proto_docs/google/cloud/automl/v1beta1/classification.rb in google-cloud-automl-v1beta1-0.1.0 vs proto_docs/google/cloud/automl/v1beta1/classification.rb in google-cloud-automl-v1beta1-0.1.1
- old
+ new
@@ -21,24 +21,24 @@
module Cloud
module AutoML
module V1beta1
# Contains annotation details specific to classification.
# @!attribute [rw] score
- # @return [Float]
+ # @return [::Float]
# Output only. A confidence estimate between 0.0 and 1.0. A higher value
# means greater confidence that the annotation is positive. If a user
# approves an annotation as negative or positive, the score value remains
# unchanged. If a user creates an annotation, the score is 0 for negative or
# 1 for positive.
class ClassificationAnnotation
- include Google::Protobuf::MessageExts
- extend Google::Protobuf::MessageExts::ClassMethods
+ include ::Google::Protobuf::MessageExts
+ extend ::Google::Protobuf::MessageExts::ClassMethods
end
# Contains annotation details specific to video classification.
# @!attribute [rw] type
- # @return [String]
+ # @return [::String]
# Output only. Expresses the type of video classification. Possible values:
#
# * `segment` - Classification done on a specified by user
# time segment of a video. AnnotationSpec is answered to be present
# in that time segment, if it is present in any part of it. The video
@@ -59,161 +59,161 @@
# that user specified in the request configuration.
# WARNING: Model evaluation is not done for this classification type,
# the quality of it depends on training data, but there are no
# metrics provided to describe that quality.
# @!attribute [rw] classification_annotation
- # @return [Google::Cloud::AutoML::V1beta1::ClassificationAnnotation]
+ # @return [::Google::Cloud::AutoML::V1beta1::ClassificationAnnotation]
# Output only . The classification details of this annotation.
# @!attribute [rw] time_segment
- # @return [Google::Cloud::AutoML::V1beta1::TimeSegment]
+ # @return [::Google::Cloud::AutoML::V1beta1::TimeSegment]
# Output only . The time segment of the video to which the
# annotation applies.
class VideoClassificationAnnotation
- include Google::Protobuf::MessageExts
- extend Google::Protobuf::MessageExts::ClassMethods
+ include ::Google::Protobuf::MessageExts
+ extend ::Google::Protobuf::MessageExts::ClassMethods
end
# Model evaluation metrics for classification problems.
# Note: For Video Classification this metrics only describe quality of the
# Video Classification predictions of "segment_classification" type.
# @!attribute [rw] au_prc
- # @return [Float]
+ # @return [::Float]
# Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
# for the overall evaluation.
# @!attribute [rw] base_au_prc
- # @return [Float]
+ # @return [::Float]
# Output only. The Area Under Precision-Recall Curve metric based on priors.
# Micro-averaged for the overall evaluation.
# Deprecated.
# @!attribute [rw] au_roc
- # @return [Float]
+ # @return [::Float]
# Output only. The Area Under Receiver Operating Characteristic curve metric.
# Micro-averaged for the overall evaluation.
# @!attribute [rw] log_loss
- # @return [Float]
+ # @return [::Float]
# Output only. The Log Loss metric.
# @!attribute [rw] confidence_metrics_entry
- # @return [Array<Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfidenceMetricsEntry>]
+ # @return [::Array<::Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfidenceMetricsEntry>]
# Output only. Metrics for each confidence_threshold in
# 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
# position_threshold = INT32_MAX_VALUE.
# ROC and precision-recall curves, and other aggregated metrics are derived
# from them. The confidence metrics entries may also be supplied for
# additional values of position_threshold, but from these no aggregated
# metrics are computed.
# @!attribute [rw] confusion_matrix
- # @return [Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfusionMatrix]
+ # @return [::Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfusionMatrix]
# Output only. Confusion matrix of the evaluation.
# Only set for MULTICLASS classification problems where number
# of labels is no more than 10.
# Only set for model level evaluation, not for evaluation per label.
# @!attribute [rw] annotation_spec_id
- # @return [Array<String>]
+ # @return [::Array<::String>]
# Output only. The annotation spec ids used for this evaluation.
class ClassificationEvaluationMetrics
- include Google::Protobuf::MessageExts
- extend Google::Protobuf::MessageExts::ClassMethods
+ include ::Google::Protobuf::MessageExts
+ extend ::Google::Protobuf::MessageExts::ClassMethods
# Metrics for a single confidence threshold.
# @!attribute [rw] confidence_threshold
- # @return [Float]
+ # @return [::Float]
# Output only. Metrics are computed with an assumption that the model
# never returns predictions with score lower than this value.
# @!attribute [rw] position_threshold
- # @return [Integer]
+ # @return [::Integer]
