rdoc/math.rdoc in gsl-1.15.3 vs rdoc/math.rdoc in gsl-1.16.0.6
- old
+ new
@@ -1,20 +1,20 @@
#
# = Mathematical Functions
# Contents:
-# 1. {Mathematical Constants}[link:files/rdoc/math_rdoc.html#1]
-# 1. {Infinities and Not-a-number}[link:files/rdoc/math_rdoc.html#2]
-# 1. {Constants}[link:files/rdoc/math_rdoc.html#2.1]
-# 1. {Module functions}[link:files/rdoc/math_rdoc.html#2.2]
-# 1. {Elementary Functions}[link:files/rdoc/math_rdoc.html#3]
-# 1. {Small Integer Powers}[link:files/rdoc/math_rdoc.html#4]
-# 1. {Testing the Sign of Numbers}[link:files/rdoc/math_rdoc.html#5]
-# 1. {Testing for Odd and Even Numbers}[link:files/rdoc/math_rdoc.html#6]
-# 1. {Maximum and Minimum functions}[link:files/rdoc/math_rdoc.html#7]
-# 1. {Approximate Comparison of Floating Point Numbers}[link:files/rdoc/math_rdoc.html#8]
+# 1. {Mathematical Constants}[link:rdoc/math_rdoc.html#label-Mathematical+Constants]
+# 1. {Infinities and Not-a-number}[link:rdoc/math_rdoc.html#label-Infinities+and+Not-a-number]
+# 1. {Constants}[link:rdoc/math_rdoc.html#label-Constants]
+# 1. {Module functions}[link:rdoc/math_rdoc.html#label-Module+functions]
+# 1. {Elementary Functions}[link:rdoc/math_rdoc.html#label-Elementary+Functions]
+# 1. {Small Integer Powers}[link:rdoc/math_rdoc.html#label-Small+Integer+Powers]
+# 1. {Testing the Sign of Numbers}[link:rdoc/math_rdoc.html#label-Testing+the+Sign+of+Numbers]
+# 1. {Testing for Odd and Even Numbers}[link:rdoc/math_rdoc.html#label-Testing+for+Odd+and+Even+Numbers]
+# 1. {Maximum and Minimum functions}[link:rdoc/math_rdoc.html#label-Maximum+and+Minimum+functions]
+# 1. {Approximate Comparison of Floating Point Numbers}[link:rdoc/math_rdoc.html#label-Approximate+Comparison+of+Floating+Point+Numbers]
