lib/flt/support.rb in flt-1.3.4 vs lib/flt/support.rb in flt-1.4.0

- old
+ new

@@ -2,346 +2,11 @@ module Support class InfiniteLoopError < StandardError end - # This class assigns bit-values to a set of symbols - # so they can be used as flags and stored as an integer. - # fv = FlagValues.new(:flag1, :flag2, :flag3) - # puts fv[:flag3] - # fv.each{|f,v| puts "#{f} -> #{v}"} - class FlagValues - - #include Enumerator - - class InvalidFlagError < StandardError - end - class InvalidFlagTypeError < StandardError - end - - - # The flag symbols must be passed; values are assign in increasing order. - # fv = FlagValues.new(:flag1, :flag2, :flag3) - # puts fv[:flag3] - def initialize(*flags) - @flags = {} - value = 1 - flags.each do |flag| - raise InvalidFlagType,"Flags must be defined as symbols or classes; invalid flag: #{flag.inspect}" unless flag.kind_of?(Symbol) || flag.instance_of?(Class) - @flags[flag] = value - value <<= 1 - end - end - - # Get the bit-value of a flag - def [](flag) - v = @flags[flag] - raise InvalidFlagError, "Invalid flag: #{flag}" unless v - v - end - - # Return each flag and its bit-value - def each(&blk) - if blk.arity==2 - @flags.to_a.sort_by{|f,v|v}.each(&blk) - else - @flags.to_a.sort_by{|f,v|v}.map{|f,v|f}.each(&blk) - end - end - - def size - @flags.size - end - - def all_flags_value - (1 << size) - 1 - end - - end - - # This class stores a set of flags. It can be assign a FlagValues - # object (using values= or passing to the constructor) so that - # the flags can be store in an integer (bits). - class Flags - - class Error < StandardError - end - class InvalidFlagError < Error - end - class InvalidFlagValueError < Error - end - class InvalidFlagTypeError < Error - end - - # When a Flag object is created, the initial flags to be set can be passed, - # and also a FlagValues. If a FlagValues is passed an integer can be used - # to define the flags. - # Flags.new(:flag1, :flag3, FlagValues.new(:flag1,:flag2,:flag3)) - # Flags.new(5, FlagValues.new(:flag1,:flag2,:flag3)) - def initialize(*flags) - @values = nil - @flags = {} - - v = 0 - - flags.flatten! - - flags.each do |flag| - case flag - when FlagValues - @values = flag - when Symbol, Class - @flags[flag] = true - when Integer - v |= flag - when Flags - @values = flag.values - @flags = flag.to_h.dup - else - raise InvalidFlagTypeError, "Invalid flag type for: #{flag.inspect}" - end - end - - if v!=0 - raise InvalidFlagTypeError, "Integer flag values need flag bit values to be defined" if @values.nil? - self.bits = v - end - - if @values - # check flags - @flags.each_key{|flag| check flag} - end - - end - - def dup - Flags.new(self) - end - - # Clears all flags - def clear! - @flags = {} - end - - # Sets all flags - def set! - if @values - self.bits = @values.all_flags_value - else - raise Error,"No flag values defined" - end - end - - # Assign the flag bit values - def values=(fv) - @values = fv - end - - # Retrieves the flag bit values - def values - @values - end - - # Retrieves the flags as a bit-vector integer. Values must have been assigned. - def bits - if @values - i = 0 - @flags.each do |f,v| - bit_val = @values[f] - i |= bit_val if v && bit_val - end - i - else - raise Error,"No flag values defined" - end - end - - # Sets the flags as a bit-vector integer. Values must have been assigned. - def bits=(i) - if @values - raise Error, "Invalid bits value #{i}" if i<0 || i>@values.all_flags_value - clear! - @values.each do |f,v| - @flags[f]=true if (i & v)!=0 - end - else - raise Error,"No flag values defined" - end - end - - # Retrieves the flags as a hash. - def to_h - @flags - end - - # Same as bits - def to_i - bits - end - - # Retrieve the setting (true/false) of a flag - def [](flag) - check flag - @flags[flag] - end - - # Modifies the setting (true/false) of a flag. - def []=(flag,value) - check flag - case value - when true,1 - value = true - when false,0,nil - value = false - else - raise InvalidFlagValueError, "Invalid value: #{value.inspect}" - end - @flags[flag] = value - value - end - - # Sets (makes true) one or more flags - def set(*flags) - flags = flags.first if flags.size==1 && flags.first.instance_of?(Array) - flags.each do |flag| - if flag.kind_of?(Flags) - #if @values && other.values && compatible_values(other_values) - # self.bits |= other.bits - #else - flags.concat other.to_a - #end - else - check flag - @flags[flag] = true - end - end - end - - # Clears (makes false) one or more flags - def clear(*flags) - flags = flags.first if flags.size==1 && flags.first.instance_of?(Array) - flags.each do |flag| - if flag.kind_of?(Flags) - #if @values && other.values && compatible_values(other_values) - # self.bits &= ~other.bits - #else - flags.concat other.to_a - #end - else - check flag - @flags[flag] = false - end - end - end - - # Sets (makes true) one or more flags (passes as an array) - def << (flags) - if flags.kind_of?