lib/haarcascades/haarcascade_smile.xml in findaface-0.0.4 vs lib/haarcascades/haarcascade_smile.xml in findaface-0.0.5

- old
+ new

@@ -1,8353 +1,6729 @@ -<?xml version="1.0"?> -<!---------------------------------------------------------------------------- - Smile detector - Contributed by Oscar Deniz Suarez - More information can be found at http://visilab.etsii.uclm.es/personas/oscar/oscar.html - -////////////////////////////////////////////////////////////////////////// -| Contributors License Agreement -| IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. -| By downloading, copying, installing or using the software you agree -| to this license. -| If you do not agree to this license, do not download, install, -| copy or use the software. -| -| Copyright (c) 2011, Modesto Castrillon-Santana (IUSIANI, Universidad de -| Las Palmas de Gran Canaria, Spain). -| All rights reserved. -| -| Redistribution and use in source and binary forms, with or without -| modification, are permitted provided that the following conditions are -| met: -| -| * Redistributions of source code must retain the above copyright -| notice, this list of conditions and the following disclaimer. -| * Redistributions in binary form must reproduce the above -| copyright notice, this list of conditions and the following -| disclaimer in the documentation and/or other materials provided -| with the distribution. -| * The name of Contributor may not used to endorse or promote products -| derived from this software without specific prior written permission. -| -| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE -| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to -| Top -////////////////////////////////////////////////////////////////////////// - -------------------------------------------------------------------------> -<opencv_storage> -<!-- Automatically converted from data/classifier, window size = 36x18 --> -<SmileDetector type_id="opencv-haar-classifier"> - <size> - 36 18</size> - <stages> - <_> - <!-- stage 0 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 4 -1.</_> - <_> - 0 2 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.8783610691316426e-004</threshold> - <left_val>0.5921934843063355</left_val> - <right_val>-0.4416360855102539</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 10 2 8 -1.</_> - <_> - 34 14 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.2209611274302006e-004</threshold> - <left_val>0.3031865060329437</left_val> - <right_val>-0.3291291892528534</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 2 8 -1.</_> - <_> - 0 14 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9940118333324790e-004</threshold> - <left_val>0.4856331050395966</left_val> - <right_val>-0.4292306005954742</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 18 10 -1.</_> - <_> - 24 0 9 5 2.</_> - <_> - 15 5 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0372891984879971</threshold> - <left_val>-0.2866730093955994</left_val> - <right_val>0.5997999906539917</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 4 -1.</_> - <_> - 7 0 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>1.4334049774333835e-003</threshold> - <left_val>-0.3489313125610352</left_val> - <right_val>0.4048275053501129</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 5 6 4 -1.</_> - <_> - 15 6 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.7213020995259285e-003</threshold> - <left_val>0.7571418881416321</left_val> - <right_val>-0.1222594976425171</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 6 8 3 -1.</_> - <_> - 13 7 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.1067271530628204e-003</threshold> - <left_val>-0.1665772050619125</left_val> - <right_val>0.7509614825248718</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 6 8 4 -1.</_> - <_> - 14 7 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.7238711528480053e-003</threshold> - <left_val>0.6266279220581055</left_val> - <right_val>-0.1912745982408524</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 2 8 -1.</_> - <_> - 0 14 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.4225031160749495e-004</threshold> - <left_val>-0.2394447028636932</left_val> - <right_val>0.4484061896800995</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 0 2 16 -1.</_> - <_> - 35 0 1 8 2.</_> - <_> - 34 8 1 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6867710510268807e-003</threshold> - <left_val>-0.1843906939029694</left_val> - <right_val>0.0917824134230614</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 4 7 -1.</_> - <_> - 3 0 2 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0146256200969219</threshold> - <left_val>0.1616805940866470</left_val> - <right_val>-0.8150117993354797</right_val></_></_></trees> - <stage_threshold>-1.2678639888763428</stage_threshold> - <parent>-1</parent> - <next>-1</next></_> - <_> - <!-- stage 1 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 7 28 3 -1.</_> - <_> - 11 7 14 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0381411388516426</threshold> - <left_val>-0.3327588140964508</left_val> - <right_val>0.7783334255218506</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 0 2 2 -1.</_> - <_> - 34 1 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3136120105627924e-004</threshold> - <left_val>0.3635309040546417</left_val> - <right_val>-0.3204346895217896</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 12 4 6 -1.</_> - <_> - 0 15 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.8757019210606813e-003</threshold> - <left_val>0.7135239243507385</left_val> - <right_val>-0.3518598973751068</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 0 2 2 -1.