# Output only. Metrics are computed with an assumption that the model
# always returns at most this many predictions (ordered by their score,
# descendingly), but they all still need to meet the confidence_threshold.
# @!attribute [rw] recall
- # @return [Float]
+ # @return [::Float]
# Output only. Recall (True Positive Rate) for the given confidence
# threshold.
# @!attribute [rw] precision
- # @return [Float]
+ # @return [::Float]
# Output only. Precision for the given confidence threshold.
# @!attribute [rw] false_positive_rate
- # @return [Float]
+ # @return [::Float]
# Output only. False Positive Rate for the given confidence threshold.
# @!attribute [rw] f1_score
- # @return [Float]
+ # @return [::Float]
# Output only. The harmonic mean of recall and precision.
# @!attribute [rw] recall_at1
- # @return [Float]
+ # @return [::Float]
# Output only. The Recall (True Positive Rate) when only considering the
# label that has the highest prediction score and not below the confidence
# threshold for each example.
# @!attribute [rw] precision_at1
- # @return [Float]
+ # @return [::Float]
# Output only. The precision when only considering the label that has the
# highest prediction score and not below the confidence threshold for each
# example.
# @!attribute [rw] false_positive_rate_at1
- # @return [Float]
+ # @return [::Float]
# Output only. The False Positive Rate when only considering the label that
# has the highest prediction score and not below the confidence threshold
# for each example.
# @!attribute [rw] f1_score_at1
- # @return [Float]
- # Output only. The harmonic mean of {Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfidenceMetricsEntry#recall_at1 recall_at1} and {Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfidenceMetricsEntry#precision_at1 precision_at1}.
+ # @return [::Float]
+ # Output only. The harmonic mean of {::Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfidenceMetricsEntry#recall_at1 recall_at1} and {::Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfidenceMetricsEntry#precision_at1 precision_at1}.
# @!attribute [rw] true_positive_count
- # @return [Integer]
+ # @return [::Integer]
# Output only. The number of model created labels that match a ground truth
# label.
# @!attribute [rw] false_positive_count
- # @return [Integer]
+ # @return [::Integer]
# Output only. The number of model created labels that do not match a
# ground truth label.
# @!attribute [rw] false_negative_count
- # @return [Integer]
+ # @return [::Integer]
# Output only. The number of ground truth labels that are not matched
# by a model created label.
# @!attribute [rw] true_negative_count
- # @return [Integer]
+ # @return [::Integer]
# Output only. The number of labels that were not created by the model,
# but if they would, they would not match a ground truth label.
class ConfidenceMetricsEntry
- include Google::Protobuf::MessageExts
- extend Google::Protobuf::MessageExts::ClassMethods
+ include ::Google::Protobuf::MessageExts
+ extend ::Google::Protobuf::MessageExts::ClassMethods
end
# Confusion matrix of the model running the classification.
# @!attribute [rw] annotation_spec_id
- # @return [Array<String>]
+ # @return [::Array<::String>]
# Output only. IDs of the annotation specs used in the confusion matrix.
# For Tables CLASSIFICATION
#
# [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
# only list of [annotation_spec_display_name-s][] is populated.
# @!attribute [rw] display_name
- # @return [Array<String>]
+ # @return [::Array<::String>]
# Output only. Display name of the annotation specs used in the confusion
# matrix, as they were at the moment of the evaluation. For Tables
# CLASSIFICATION
#
# [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
# distinct values of the target column at the moment of the model
# evaluation are populated here.
# @!attribute [rw] row
- # @return [Array<Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfusionMatrix::Row>]
+ # @return [::Array<::Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfusionMatrix::Row>]
# Output only. Rows in the confusion matrix. The number of rows is equal to
# the size of `annotation_spec_id`.
# `row[i].example_count[j]` is the number of examples that have ground
# truth of the `annotation_spec_id[i]` and are predicted as
# `annotation_spec_id[j]` by the model being evaluated.
class ConfusionMatrix
- include Google::Protobuf::MessageExts
- extend Google::Protobuf::MessageExts::ClassMethods
+ include ::Google::Protobuf::MessageExts
+ extend ::Google::Protobuf::MessageExts::ClassMethods
# Output only. A row in the confusion matrix.
# @!attribute [rw] example_count
- # @return [Array<Integer>]
+ # @return [::Array<::Integer>]
# Output only. Value of the specific cell in the confusion matrix.
# The number of values each row has (i.e. the length of the row) is equal
# to the length of the `annotation_spec_id` field or, if that one is not
- # populated, length of the {Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfusionMatrix#display_name display_name} field.
+ # populated, length of the {::Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfusionMatrix#display_name display_name} field.
class Row
- include Google::Protobuf::MessageExts
- extend Google::Protobuf::MessageExts::ClassMethods
+ include ::Google::Protobuf::MessageExts
+ extend ::Google::Protobuf::MessageExts::ClassMethods
end
end
end
# Type of the classification problem.