(Array) - set(*flags) - else - set(flags) - end - end - - # Iterate on each flag/setting pair. - def each(&blk) - if @values - @values.each do |f,v| - blk.call(f,@flags[f]) - end - else - @flags.each(&blk) - end - end - - # Iterate on each set flag - def each_set - each do |f,v| - yield f if v - end - end - - # Iterate on each cleared flag - def each_clear - each do |f,v| - yield f if !v - end - end - - # returns true if any flag is set - def any? - if @values - bits != 0 - else - to_a.size>0 - end - end - - # Returns the true flags as an array - def to_a - a = [] - each_set{|f| a << f} - a - end - - def to_s - "[#{to_a.map{|f| f.to_s.split('::').last}.join(', ')}]" - end - - def inspect - txt = "#{self.class.to_s}#{to_s}" - txt << " (0x#{bits.to_s(16)})" if @values - txt - end - - - def ==(other) - if @values && other.values && compatible_values?(other.values) - bits == other.bits - else - to_a.map{|s| s.to_s}.sort == other.to_a.map{|s| s.to_s}.sort - end - end - - - - private - def check(flag) - raise InvalidFlagType,"Flags must be defined as symbols or classes; invalid flag: #{flag.inspect}" unless flag.kind_of?(Symbol) || flag.instance_of?(Class) - - @values[flag] if @values # raises an invalid flag error if flag is invalid - true - end - - def compatible_values?(v) - #@values.object_id==v.object_id - @values == v - end - - end - module_function - - # Constructor for FlagValues - def FlagValues(*params) - if params.size==1 && params.first.kind_of?(FlagValues) - params.first - else - FlagValues.new(*params) - end - end - - # Constructor for Flags - def Flags(*params) - if params.size==1 && params.first.kind_of?(Flags) - params.first - else - Flags.new(*params) - end - end - - module_function # replace :ceiling and :floor rounding modes by :up/:down (depending on sign of the number to be rounded) def simplified_round_mode(round_mode, negative) if negative if round_mode == :ceiling round_mode = :floor @@ -400,939 +65,10 @@ end end [dec_pos, digits] end - # Floating-point reading and printing (from/to text literals). - # - # Here are methods for floating-point reading, using algorithms by William D. Clinger, and - # printing, using algorithms by Robert G. Burger and R. Kent Dybvig. - # - # Reading and printing can also viewed as floating-point conversion between a fixed-precision - # floating-point format (the floating-point numbers) and and a free floating-point format (text), - # which may use different numerical bases. - # - # The Reader class, in the default :free mode, converts a free-form numeric value - # (as a text literal, i.e. a free floating-point format, usually in base 10) which is taken - # as an exact value, to a correctly-rounded floating-point of specified precision and with a - # specified rounding mode. It also has a :fixed mode that uses the Formatter class indirectly. - # - # The Formatter class implements the Burger-Dybvig printing algorithm which converts a - # fixed-precision floating point value and produces a text literal in some base, usually 10, - # (equivalently, it produces a floating-point free-format value) so that it rounds back to - # the original value (with some specified rounding-mode or any round-to-nearest mode) and with - # the same original precision (e.g. using the Clinger algorithm) - - # Clinger algorithms to read floating point numbers from text literals with correct rounding. - # from his paper: "How to Read Floating Point Numbers Accurately" - # (William D. Clinger) - class Reader - - # There are two different reading approaches, selected by the :mode parameter: - # * :fixed (the destination context defines the resulting precision) input is rounded as specified - # by the context; if the context precision is 'exact', the exact input value will be represented - # in the destination base, which can lead to a Inexact exception (or a NaN result and an Inexact flag) - # * :free The input precision is preserved, and the destination context precision is ignored; - # in this case the result can be converted back to the original number (with the same precision) - # a rounding mode for the back conversion may be passed; otherwise any round-to-nearest is assumed. - # (to increase the precision of the result the input precision must be increased --adding trailing zeros) - # * :short is like :free, but the minumum number of digits that preserve the original value - # are generated (with :free, all significant digits are generated) - # - # For the fixed mode there are three conversion algorithms available that can be selected with the - # :algorithm parameter: - # * :A Arithmetic algorithm, using correctly rounded Flt::Num arithmetic. - # * :M The Clinger