</_> - <_> - 34 1 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.4266290236264467e-003</threshold> - <left_val>0.0681008473038673</left_val> - <right_val>-0.6172732710838318</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 2 -1.</_> - <_> - 0 1 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.4605958606116474e-004</threshold> - <left_val>0.5727149844169617</left_val> - <right_val>-0.3786099851131439</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 5 9 12 -1.</_> - <_> - 20 5 3 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0318226404488087</threshold> - <left_val>-0.6348456144332886</left_val> - <right_val>0.1164183989167213</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 9 12 -1.</_> - <_> - 13 5 3 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0171309504657984</threshold> - <left_val>-0.6279314756393433</left_val> - <right_val>0.3247947096824646</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 32 1 -1.</_> - <_> - 4 0 16 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3903783708810806e-003</threshold> - <left_val>-0.2757895886898041</left_val> - <right_val>0.2233072966337204</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 3 3 -1.</_> - <_> - 1 0 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.2802520543336868e-003</threshold> - <left_val>0.1897764056921005</left_val> - <right_val>-0.6881762146949768</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 32 7 4 7 -1.</_> - <_> - 33 8 2 7 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>2.6840099599212408e-003</threshold> - <left_val>-0.2235050052404404</left_val> - <right_val>0.1372579932212830</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 8 6 -1.</_> - <_> - 7 0 4 3 2.</_> - <_> - 11 3 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0106046395376325</threshold> - <left_val>-0.2142623066902161</left_val> - <right_val>0.5620787143707275</right_val></_></_></trees> - <stage_threshold>-1.5844069719314575</stage_threshold> - <parent>0</parent> - <next>-1</next></_> - <_> - <!-- stage 2 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 2 -1.</_> - <_> - 0 1 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1677199876867235e-004</threshold> - <left_val>0.4659548103809357</left_val> - <right_val>-0.3742581903934479</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 1 8 9 -1.</_> - <_> - 29 3 4 9 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0551206283271313</threshold> - <left_val>0.5417978763580322</left_val> - <right_val>-0.2265765070915222</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 1 8 -1.</_> - <_> - 1 14 1 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.4742640824988484e-004</threshold> - <left_val>0.3770307004451752</left_val> - <right_val>-0.3348644077777863</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 6 30 9 -1.</_> - <_> - 13 9 10 3 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3950783908367157</threshold> - <left_val>-0.1814441978931427</left_val> - <right_val>0.8132591843605042</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 5 8 6 -1.</_> - <_> - 12 7 8 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0405094102025032</threshold> - <left_val>-0.0953694134950638</left_val> - <right_val>0.8059561848640442</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 4 6 3 -1.</_> - <_> - 16 5 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.8735421150922775e-003</threshold> - <left_val>-0.1402366012334824</left_val> - <right_val>0.6164302825927734</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 18 -1.</_> - <_> - 0 0 1 9 2.</_> - <_> - 1 9 1 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0105780400335789</threshold> - <left_val>0.1293267011642456</left_val> - <right_val>-0.7482334971427918</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 2 2 14 -1.</_> - <_> - 35 2 1 7 2.</_> - <_> - 34 9 1 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.2986393719911575e-003</threshold> - <left_val>0.0589406006038189</left_val> - <right_val>-0.4410730004310608</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 2 14 -1.</_> - <_> - 0 2 1 7 2.</_> - <_> - 1 9 1 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.0301607698202133e-003</threshold> - <left_val>-0.6630973219871521</left_val> - <right_val>0.1810476928949356</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 0 1 4 -1.</_> - <_> - 35 2 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0947990085696802e-004</threshold> - <left_val>0.2211259007453919</left_val> - <right_val>-0.2730903923511505</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 24 18 -1.</_> - <_> - 5 0 12 9 2.</_> - <_> - 17 9 12 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1168550997972488</threshold> - <left_val>-0.7720596790313721</left_val> - <right_val>0.1248165965080261</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 16 1 2 -1.</_> - <_> - 35 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.3603649828583002e-005</threshold> - <left_val>0.1367060989141464</left_val> - <right_val>-0.1612793952226639</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 16 1 2 -1.</_> - <_> - 0 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.5056360280141234e-004</threshold> - <left_val>0.4486046135425568</left_val> - <right_val>-0.2171128988265991</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 6 8 12 -1.</_> - <_> - 19 6 4 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0163946095854044</threshold> - <left_val>-0.6582735180854797</left_val> - <right_val>0.1674550026655197</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 5 8 13 -1.</_> - <_> - 13 5 4 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0144828604534268</threshold> - <left_val>-0.6834514737129211</left_val> - <right_val>0.1345615983009338</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 16 1 2 -1.