1..7]
-# => GSL::Vector:
+# => GSL::Vector:
# [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 7.000e+00 ]
# >> v.mean
# => 4.0
# >> Stats::mean(v)
# => 4.0
@@ -41,94 +41,94 @@
# Returns the total sum of squares about <tt>mean</tt>.
# (Requires GSL 1.11)
#
# ---
# * GSL::Stats::variance_m(v[, mean])
-# * GSL::Vector#variance_m([mean])
+# * \GSL::Vector#variance_m([mean])
#
# Variance of <tt>v</tt> relative to the given value of <tt>mean</tt>.
#
# ---
# * GSL::Stats::sd(v[, mean])
-# * GSL::Vector#sd([mean])
+# * \GSL::Vector#sd([mean])
#
# Standard deviation.
#
# ---
# * GSL::Stats::tss(v[, mean])
-# * GSL::Vector#tss([mean])
+# * \GSL::Vector#tss([mean])
#
-# (GSL-1.11 or later) These methods return the total sum of squares (TSS) of data about the mean.
+# (GSL-1.11 or later) These methods return the total sum of squares (TSS) of data about the mean.
#
# ---
# * GSL::Stats::variance_with_fixed_mean(v, mean)
# * GSL::Vector#variance_with_fixed_mean(mean)
#
-# Unbiased estimate of the variance of <tt>v</tt> when the population mean
+# Unbiased estimate of the variance of <tt>v</tt> when the population mean
# <tt>mean</tt> of the underlying distribution is known <tt>a priori</tt>.
#
# ---
# * GSL::Stats::variance_with_fixed_mean(v, mean)
# * GSL::Vector#variance_with_fixed_mean(mean)
# * GSL::Stats::sd_with_fixed_mean(v, mean)
# * GSL::Vector#sd_with_fixed_mean(mean)
#
-# Unbiased estimate of the variance of <tt>v</tt> when the population mean
+# Unbiased estimate of the variance of <tt>v</tt> when the population mean
# <tt>mean</tt> of the underlying distribution is known <tt>a priori</tt>.
#
-# == {}[link:index.html"name="2] Absolute deviation
+# == Absolute deviation
# ---
# * GSL::Stats::absdev(v[, mean])
-# * GSL::Vector#absdev([mean])
+# * \GSL::Vector#absdev([mean])
#
# Compute the absolute deviation (from the mean <tt>mean</tt> if given).
#
-# == {}[link:index.html"name="3] Higher moments (skewness and kurtosis)
+# == Higher moments (skewness and kurtosis)
#
# ---
# * GSL::Stats::skew(v[, mean, sd])
-# * GSL::Vector#skew([mean, sd])
+# * \GSL::Vector#skew([mean, sd])
#
# Skewness
#
# ---
# * GSL::Stats::kurtosis(v[, mean, sd])
-# * GSL::Vector#kurtosis([mean, sd])
+# * \GSL::Vector#kurtosis([mean, sd])
#
# Kurtosis
#
-# == {}[link:index.html"name="4] Autocorrelation
+# == Autocorrelation
# ---
# * GSL::Stats::lag1_autocorrelation(v[, mean])
-# * GSL::Vector#lag1_autocorrelation([mean])
+# * \GSL::Vector#lag1_autocorrelation([mean])