Algorithm M is the slowest method, but it was the first implemented and testes and - # is kept as a reference for testing. - # * :R The Clinger Algorithm R, which requires an initial approximation is currently only implemented - # for Float and is the fastest by far. - def initialize(options={}) - @exact = nil - @algorithm = options[:algorithm] - @mode = options[:mode] || :fixed - end - - def exact? - @exact - end - - # Given exact integers f and e, with f nonnegative, returns the floating-point number - # closest to f * eb**e - # (eb is the input radix) - # - # If the context precision is exact an Inexact exception may occur (an NaN be returned) - # if an exact conversion is not possible. - # - # round_mode: in :fixed mode it specifies how to round the result (to the context precision); it - # is passed separate from context for flexibility. - # in :free mode it specifies what rounding would be used to convert back the output to the - # input base eb (using the same precision that f has). - def read(context, round_mode, sign, f, e, eb=10) - @exact = true - - case @mode - when :free, :short - all_digits = (@mode == :free) - # for free mode, (any) :nearest rounding is used by default - Num.convert(Num[eb].Num(sign, f, e), context.num_class, :rounding=>round_mode||:nearest, :all_digits=>all_digits) - when :fixed - if exact_mode = context.exact? - a,b = [eb, context.radix].sort - m = (Math.log(b)/Math.log(a)).round - if b == a**m - # conmensurable bases - if eb > context.radix - n = AuxiliarFunctions._ndigits(f, eb)*m - else - n = (AuxiliarFunctions._ndigits(f, eb)+m-1)/m - end - else - # inconmesurable bases; exact result may not be possible - x = Num[eb].Num(sign, f, e) - x = Num.convert_exact(x, context.num_class, context) - @exact = !x.nan? - return x - end - else - n = context.precision - end - if round_mode == :nearest - # :nearest is not meaningful here in :fixed mode; replace it - if [:half_even, :half_up, :half_down].include?(context.rounding) - round_mode = context.rounding - else - round_mode = :half_even - end - end - # for fixed mode, use the context rounding by default - round_mode ||= context.rounding - alg = @algorithm - if (context.radix == 2 && alg.nil?) || alg==:R - z0 = _alg_r_approx(context, round_mode, sign, f, e, eb, n) - alg = z0 && :R - end - alg ||= :A - case alg - when :M, :R - round_mode = Support.simplified_round_mode(round_mode, sign == -1) - case alg - when :M - _alg_m(context, round_mode, sign, f, e, eb, n) - when :R - _alg_r(z0, context, round_mode, sign, f, e, eb, n) - end - else # :A - # direct arithmetic conversion - if round_mode == context.rounding - x = Num.convert_exact(Num[eb].Num(sign, f, e), context.num_class, context) - x = context.normalize(x) unless !context.respond_to?(:normalize) || context.exact? - x - else - if context.num_class == Float - float = true - context = BinNum::FloatContext - end - x = context.num_class.context(context) do |local_context| - local_context.rounding = round_mode - Num.convert_exact(Num[eb].Num(sign, f, e), local_context.num_class, local_context) - end - if float - x = x.to_f - else - x = context.normalize(x) unless context.exact? - end - x - end - end - end - end - - def _alg_r_approx(context, round_mode, sign, f, e, eb, n) - - return nil if context.radix != Float::RADIX || context.exact? || context.precision > Float::MANT_DIG - - # Compute initial approximation; if Float uses IEEE-754 binary arithmetic, the approximation - # is good enough to be adjusted in just one step. - @good_approx = true - - ndigits = Support::AuxiliarFunctions._ndigits(f, eb) - adj_exp = e + ndigits - 1 - min_exp, max_exp = Reader.float_min_max_adj_exp(eb) - - if adj_exp >= min_exp && adj_exp <= max_exp - if eb==2 - z0 = Math.ldexp(f,e) - elsif eb==10 - unless Flt.float_correctly_rounded? - min_exp_norm, max_exp_norm = Reader.float_min_max_adj_exp(eb, true) - @good_approx = false - return nil if e <= min_exp_norm - end - z0 = Float("#{f}E#{e}") - else - ff = f - ee = e - min_exp_norm, max_exp_norm = Reader.float_min_max_adj_exp(eb, true) - if e <= min_exp_norm - # avoid loss of precision due to gradual underflow - return nil if e <= min_exp - @good_approx = false - ff = Float(f)*Float(eb)**(e-min_exp_norm-1) - ee = min_exp_norm + 1 - end - # if ee < 0 - # z0 = Float(ff)/Float(eb**(-ee)) - # else - # z0 = Float(ff)*Float(eb**ee) - # end - z0 = Float(ff)*Float(eb)**ee - end - - if z0 && context.num_class != Float - @good_approx = false - z0 = context.Num(z0).plus(context) # context.plus(z0) ? - else - z0 = context.Num(z0) - end - end - - end - - def _alg_r(z0, context, round_mode, sign, f, e, eb, n) # Fast for Float - #raise InvalidArgument, "Reader Algorithm R only supports base 2" if context.radix != 2 - - @z = z0 - @r = context.radix - @rp_n_1 = context.int_radix_power(n-1) - @round_mode = round_mode - - ret = nil - loop do - m, k = context.to_int_scale(@z) - # TODO: replace call to compare by setting the parameters in local variables, - # then insert the body of compare here; - # then eliminate innecesary instance variables - if e >= 0 && k >= 0 - ret = compare m, f*eb**e, m*@r**k, context - elsif e >= 0 && k < 0 - ret = compare m, f*eb**e*@r**(-k), m, context - elsif e < 0 && k >= 0 - ret = compare m, f, m*@r**k*eb**(-e), context - else # e < 0 && k < 0 - ret = compare m, f*@r**(-k), m*eb**(-e), context - end - break if ret - end - ret && context.copy_sign(ret, sign) # TODO: normalize? - end - - @float_min_max_exp_values = { - 10 => [Float::MIN_10_EXP, Float::MAX_10_EXP], - Float::RADIX => [Float::MIN_EXP, Float::MAX_EXP], - -Float::RADIX => [Float::MIN_EXP-Float::MANT_DIG, Float::MAX_EXP-Float::MANT_DIG] - } - class <<self - # Minimum & maximum adjusted exponent for numbers in base to be in the range of Floats - def float_min_max_adj_exp(base, normalized=false) - k = normalized ? base : -base - unless min_max = @float_min_max_exp_values[k] - max_exp = (Math.log(Float::MAX)/Math.log(base)).floor - e = Float::MIN_EXP - e -= Float::MANT_DIG unless normalized - min_exp = (e*Math.log(Float::RADIX)/Math.log(base)).ceil - @float_min_max_exp_values[k] = min_max = [min_exp, max_exp] - end - min_max.map{|exp| exp - 1} # adjust - end - end - - def compare(m, x, y, context) - ret = nil - d = x-y - d2 = 2*m*d.abs - - # v = f*eb**e is the number to be approximated - # z = m*@r**k is the current aproximation - # the error of @z is eps = abs(v-z) = 1/2 * d2 / y - # we have x, y integers such that x/y = v/z - # so eps < 1/2 <=> d2 < y - # d < 0 <=> x < y <=> v < z - - directed_rounding = [:up, :down].include?(@round_mode) - - if directed_rounding - if @round_mode==:up ? (d <= 0) : (d < 0) - # v <(=) z - chk = (m == @rp_n_1) ? d2*@r : d2 - if (@round_mode == :up) && (chk < 2*y) - # eps < 1 - ret = @z - else - @z = context.next_minus(@z) - end - else # @round_mode==:up ? (d > 0) : (d >= 0) - # v >(=) z - if (@round_mode == :down) && (d2 < 2*y) - # eps < 1 - ret = @z - else - @z = context.next_plus(@z) - end - end - else - if d2 < y # eps < 1/2 - if (m == @rp_n_1) && (d < 0) && (y < @r*d2) - # z has the minimum normalized significand, i.e. is a power of @r - # and v < z - # and @r*eps > 1/2 - # On the left of z the ulp is 1/@r than the ulp on the right; if v < z we - # must require an error @r times smaller. - @z = context.next_minus(@z) - else - # unambiguous nearest - ret = @z - end - elsif d2 == y # eps == 1/2 - # round-to-nearest tie - if @round_mode == :half_even - if (m%2) == 0 - # m is even - if (m == @rp_n_1) && (d < 0) - # z is power of @r and v < z; this wasn't really a tie because - # there are closer values on the left - @z = context.next_minus(@z) - else - # m is even => round tie to z - ret = @z - end - elsif d < 0 - # m is odd, v < z => round tie to prev - ret = context.next_minus(@z) - elsif d > 0 - # m is odd, v > z => round tie to next - ret = context.next_plus(@z) - end - elsif @round_mode == :half_up - if d < 0 - # v < z - if (m == @rp_n_1) - # this was not really a tie - @z = context.next_minus(@z) - else - ret = @z - end - else # d > 0 - # v >= z - ret = context.next_plus(@z) - end - else # @round_mode == :half_down - if d < 0 - # v < z - if (m == @rp_n_1) - # this was not really a tie - @z = context.next_minus(@z) - else - ret = context.next_minus(@z) - end - else # d < 0 - # v > z - ret = @z - end - end - elsif d < 0 # eps > 1/2 and v < z - @z = context.next_minus(@z) - elsif d > 0 # eps > 1/2 and v > z - @z = context.next_plus(@z) - end - end - - # Assume the initial approx is good enough (uses IEEE-754 arithmetic with round-to-nearest), - # so we can avoid further iteration, except for directed rounding - ret ||= @z unless directed_rounding || !@good_approx - - return ret - end - - # Algorithm M to read floating point numbers from text literals with correct rounding - # from his paper: "How to Read Floating Point Numbers Accurately" (William D. Clinger) - def _alg_m(context, round_mode, sign, f, e, eb, n) - if e<0 - u,v,k = f,eb**(-e),0 - else - u,v,k = f*(eb**e),1,0 - end - min_e = context.etiny - max_e = context.etop - rp_n = context.int_radix_power(n) - rp_n_1 = context.int_radix_power(n-1) - r = context.radix - loop do - x = u.div(v) # bottleneck - if (x>=rp_n_1 && x<rp_n) || k==min_e || k==max_e - z, exact = Reader.ratio_float(context,u,v,k,round_mode) - @exact = exact - if context.respond_to?(:exception) - if k==min_e - context.exception(Num::Subnormal) if z.subnormal? - context.exception(Num::Underflow,"Input literal out of range") if z.zero? && f!