</_> - <_> - 35 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.9269471017178148e-005</threshold> - <left_val>-0.1499813944101334</left_val> - <right_val>0.1601772010326386</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 9 12 3 -1.</_> - <_> - 10 10 12 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.4323131702840328e-003</threshold> - <left_val>-0.1684845983982086</left_val> - <right_val>0.5396398901939392</right_val></_></_></trees> - <stage_threshold>-1.3820559978485107</stage_threshold> - <parent>1</parent> - <next>-1</next></_> - <_> - <!-- stage 3 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 1 8 -1.</_> - <_> - 0 14 1 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.3472499237395823e-004</threshold> - <left_val>0.4394924044609070</left_val> - <right_val>-0.4224875867366791</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 20 0 10 10 -1.</_> - <_> - 25 0 5 5 2.</_> - <_> - 20 5 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0329953208565712</threshold> - <left_val>-0.1979825049638748</left_val> - <right_val>0.5953487157821655</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 4 -1.</_> - <_> - 0 2 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1011828579939902e-004</threshold> - <left_val>0.4440306127071381</left_val> - <right_val>-0.3074846863746643</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 19 0 13 18 -1.</_> - <_> - 19 9 13 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0819697380065918</threshold> - <left_val>-0.5333436727523804</left_val> - <right_val>0.1671810001134872</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 14 6 -1.</_> - <_> - 4 0 7 3 2.</_> - <_> - 11 3 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0177787002176046</threshold> - <left_val>-0.2045017927885056</left_val> - <right_val>0.5144413113594055</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 5 6 6 -1.</_> - <_> - 16 7 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0228346996009350</threshold> - <left_val>-0.1484607011079788</left_val> - <right_val>0.5624278783798218</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 7 8 -1.</_> - <_> - 13 9 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0386043414473534</threshold> - <left_val>-0.1273147016763687</left_val> - <right_val>0.8149448037147522</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 33 0 3 1 -1.</_> - <_> - 34 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.3286908445879817e-004</threshold> - <left_val>-0.3719344139099121</left_val> - <right_val>0.0676164999604225</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 10 4 -1.</_> - <_> - 6 2 10 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0232290402054787</threshold> - <left_val>0.7123206257820129</left_val> - <right_val>-0.1158939003944397</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 2 6 16 -1.</_> - <_> - 18 2 3 8 2.</_> - <_> - 15 10 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0195753592997789</threshold> - <left_val>-0.6899073123931885</left_val> - <right_val>0.1399950981140137</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 1 8 -1.</_> - <_> - 0 14 1 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.1991271427832544e-004</threshold> - <left_val>-0.1835464984178543</left_val> - <right_val>0.4943555891513825</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 4 6 6 -1.</_> - <_> - 29 6 2 6 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0570897497236729</threshold> - <left_val>0.6260784864425659</left_val> - <right_val>-0.0785768479108810</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 5 8 8 -1.</_> - <_> - 16 5 4 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0256996992975473</threshold> - <left_val>0.1155714020133019</left_val> - <right_val>-0.8193519115447998</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 5 6 6 -1.</_> - <_> - 29 7 2 6 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0325796194374561</threshold> - <left_val>-0.1176773980259895</left_val> - <right_val>0.4277622103691101</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 6 6 -1.</_> - <_> - 7 7 6 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0205922499299049</threshold> - <left_val>0.4868524074554443</left_val> - <right_val>-0.2131853997707367</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 5 12 9 -1.</_> - <_> - 15 5 6 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0174852795898914</threshold> - <left_val>-0.5228734016418457</left_val> - <right_val>0.1339704990386963</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 3 1 -1.</_> - <_> - 1 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9153228327631950e-004</threshold> - <left_val>0.0963044911623001</left_val> - <right_val>-0.6886307001113892</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 4 18 6 -1.</_> - <_> - 15 6 18 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0575339011847973</threshold> - <left_val>-0.0870805233716965</left_val> - <right_val>0.4048064947128296</right_val></_></_></trees> - <stage_threshold>-1.3879380226135254</stage_threshold> - <parent>2</parent> - <next>-1</next></_> - <_> - <!-- stage 4 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 1 6 -1.</_> - <_> - 0 13 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6606198884546757e-004</threshold> - <left_val>0.4277374148368835</left_val> - <right_val>-0.3542076945304871</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 6 30 6 -1.</_> - <_> - 13 8 10 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3055455982685089</threshold> - <left_val>-0.1639281064271927</left_val> - <right_val>0.8606523275375366</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 7 12 4 -1.