#
-# == {}[link:index.html"name="1] Mathematical Constants
+# == Mathematical Constants
# ---
# * GSL::M_E
#
# The base of exponentials, e
# ---
@@ -80,30 +80,30 @@
# ---
# * GSL::M_EULER
#
# Euler's constant
#
-# == {}[link:index.html"name="2] Infinities and Not-a-number
+# == Infinities and Not-a-number
#
-# === {}[link:index.html"name="2.1] Constants
+# === Constants
# ---
# * GSL::POSINF
#
-# The IEEE representation of positive infinity,
+# The IEEE representation of positive infinity,
# computed from the expression +1.0/0.0.
# ---
# * GSL::NEGINF
#
-# The IEEE representation of negative infinity,
+# The IEEE representation of negative infinity,
# computed from the expression -1.0/0.0.
# ---
# * GSL::NAN
#
# The IEEE representation of the Not-a-Number symbol,
# computed from the ratio 0.0/0.0.
#
-# === {}[link:index.html"name="2.2] Module functions
+# === Module functions
# ---
# * GSL::isnan(x)
#
# This returns 1 if <tt>x</tt> is not-a-number.
# ---
@@ -111,86 +111,86 @@
#
# This returns <tt>true</tt> if <tt>x</tt> is not-a-number, and <tt>false</tt> otherwise.
# ---
# * GSL::isinf(x)
#
-# This returns +1 if <tt>x</tt> is positive infinity,
+# This returns +1 if <tt>x</tt> is positive infinity,
# -1 if <tt>x</tt> is negative infinity and 0 otherwise.
# NOTE: In Darwin9.5.0-gcc4.0.1, this method returns 1 for -inf.
# ---
# * GSL::isinf?(x)
#
-# This returns <tt>true</tt> if <tt>x</tt> is positive or negative infinity,
+# This returns <tt>true</tt> if <tt>x</tt> is positive or negative infinity,
# and <tt>false</tt> otherwise.
# ---
# * GSL::finite(x)
#
-# This returns 1 if <tt>x</tt> is a real number,
+# This returns 1 if <tt>x</tt> is a real number,
# and 0 if it is infinite or not-a-number.
# ---
# * GSL::finite?(x)
#
-# This returns <tt>true</tt> if <tt>x</tt> is a real number,
+# This returns <tt>true</tt> if <tt>x</tt> is a real number,
# and <tt>false</tt> if it is infinite or not-a-number.
#
-# == {}[link:index.html"name="3] Elementary Functions
+# == Elementary Functions
# ---
# * GSL::log1p(x)
#
-# This method computes the value of log(1+x)
-# in a way that is accurate for small <tt>x</tt>. It provides an alternative
+# This method computes the value of log(1+x)
+# in a way that is accurate for small <tt>x</tt>. It provides an alternative
# to the BSD math function log1p(x).
# ---
# * GSL::expm1(x)
#
-# This method computes the value of exp(x)-1
-# in a way that is accurate for small <tt>x</tt>. It provides an alternative
+# This method computes the value of exp(x)-1
+# in a way that is accurate for small <tt>x</tt>. It provides an alternative
# to the BSD math function expm1(x).
# ---
# * GSL::hypot(x, y)
#
-# This method computes the value of sqrt{x^2 + y^2} in a way that
+# This method computes the value of sqrt{x^2 + y^2} in a way that
# avoids overflow.
# ---
-# * GSL::hypot3(x, y, z)
+# * GSL::hypot3(x, y, z)
#
-# Computes the value of sqrt{x^2 + y^2 + z^2} in a way that avoids overflow.
+# Computes the value of sqrt{x^2 + y^2 + z^2} in a way that avoids overflow.
# ---
# * GSL::acosh(x)
#
-# This method computes the value of arccosh(x).
+# This method computes the value of arccosh(x).
# ---
# * GSL::asinh(x)
#
-# This method computes the value of arcsinh(x).
+# This method computes the value of arcsinh(x).
# ---
# * GSL::atanh(x)
#
-# This method computes the value of arctanh(x).
+# This method computes the value of arctanh(x).
#
# These methods above can take argument <tt>x</tt> of
# Integer, Float, Array, Vector or Matrix.
#
# ---
# * GSL::ldexp(x)
#
-# This method computes the value of x * 2^e.
+# This method computes the value of x * 2^e.
# ---
# * GSL::frexp(x)
#
-# This method splits the number <tt>x</tt> into its normalized fraction
-# f and exponent e, such that x = f * 2^e and 0.5 <= f < 1.
-# The method returns f and the exponent e as an array, [f, e].
-# If <tt>x</tt> is zero, both f and e are set to zero.
+# This method splits the number <tt>x</tt> into its normalized fraction
+# f and exponent e, such that x = f * 2^e and 0.5 <= f < 1.
+# The method returns f and the exponent e as an array, [f, e].
+# If <tt>x</tt> is zero, both f and e are set to zero.
#
-# == {}[link:index.html"name="4] Small Integer Powers
+# == Small Integer Powers
# ---
# * GSL::pow_int(x, n)
#
-# This routine computes the power <tt>x^n</tt> for integer <tt>n</tt>.
-# The power is computed efficiently -- for example, x^8 is computed as
-# ((x^2)^2)^2, requiring only 3 multiplications.
+# This routine computes the power <tt>x^n</tt> for integer <tt>n</tt>.
+# The power is computed efficiently -- for example, x^8 is computed as
+# ((x^2)^2)^2, requiring only 3 multiplications.