#
# The lag-1 autocorrelation
#
-# == {}[link:index.html"name="5] Covariance
+# == Covariance
# ---
# * GSL::Stats::covariance(v1, v2)
# * GSL::Stats::covariance_m(v1, v2, mean1, mean2)
#
# Covariance of vectors <tt>v1, v2</tt>.
#
-# == {}[link:index.html"name="6] Correlation
+# == Correlation
# ---
# * GSL::Stats::correlation(v1, v2)
#
# This efficiently computes the Pearson correlation coefficient between the vectors <tt>v1, v2</tt>. (>= GSL-1.10)
#
-# == {}[link:index.html"name="7] Weighted samples
+# == Weighted samples
# ---
# * GSL::Vector#wmean(w)
# * GSL::Vector#wvariance(w)
# * GSL::Vector#wsd(w)
# * GSL::Vector#wabsdev(w)
# * GSL::Vector#wskew(w)
# * GSL::Vector#wkurtosis(w)
#
#
-# == {}[link:index.html"name="8] Maximum and Minimum values
+# == Maximum and Minimum values
# ---
# * GSL::Stats::max(data)
# * GSL::Vector#max
#
# Return the maximum value in data.
@@ -147,53 +147,53 @@
#
# ---
# * GSL::Stats::max_index(data)
# * GSL::Vector#max_index
#
-# Return the index of the maximum value in <tt>data</tt>.
-# The maximum value is defined as the value of the element x_i
-# which satisfies x_i >= x_j for all j.
-# When there are several equal maximum elements then the first one is chosen.
+# Return the index of the maximum value in <tt>data</tt>.
+# The maximum value is defined as the value of the element x_i
+# which satisfies x_i >= x_j for all j.
+# When there are several equal maximum elements then the first one is chosen.
# ---
# * GSL::Stats::min_index(data)
# * GSL::Vector#min_index
#
-# Returns the index of the minimum value in <tt>data</tt>.
-# The minimum value is defined as the value of the element x_i
-# which satisfies x_i >= x_j for all j.
-# When there are several equal minimum elements then the first one is
-# chosen.
+# Returns the index of the minimum value in <tt>data</tt>.
+# The minimum value is defined as the value of the element x_i
+# which satisfies x_i >= x_j for all j.
+# When there are several equal minimum elements then the first one is
+# chosen.
#
# ---
# * GSL::Stats::minmax_index(data)
# * GSL::Vector#minmax_index
#
-# Return the indexes of the minimum and maximum values in <tt>data</tt>
-# in a single pass.
+# Return the indexes of the minimum and maximum values in <tt>data</tt>
+# in a single pass.
#
#
-# == {}[link:index.html"name="9] Median and Percentiles
+# == Median and Percentiles
#
# ---
# * GSL::Stats::median_from_sorted_data(v)
# * GSL::Vector#median_from_sorted_data
#
-# Return the median value. The elements of the data must be
-# in ascending numerical order. There are no checks to see whether
-# the data are sorted, so the method <tt>GSL::Vector#sort</tt>
+# Return the median value. The elements of the data must be
+# in ascending numerical order. There are no checks to see whether
+# the data are sorted, so the method <tt>GSL::Vector#sort</tt>
# should always be used first.
#
# ---
# * GSL::Stats::quantile_from_sorted_data(v)
# * GSL::Vector#quantile_from_sorted_data
#
-# Return the quantile value. The elements of the data must be
-# in ascending numerical order. There are no checks to see whether
-# the data are sorted, so the method <tt>GSL::Vector#sort</tt>
+# Return the quantile value. The elements of the data must be
+# in ascending numerical order. There are no checks to see whether
+# the data are sorted, so the method <tt>GSL::Vector#sort</tt>
# should always be used first.
#
-# == {}[link:index.html"name="10] Example
+# == Example
#
# #!/usr/bin/env ruby
# require 'gsl'
#
# ary = [17.2, 18.1, 16.5, 18.3, 12.6]
@@ -209,11 +209,11 @@
# printf("The sample mean is %g\n", mean);
# printf("The estimated variance is %g\n", variance);
# printf("The largest value is %g\n", largest);
# printf("The smallest value is %g\n", smallest);
#
-# {prev}[link:files/rdoc/randist_rdoc.html]
-# {next}[link:files/rdoc/hist_rdoc.html]
+# {prev}[link:rdoc/randist_rdoc.html]
+# {next}[link:rdoc/hist_rdoc.html]
#
-# {Reference index}[link:files/rdoc/ref_rdoc.html]
-# {top}[link:files/rdoc/index_rdoc.html]
+# {Reference index}[link:rdoc/ref_rdoc.html]
+# {top}[link:index.html]
#