lib/gruff/pie.rb in gruff-0.0.3 vs lib/gruff/pie.rb in gruff-0.0.4

- old
+ new

@@ -1,15 +1,92 @@ require 'gruff/base' -module Gruff - class Pie < Base +class Gruff::Pie < Gruff::Base - # TODO Not yet implemented. - def draw - super + def draw + @show_line_markers = false + + super - @d.draw(@base_image) + diameter = @graph_height + radius = @graph_height / 2.0 + top_x = @graph_left + (@graph_width - diameter) / 2.0 + center_x = @graph_left + (@graph_width / 2.0) + center_y = @graph_top + (@graph_height / 2.0) + total_sum = sums_for_pie() + prev_degrees = 0.0 + + @norm_data.each do |data_row| + @d = @d.stroke current_color + @d = @d.fill 'transparent' + @d.stroke_width(200.0) + + current_degrees = (data_row[1][0] / total_sum) * 360.0 + #@d = @d.pie_slice(center_x, center_y, radius, + # current_percent * 100.0) + + #@d = @d.arc(top_x, @graph_top, + # top_x + diameter, @graph_top + diameter, + # prev_degrees, prev_degrees + current_degrees) + radius = 100.0 + @d = @d.ellipse(center_x, center_y, + radius, radius, + prev_degrees, prev_degrees + current_degrees) + + + prev_degrees += current_degrees + increment_color() end + @d.draw(@base_image) end -end \ No newline at end of file + +private + + def sums_for_pie + total_sum = 0.0 + @norm_data.collect {|data_row| total_sum += data_row[1][0] } + total_sum + end + +end + +class Magick::Draw + + def pie_slice(center_x=0.0, center_y=0.0, radius=100.0, percent=0.0, rot_x=0.0) + # Okay, this part is as confusing as hell, so pay attention: + # This line determines the horizontal portion of the point on the circle where the X-Axis + # should end. It's caculated by taking the center of the on-image circle and adding that + # to the radius multiplied by the formula for determinig the point on a unit circle that a + # angle corresponds to. 3.6 * percent gives us that angle, but it's in degrees, so we need to + # convert, hence the muliplication by Pi over 180 + arc_end_x = radius + (radius * Math.cos((3.6 * percent)*(Math::PI/180.0))) + + # The same goes for here, except it's the vertical point instead of the horizontal one + arc_end_y = radius + (radius * Math.sin((3.6 * percent)*(Math::PI/180.0))) + + # Because the SVG path format is seriously screwy, we need to set the large-arc-flag to 1 + # if the angle of an arc is greater than 180 degrees. I have no idea why this is, but it is. + percent > 50 ? large_arc_flag = 1 : large_arc_flag = 0 + + # This is also confusing + # M tells us to move to an absolute point on the image. + # We're moving to the center of the pie + # h tells us to move to a relative point. + # We're moving to the right edge of the circle. + # A tells us to start an absolute elliptical arc. + # The first two values are the radii of the ellipse + # The third value is the x-axis-rotation (how to rotate the ellipse) + # The fourth value is our large-arc-flag + # The fifth is the sweep-flag + # The sixth and seventh values are the end point of the arc which we calculated previously + # More info on the SVG path string format at: http://www.w3.org/TR/SVG/paths.html + # + #path = "M#{radius + 2},#{radius + 2} h#{radius} A#{radius},#{radius} #{rot_x} #{large_arc_flag},1 #{arc_end_x},#{arc_end_y} z" + path = "M#{radius},#{radius} h#{radius} A#{radius},#{radius} #{rot_x} #{large_arc_flag},1 #{arc_end_x},#{arc_end_y} z" + puts "PATH: #{path}" + + self.path(path) + end + +end