lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/tables.rb in google-cloud-automl-0.1.0 vs lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/tables.rb in google-cloud-automl-0.2.0

- old
+ new

@@ -25,15 +25,18 @@ # @return [String] # column_spec_id of the primary table's column that should be used as the # training & prediction target. # This column must be non-nullable and have one of following data types # (otherwise model creation will error): + # # * CATEGORY + # # * FLOAT64 - # Furthermore, if the type is CATEGORY , then only up to - # 100 unique values may exist in that column across all rows. # + # If the type is CATEGORY , only up to + # 100 unique values may exist in that column across all rows. + # # NOTE: Updates of this field will instantly affect any other users # concurrently working with the dataset. # @!attribute [rw] weight_column_spec_id # @return [String] # column_spec_id of the primary table's column that should be used as the @@ -72,15 +75,16 @@ # its CorrelationStats with the target column. # This field may be stale, see the stats_update_time field for # for the timestamp at which these stats were last updated. # @!attribute [rw] stats_update_time # @return [Google::Protobuf::Timestamp] - # The most recent timestamp when target_column_correlations field and all - # descendant ColumnSpec.data_stats and ColumnSpec.top_correlated_columns - # fields were last (re-)generated. Any changes that happened to the dataset - # afterwards are not reflected in these fields values. The regeneration - # happens in the background on a best effort basis. + # Output only. The most recent timestamp when target_column_correlations + # field and all descendant ColumnSpec.data_stats and + # ColumnSpec.top_correlated_columns fields were last (re-)generated. Any + # changes that happened to the dataset afterwards are not reflected in these + # fields values. The regeneration happens in the background on a best effort + # basis. class TablesDatasetMetadata; end # Model metadata specific to AutoML Tables. # @!attribute [rw] target_column_spec # @return [Google::Cloud::AutoML::V1beta1::ColumnSpec] @@ -105,16 +109,20 @@ # {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#weight_column_spec_id weight_column}, # and # # {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#ml_use_column_spec_id ml_use_column} # must never be included here. + # # Only 3 fields are used: - # name - May be set on CreateModel, if set only the columns specified are - # used, otherwise all primary table's columns (except the ones listed - # above) are used for the training and prediction input. - # display_name - Output only. - # data_type - Output only. + # + # * name - May be set on CreateModel, if set only the columns specified are + # used, otherwise all primary table's columns (except the ones listed + # above) are used for the training and prediction input. + # + # * display_name - Output only. + # + # * data_type - Output only. # @!attribute [rw] optimization_objective # @return [String] # Objective function the model is optimizing towards. The training process # creates a model that maximizes/minimizes the value of the objective # function over the validation set. @@ -138,22 +146,10 @@ # # REGRESSION: # "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). # "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). # "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE). - # - # FORECASTING: - # "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). - # "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). - # @!attribute [rw] optimization_objective_recall_value - # @return [Float] - # Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". - # Must be between 0 and 1, inclusive. - # @!attribute [rw] optimization_objective_precision_value - # @return [Float] - # Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". - # Must be between 0 and 1, inclusive. # @!attribute [rw] tables_model_column_info # @return [Array<Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>] # Output only. Auxiliary information for each of the # input_feature_column_specs with respect to this particular model. # @!attribute [rw] train_budget_milli_node_hours @@ -204,13 +200,15 @@ # @return [Google::Protobuf::Value] # The predicted value of the row's # # {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}. # The value depends on the column's DataType: - # CATEGORY - the predicted (with the above confidence `score`) CATEGORY - # value. - # FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value. + # + # * CATEGORY - the predicted (with the above confidence `score`) CATEGORY + # value. + # + # * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value. # @!attribute [rw] tables_model_column_info # @return [Array<Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>] # Output only. Auxiliary information for each of the model's # # {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#input_feature_column_specs input_feature_column_specs} @@ -234,12 +232,10 @@ # @return [String] # Output only. The display name of the column (same as the display_name of # its ColumnSpec). # @!attribute [rw] feature_importance # @return [Float] - # Output only. - # - # When given as part of a Model (always populated): + # Output only. When given as part of a Model (always populated): # Measurement of how much model predictions correctness on the TEST data # depend on values in this column. A value between 0 and 1, higher means # higher influence. These values are normalized - for all input feature # columns of a given model they add to 1. # \ No newline at end of file