=0 - elsif k==max_e - if !context.exact? && z.coefficient > context.maximum_coefficient - context.exception(Num::Overflow,"Input literal out of range") - end - end - context.exception Num::Inexact if !exact - end - return z.copy_sign(sign) - elsif x<rp_n_1 - u *= r - k -= 1 - elsif x>=rp_n - v *= r - k += 1 - end - end - end - - # Given exact positive integers u and v with beta**(n-1) <= u/v < beta**n - # and exact integer k, returns the floating point number closest to u/v * beta**n - # (beta is the floating-point radix) - def self.ratio_float(context, u, v, k, round_mode) - # since this handles only positive numbers and ceiling and floor - # are not symmetrical, they should have been swapped before calling this. - q = u.div v - r = u-q*v - v_r = v-r - z = context.Num(+1,q,k) - exact = (r==0) - if round_mode == :down - # z = z - elsif (round_mode == :up) && r>0 - z = context.next_plus(z) - elsif r<v_r - # z = z - elsif r>v_r - z = context.next_plus(z) - else - # tie - if (round_mode == :half_down) || (round_mode == :half_even && ((q%2)==0)) || (round_mode == :down) - # z = z - else - z = context.next_plus(z) - end - end - return z, exact - end - - end # Reader - - # Burger and Dybvig free formatting algorithm, - # from their paper: "Printing Floating-Point Numbers Quickly and Accurately" - # (Robert G. Burger, R. Kent Dybvig) - # - # This algorithm formats arbitrary base floating point numbers as decimal - # text literals. The floating-point (with fixed precision) is interpreted as an approximated - # value, representing any value in its 'rounding-range' (the interval where all values round - # to the floating-point value, with the given precision and rounding mode). - # An alternative approach which is not taken here would be to represent the exact floating-point - # value with some given precision and rounding mode requirements; that can be achieved with - # Clinger algorithm (which may fail for exact precision). - # - # The variables used by the algorithm are stored in instance variables: - # @v - The number to be formatted = @f*@b**@e - # @b - The numberic base of the input floating-point representation of @v - # @f - The significand or characteristic (fraction) - # @e - The exponent - # - # Quotients of integers will be used to hold the magnitudes: - # @s is the denominator of all fractions - # @r numerator of @v: @v = @r/@s - # @m_m numerator of the distance from the rounding-range lower limit, l, to @v: @m_m/@s = (@v - l) - # @m_p numerator of the distance from @v to the rounding-range upper limit, u: @m_p/@s = (u - @v) - # All numbers in the randound-range are rounded to @v (with the given precision p) - # @k scale factor that is applied to the quotients @r/@s, @m_m/@s and @m_p/@s to put the first - # significant digit right after the radix point. @b**@k is the first power of @b >= u - # - # The rounding range of @v is the interval of values that round to @v under the runding-mode. - # If the rounding mode is one of the round-to-nearest variants (even, up, down), then - # it is ((v+v-)/2 = (@v-@m_m)/@s, (v+v+)/2 = (@v+@m_)/2) whith the boundaries open or closed as explained below. - # In this case: - # @m_m/@s = (@v - (v + v-)/2) where v- = @v.next_minus is the lower adjacent to v floating point value - # @m_p/@s = ((v + v+)/2 - @v) where v+ = @v.next_plus is the upper adjacent to v floating point value - # If the rounding is directed, then the rounding interval is either (v-, @v] or [@v, v+] - # @roundl is true if the lower limit of the rounding range is closed (i.e., if l rounds to @v) - # @roundh is true if the upper limit of the rounding range is closed (i.e., if u rounds to @v) - # if @roundh, then @k is the minimum @k with (@r+@m_p)/@s <= @output_b**@k - # @k = ceil(logB((@r+@m_p)/2)) with lobB the @output_b base logarithm - # if @roundh, then @k is the minimum @k with (@r+@m_p)/@s < @output_b**@k - # @k = 1+floor(logB((@r+@m_p)/2)) - # - # @output_b is the output base - # @output_min_e is the output minimum exponent - # p is the input floating point precision - class Formatter - - # This Object-oriented implementation is slower than the original functional one for two reasons: - # * The overhead of object creation - # * The use of instance variables instead of local variables - # But if scale is optimized or local variables are used in the inner loops, then this implementation - # is on par with the functional one for Float and it is more efficient for Flt types, where the variables - # passed as parameters hold larger objects. - - # A Formatted object is created to format floating point numbers given: - # * The input base in which numbers to be formatted are defined - # * The input minimum expeonent - # * The output base to which the input is converted. - # * The :raise_on_repeat option, true by default specifies that when - # an infinite sequence of repeating significant digits is found on