#
# ---
# * GSL::pow_2(x)
# * GSL::pow_3(x)
# * GSL::pow_4(x)
@@ -198,66 +198,66 @@
# * GSL::pow_6(x)
# * GSL::pow_7(x)
# * GSL::pow_8(x)
# * GSL::pow_9(x)
#
-# These methods can be used to compute small integer powers x^2, x^3, etc.
+# These methods can be used to compute small integer powers x^2, x^3, etc.
# efficiently.
#
-# == {}[link:index.html"name="5] Testing the Sign of Numbers
+# == Testing the Sign of Numbers
# ---
# * GSL::SIGN(x)
# * GSL::sign(x)
#
-# Return the sign of <tt>x</tt>.
-# It is defined as ((x) >= 0 ? 1 : -1).
-# Note that with this definition the sign of zero is positive
+# Return the sign of <tt>x</tt>.
+# It is defined as ((x) >= 0 ? 1 : -1).
+# Note that with this definition the sign of zero is positive
# (regardless of its IEEE sign bit).
#
-# == {}[link:index.html"name="6] Testing for Odd and Even Numbers
+# == Testing for Odd and Even Numbers
# ---
# * GSL::is_odd(n)
# * GSL::IS_ODD(n)
#
-# Evaluate to 1 if <tt>n</tt> is odd and 0 if <tt>n</tt> is even.
+# Evaluate to 1 if <tt>n</tt> is odd and 0 if <tt>n</tt> is even.
# The argument <tt>n</tt> must be of Fixnum type.
# ---
# * GSL::is_odd?(n)
# * GSL::IS_ODD?(n)
#
# Return <tt>true</tt> if <tt>n</tt> is odd and <tt>false</tt> if even.
# ---
# * GSL::is_even(n)
# * GSL::IS_EVEN(n)
#
-# Evaluate to 1 if <tt>n</tt> is even and 0 if <tt>n</tt> is odd.
+# Evaluate to 1 if <tt>n</tt> is even and 0 if <tt>n</tt> is odd.
# The argument <tt>n</tt> must be of Fixnum type.
# ---
# * GSL::is_even?(n)
# * GSL::IS_even?(n)
#
# Return <tt>true</tt> if <tt>n</tt> is even and <tt>false</tt> if odd.
#
-# == {}[link:index.html"name="7] Maximum and Minimum functions
+# == Maximum and Minimum functions
# ---
# * GSL::max(a, b)
# * GSL::MAX(a, b)
# * GSL::min(a, b)
# * GSL::MIN(a, b)
#
-#
-# == {}[link:index.html"name="8] Approximate Comparison of Floating Point Numbers
+#
+# == Approximate Comparison of Floating Point Numbers
# ---
# * GSL::fcmp(a, b, epsilon = 1e-10)
#
-# This method determines whether <tt>x</tt> and <tt>y</tt> are approximately equal to a
+# This method determines whether <tt>x</tt> and <tt>y</tt> are approximately equal to a
# relative accuracy <tt>epsilon</tt>.
# ---
# * GSL::equal?(a, b, epsilon = 1e-10)
#
#
-# == {}[link:index.html"name="9] Module Constants
+# == Module Constants
# ---
# * GSL::VERSION
#
# GSL version
#
@@ -265,12 +265,12 @@
# * GSL::RB_GSL_VERSION
# * GSL::RUBY_GSL_VERSION
#
# Ruby/GSL version
#
-# {prev}[link:files/rdoc/ehandling_rdoc.html]
-# {next}[link:files/rdoc/complex_rdoc.html]
+# {prev}[link:rdoc/ehandling_rdoc.html]
+# {next}[link:rdoc/complex_rdoc.html]
#
-# {Reference index}[link:files/rdoc/ref_rdoc.html]
-# {top}[link:files/rdoc/index_rdoc.html]
+# {Reference index}[link:rdoc/ref_rdoc.html]
+# {top}[link:index.html]
#
#