lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/tables.rb in google-cloud-automl-0.1.0 vs lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/tables.rb in google-cloud-automl-0.2.0
- old
+ new
@@ -25,15 +25,18 @@
# @return [String]
# column_spec_id of the primary table's column that should be used as the
# training & prediction target.
# This column must be non-nullable and have one of following data types
# (otherwise model creation will error):
+ #
# * CATEGORY
+ #
# * FLOAT64
- # Furthermore, if the type is CATEGORY , then only up to
- # 100 unique values may exist in that column across all rows.
#
+ # If the type is CATEGORY , only up to
+ # 100 unique values may exist in that column across all rows.
+ #
# NOTE: Updates of this field will instantly affect any other users
# concurrently working with the dataset.
# @!attribute [rw] weight_column_spec_id
# @return [String]
# column_spec_id of the primary table's column that should be used as the
@@ -72,15 +75,16 @@
# its CorrelationStats with the target column.
# This field may be stale, see the stats_update_time field for
# for the timestamp at which these stats were last updated.
# @!attribute [rw] stats_update_time
# @return [Google::Protobuf::Timestamp]
- # The most recent timestamp when target_column_correlations field and all
- # descendant ColumnSpec.data_stats and ColumnSpec.top_correlated_columns
- # fields were last (re-)generated. Any changes that happened to the dataset
- # afterwards are not reflected in these fields values. The regeneration
- # happens in the background on a best effort basis.
+ # Output only. The most recent timestamp when target_column_correlations
+ # field and all descendant ColumnSpec.data_stats and
+ # ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
+ # changes that happened to the dataset afterwards are not reflected in these
+ # fields values. The regeneration happens in the background on a best effort
+ # basis.
class TablesDatasetMetadata; end
# Model metadata specific to AutoML Tables.
# @!attribute [rw] target_column_spec
# @return [Google::Cloud::AutoML::V1beta1::ColumnSpec]
@@ -105,16 +109,20 @@
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#weight_column_spec_id weight_column},
# and
#
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#ml_use_column_spec_id ml_use_column}
# must never be included here.
+ #
# Only 3 fields are used:
- # name - May be set on CreateModel, if set only the columns specified are
- # used, otherwise all primary table's columns (except the ones listed
- # above) are used for the training and prediction input.
- # display_name - Output only.
- # data_type - Output only.
+ #
+ # * name - May be set on CreateModel, if set only the columns specified are
+ # used, otherwise all primary table's columns (except the ones listed
+ # above) are used for the training and prediction input.
+ #
+ # * display_name - Output only.
+ #
+ # * data_type - Output only.
# @!attribute [rw] optimization_objective
# @return [String]
# Objective function the model is optimizing towards. The training process
# creates a model that maximizes/minimizes the value of the objective
# function over the validation set.
@@ -138,22 +146,10 @@
#
# REGRESSION:
# "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
# "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
# "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
- #
- # FORECASTING:
- # "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
- # "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
- # @!attribute [rw] optimization_objective_recall_value
- # @return [Float]
- # Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
- # Must be between 0 and 1, inclusive.
- # @!attribute [rw] optimization_objective_precision_value
- # @return [Float]
- # Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
- # Must be between 0 and 1, inclusive.
# @!attribute [rw] tables_model_column_info
# @return [Array<Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
# Output only. Auxiliary information for each of the
# input_feature_column_specs with respect to this particular model.
# @!attribute [rw] train_budget_milli_node_hours
@@ -204,13 +200,15 @@
# @return [Google::Protobuf::Value]
# The predicted value of the row's
#
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}.
# The value depends on the column's DataType:
- # CATEGORY - the predicted (with the above confidence `score`) CATEGORY
- # value.
- # FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
+ #
+ # * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
+ # value.
+ #
+ # * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
# @!attribute [rw] tables_model_column_info
# @return [Array<Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
# Output only. Auxiliary information for each of the model's
#
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#input_feature_column_specs input_feature_column_specs}
@@ -234,12 +232,10 @@
# @return [String]
# Output only. The display name of the column (same as the display_name of
# its ColumnSpec).
# @!attribute [rw] feature_importance
# @return [Float]
- # Output only.
- #
- # When given as part of a Model (always populated):
+ # Output only. When given as part of a Model (always populated):
# Measurement of how much model predictions correctness on the TEST data
# depend on values in this column. A value between 0 and 1, higher means
# higher influence. These values are normalized - for all input feature
# columns of a given model they add to 1.
#
\ No newline at end of file