the output - # (which may occur when using the all-digits options and using directed-rounding) - # an InfiniteLoopError exception is raised. If this option is false, then - # no exception occurs, and instead of generating an infinite sequence of digits, - # the formatter object will have a 'repeat' property which designs the first digit - # to be repeated (it is an index into digits). If this equals the size of digits, - # it is assumend, that the digit to be repeated is a zero which follows the last - # digit present in digits. - def initialize(input_b, input_min_e, output_b, options={}) - @b = input_b - @min_e = input_min_e - @output_b = output_b - # result of last operation - @adjusted_digits = @digits = nil - # for "all-digits" mode results (which are truncated, rather than rounded), - # round_up contains information to round the result: - # * it is nil if the rest of digits are zero (the result is exact) - # * it is :lo if there exist non-zero digits beyond the significant ones (those returned), but - # the value is below the tie (the value must be rounded up only for :up rounding mode) - # * it is :tie if there exists exactly one nonzero digit after the significant and it is radix/2, - # for round-to-nearest it is atie. - # * it is :hi otherwise (the value should be rounded-up except for the :down mode) - @round_up = nil - - options = { raise_on_repeat: true }.merge(options) - # when significant repeating digits occur (+all+ parameter and directed rounding) - # @repeat is set to the index of the first repeating digit in @digits; - # (if equal to @digits.size, that would indicate an infinite sequence of significant zeros) - @repeat = nil - # the :raise_on_repeat options (by default true) causes exceptions when repeating is found - @raise_on_repeat = options[:raise_on_repeat] - end - - # This method converts v = f*b**e into a sequence of +output_b+-base digits, - # so that if the digits are converted back to a floating-point value - # of precision p (correctly rounded), the result is exactly v. - # - # If +round_mode+ is not nil, then just enough digits to produce v using - # that rounding is used; otherwise enough digits to produce v with - # any rounding are delivered. - # - # If the +all+ parameter is true, all significant digits are generated without rounding, - # Significant digits here are all digits that, if used on input, cannot arbitrarily change - # while preserving the parsed value of the floating point number. Since the digits are not rounded - # more digits may be needed to assure round-trip value preservation. - # - # This is useful to reflect the precision of the floating point value in the output; in particular - # trailing significant zeros are shown. But note that, for directed rounding and base conversion - # this may need to produce an infinite number of digits, in which case an exception will be raised - # unless the :raise_on_repeat option has been set to false in the Formatter object. In that case - # the formatter objetct will have a +repeat+ property that specifies the point in the digit - # sequence where irepetition starts. The digits from that point to the end to the digits sequence - # repeat indefinitely. - # - # This digit-repetition is specially frequent for the :up rounding mode, in which any number - # with a finite numberof nonzero digits equal to or less than the precision will haver and infinite - # sequence of zero significant digits. - # - # The:down rounding (truncation) could be used to show the exact value of the floating - # point but beware: if the value has not an exact representation in the output base this will - # lead to an infinite loop or repeating squence. - # - # When the +all+ parameters is used the result is not rounded (is truncated), and the round_up flag - # is set to indicate that nonzero digits exists beyond the returned digits; the possible values - # of the round_up flag are: - # * nil : the rest of digits are zero or repeat (the result is exact) - # * :lo : there exist non-zero digits beyond the significant ones (those returned), but - # the value is below the tie (the value must be rounded up only for :up rounding mode) - # * :tie : there exists exactly one nonzero digit after the significant and it is radix/2, - # for round-to-nearest it is atie. - # * :hi : the value is closer to the rounded-up value (incrementing the last significative digit.) - # - # Note that the round_mode here is not the rounding mode applied to the output; - # it is the rounding mode that applied to *input* preserves the original floating-point - # value (with the same precision as input). - # should be rounded-up. - # - def format(v, f, e, round_mode, p=nil, all=false) - context = v.class.context - # TODO: consider removing parameters f,e and using v.split instead - @minus = (context.sign(v)==-1) - @v = context.copy_sign(v, +1) # don't use context.abs(v) because it rounds (and may overflow also) - @f = f.abs - @e = e - @round_mode = round_mode - @all_digits = all - p ||= context.precision - - # adjust the rounding mode to work only with positive numbers - @round_mode = Support.simplified_round_mode(@round_mode, @minus) - - # determine the high,low inclusion flags of the rounding limits - case @round_mode - when :half_even - # rounding rage is (v-m-,v+m+) if v is odd and [v+m-,v+m+] if even - @round_l = @round_h = ((@f%2)==0) - when :up - # rounding rage is (v-,v] - # ceiling is treated here assuming f>0 - @round_l, @round_h = false, true - when :down - # rounding rage is [v,v+) - # floor is treated here assuming f>0 - @round_l, @round_h = true, false - when :half_up - # rounding rage is [v+m-,v+m+) - @round_l, @round_h = true, false - when :half_down - # rounding rage is (v+m-,v+m+] - @round_l, @round_h = false, true - else # :nearest - # Here assume only that round-to-nearest will be used, but not which variant of it - # The result is valid for any rounding (to nearest) but may produce more digits - # than stricly necessary for specific rounding modes. - # That is, enough digits are generated so that when the result is - # converted to floating point with the specified precision and - # correct rounding (to nearest), the result is the original number. - # rounding range is (v+m-,v+m+) - @round_l = @round_h = false - end - - # TODO: use context.next_minus, next_plus instead of direct computing, don't require min_e & ps - # Now compute the working quotients @r/@s, @m_p/@s = (v+ - @v), @m_m/@s = (@v - v-) and scale them. - if @e >= 0 - if @f != b_power(p-1) - be = b_power(@e) - @r, @s, @m_p, @m_m = @f*be*2, 2, be, be - else - be = b_power(@e) - be1 = be*@b - @r, @s, @m_p, @m_m = @f*be1*2, @b*2, be1, be - end - else - if @e==@min_e or @f != b_power(p-1) - @r, @s, @m_p, @m_m = @f*2, b_power(-@e)*2, 1, 1 - else - @r, @s, @m_p, @m_m = @f*@b*2, b_power(1-@e)*2, @b, 1 - end - end - @k = 0 - @context = context - scale_optimized! - - - # The value to be formatted is @v=@r/@s; m- = @m_m/@s = (@v - v-)/@s; m+ = @m_p/@s = (v+ - @v)/@s - # Now adjust @m_m, @m_p so that they define the rounding range - case @round_mode - when :up - # ceiling is treated here assuming @f>0 - # rounding range is -v,@v - @m_m, @m_p = @m_m*2, 0 - when :down - # floor is treated here assuming #f>0 - # rounding range is @v,v+ - @m_m, @m_p = 0, @m_p*2 - else - # rounding range is v-,v+ - # @m_m, @m_p = @m_m, @m_p - end - - # Now m_m, m_p define the rounding range - all ? generate_max : generate - - end - - # Access result of format operation: scaling (position of radix point) and digits - def digits - return @k, @digits - end - - attr_reader :round_up, :repeat - - # Access rounded result of format operation: scaling (position of radix point) and digits - def adjusted_digits(round_mode) - if @adjusted_digits.nil? && !@digits.nil? - @adjusted_k, @adjusted_digits = Support.adjust_digits(@k, @digits, - :round_mode => round_mode, - :negative => @minus, - :round_up => @round_up, - :base => @output_b) - end - return @adjusted_k, @adjusted_digits - end - - # Given r/s = v (number to convert to text), m_m/s = (v - v-)/s, m_p/s = (v+ - v)/s - # Scale the fractions so that the first significant digit is right after the radix point, i.e. - # find k = ceil(logB((r+m_p)/s)), the smallest integer such that (r+m_p)/s <= B^k - # if k>=0 return: - # r=r, s=s*B^k, m_p=m_p, m_m=m_m - # if k<0 return: - # r=r*B^k, s=s, m_p=m_p*B^k, m_m=m_m*B^k - # - # scale! is a general iterative method using only (multiprecision) integer arithmetic. - def scale_original!(really=false) - loop do - if (@round_h ? (@r+@m_p >= @s) : (@r+@m_p > @s)) # k is too low - @s *= @output_b - @k += 1 - elsif (@round_h ? ((@r+@m_p)*@output_b<@s) : ((@r+@m_p)*@output_b<=@s)) # k is too high - @r *= @output_b - @m_p *= @output_b - @m_m *= @output_b - @k -= 1 - else - break - end - end - end - # using local vars instead of instance vars: it makes a difference in performance - def scale! - r, s, m_p, m_m, k,output_b = @r, @s, @m_p, @m_m, @k,@output_b - loop do - if (@round_h ? (r+m_p >= s) : (r+m_p > s)) # k is too low - s *= output_b - k += 1 - elsif (@round_h ? ((r+m_p)*output_b<s) : ((r+m_p)*output_b<=s)) # k is too high - r *= output_b - m_p *= output_b - m_m *= output_b - k -= 1 - else - @s = s - @r = r - @m_p = m_p - @m_m = m_m - @k = k - break - end - end - end - - def b_power(n) - @b**n - end - - def output_b_power(n) - @output_b**n - end - - def start_repetition_dectection - @may_repeat = (@m_p == 0 || @m_m == 0) - @n_iters = 0 - @rs = [] - end - - ITERATIONS_BEFORE_KEEPING_TRACK_OF_REMAINDERS = 10000 - - # Detect indefinite repetitions in generate_max - # returns the number of digits that are being repeated - # (0 indicates the next digit would repeat and it would be a zero) - def detect_repetitions(r) - return nil unless @may_repeat - @n_iters += 1 - if r == 0 && @m_p == 0 - repeat_count = 0 - elsif (@n_iters > ITERATIONS_BEFORE_KEEPING_TRACK_OF_REMAINDERS) - if @rs.include?(r) - repeat_count = @rs.index(r) - @rs.size - else - @rs << r - end - end - if repeat_count - raise InfiniteLoopError, "Infinite digit sequence." if @raise_on_repeat - repeat_count - else - nil - end - end - - def remove_redundant_repetitions - if ITERATIONS_BEFORE_KEEPING_TRACK_OF_REMAINDERS > 0 && @repeat - if @repeat < @digits.size - repeating_digits = @digits[@repeat..-1] - l = repeating_digits.size - pos = @repeat - l - while pos >= 0 && @digits[pos, l] == repeating_digits - pos -= l - end - first_repeat = pos + l - if first_repeat < @repeat - @repeat = first_repeat - @digits = @digits[0, @repeat+l] - end - end - end - @digits - end - - def generate_max - @round_up = false - list = [] - r, s, m_p, m_m, = @r, @s, @m_p, @m_m - - start_repetition_dectection - - loop do - if repeat_count = detect_repetitions(r) - @repeat = list.size + repeat_count - break - end - - d,r = (r*@output_b).divmod(s) - - m_p *= @output_b - m_m *= @output_b - - list << d - - tc1 = @round_l ? (r<=m_m) : (r<m_m) - tc2 = @round_h ? (r+m_p >= s) : (r+m_p > s) - - if tc1 && tc2 - if r != 0 - r *= 2 - if r > s - @round_up = :hi - elsif r == s - @round_up = :tie - else - @rund_up = :lo - end - end - break - end - end - @digits = list - remove_redundant_repetitions - end - - def generate - list = [] - r, s, m_p, m_m, = @r, @s, @m_p, @m_m - loop do - d,r = (r*@output_b).divmod(s) - m_p *= @output_b - m_m *= @output_b - tc1 = @round_l ? (r<=m_m) : (r<m_m) - tc2 = @round_h ? (r+m_p >= s) : (r+m_p > s) - - if not tc1 - if not tc2 - list << d - else - list << d+1 - break - end - else - if not tc2 - list << d - break - else - if r*2 < s - list << d - break - else - list << d+1 - break - end - end - end - - end - @digits = list - end - - ESTIMATE_FLOAT_LOG_B = {2=>1/Math.log(2), 10=>1/Math.log(10), 16=>1/Math.log(16)} - # scale_o1! is an optimized version of scale!; it requires an additional parameters with the - # floating-point number v=r/s - # - # It uses a Float estimate of ceil(logB(v)) that may need to adjusted one unit up - # TODO: find easy to use estimate; determine max distance to correct value and use it for fixing, - # or use the general scale! for fixing (but remembar to multiply by exptt(...)) - # (determine when Math.log is aplicable, etc.) - def scale_optimized! - context = @context # @v.class.context - return scale! if context.zero?(@v) - - # 1. compute estimated_scale - - # 1.1. try to use Float logarithms (Math.log) - v = @v - v_abs = context.copy_sign(v, +1) # don't use v.abs because it rounds (and may overflow also) - v_flt = v_abs.to_f - b = @output_b - log_b = ESTIMATE_FLOAT_LOG_B[b] - log_b = ESTIMATE_FLOAT_LOG_B[b] = 1.0/Math.log(b) if log_b.nil? - estimated_scale = nil - fixup = false - begin - l = ((b==10) ? Math.log10(v_flt) : Math.log(v_flt)*log_b) - estimated_scale =(l - 1E-10).ceil - fixup = true - rescue - # rescuing errors is more efficient than checking (v_abs < Float::MAX.to_i) && (v_flt > Float::MIN) when v is a Flt - else - # estimated_scale = nil - end - - # 1.2. Use Flt::DecNum logarithm - if estimated_scale.nil? - v.to_decimal_exact(:precision=>12) if v.is_a?(BinNum) - if v.is_a?(DecNum) - l = nil - DecNum.context(:precision=>12) do - case b - when 10 - l = v_abs.log10 - else - l = v_abs.ln/Flt.DecNum(b).ln - end - end - l -= Flt.DecNum(+1,1,-10) - estimated_scale = l.ceil - fixup = true - end - end - - # 1.3 more rough Float aproximation - # TODO: optimize denominator, correct numerator for more precision with first digit or part - # of the coefficient (like _log_10_lb) - estimated_scale ||= (v.adjusted_exponent.to_f * Math.log(v.class.context.radix) * log_b).ceil - - if estimated_scale >= 0 - @k = estimated_scale - @s *= output_b_power(estimated_scale) - else - sc = output_b_power(-estimated_scale) - @k = estimated_scale - @r *= sc - @m_p *= sc - @m_m *= sc - end - fixup ? scale_fixup! : scale! - - end - - # fix up scaling (final step): specialized version of scale! - # This performs a single up scaling step, i.e. behaves like scale2, but - # the input must be at most one step down from the final result - def scale_fixup! - if (@round_h ? (@r+@m_p >= @s) : (@r+@m_p > @s)) # too low? - @s *= @output_b - @k += 1 - end - end - - end - module AuxiliarFunctions module_function # Number of bits in binary representation of the positive integer n, or 0 if n == 0. @@ -1414,11 +150,10 @@ else # x + b == y :half_up end end end - - end # Formatter + end end # AuxiliarFunctions end # Support