</_> - <_> - 11 8 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0114494003355503</threshold> - <left_val>0.5972732901573181</left_val> - <right_val>-0.2323434054851532</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 8 9 3 -1.</_> - <_> - 14 9 9 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.3891541212797165e-003</threshold> - <left_val>-0.1291541010141373</left_val> - <right_val>0.6105204224586487</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 8 7 4 -1.</_> - <_> - 14 9 7 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.4334248676896095e-003</threshold> - <left_val>0.4792853891849518</left_val> - <right_val>-0.1900272965431213</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 7 18 6 -1.</_> - <_> - 12 9 18 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0538089312613010</threshold> - <left_val>-0.1149377003312111</left_val> - <right_val>0.5339453816413879</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 3 10 -1.</_> - <_> - 7 13 3 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.7580219688825309e-004</threshold> - <left_val>-0.3459854125976563</left_val> - <right_val>0.2548804879188538</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 10 1 6 -1.</_> - <_> - 35 13 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3450840197037905e-004</threshold> - <left_val>0.2241459041833878</left_val> - <right_val>-0.1955007016658783</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 1 6 -1.</_> - <_> - 0 13 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.0016911700367928e-004</threshold> - <left_val>-0.1972054988145828</left_val> - <right_val>0.4967764019966126</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 13 9 5 -1.</_> - <_> - 21 13 3 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0150632699951530</threshold> - <left_val>0.1063077002763748</left_val> - <right_val>-0.4113821089267731</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 9 6 4 -1.</_> - <_> - 15 10 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.7588870190083981e-003</threshold> - <left_val>-0.1537311971187592</left_val> - <right_val>0.4893161952495575</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 4 18 8 -1.</_> - <_> - 16 6 18 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0454101189970970</threshold> - <left_val>-0.0735593065619469</left_val> - <right_val>0.2773792147636414</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 14 9 3 -1.</_> - <_> - 12 14 3 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0145996697247028</threshold> - <left_val>-0.7096682786941528</left_val> - <right_val>0.0975155606865883</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 32 0 4 6 -1.</_> - <_> - 32 0 2 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0172360707074404</threshold> - <left_val>0.0168695393949747</left_val> - <right_val>-0.5738832950592041</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 4 6 -1.</_> - <_> - 2 0 2 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0142307104542851</threshold> - <left_val>0.0947145000100136</left_val> - <right_val>-0.7839525938034058</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 0 6 7 -1.</_> - <_> - 29 2 2 7 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0437068603932858</threshold> - <left_val>0.6097965240478516</left_val> - <right_val>-0.1560188978910446</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 4 -1.</_> - <_> - 0 2 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2343222089111805e-004</threshold> - <left_val>0.3485119044780731</left_val> - <right_val>-0.2170491069555283</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 8 6 4 -1.</_> - <_> - 29 10 2 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0192450508475304</threshold> - <left_val>-0.1171097978949547</left_val> - <right_val>0.3070116043090820</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 9 27 6 -1.</_> - <_> - 13 11 9 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2703577876091003</threshold> - <left_val>-0.0900964364409447</left_val> - <right_val>0.7665696144104004</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 31 14 2 3 -1.</_> - <_> - 31 14 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.5394480801187456e-004</threshold> - <left_val>-0.2002478986978531</left_val> - <right_val>0.1249336004257202</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 0 5 6 -1.</_> - <_> - 8 2 5 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0360139608383179</threshold> - <left_val>0.6702855825424194</left_val> - <right_val>-0.1057187989354134</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 7 11 3 -1.</_> - <_> - 14 8 11 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.2952791601419449e-003</threshold> - <left_val>-0.1057471036911011</left_val> - <right_val>0.4509387910366058</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 12 2 6 -1.</_> - <_> - 0 15 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.3304709359072149e-004</threshold> - <left_val>0.2793382108211517</left_val> - <right_val>-0.2457676976919174</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 13 2 4 -1.</_> - <_> - 34 15 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.9147620807634667e-005</threshold> - <left_val>0.0858138129115105</left_val> - <right_val>-0.0954695865511894</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 13 2 4 -1.</_> - <_> - 0 15 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.4382669148035347e-004</threshold> - <left_val>-0.2022008001804352</left_val> - <right_val>0.5454357862472534</right_val></_></_></trees> - <stage_threshold>-1.3538850545883179</stage_threshold> - <parent>3</parent> - <next>-1</next></_> - <_> - <!-- stage 5 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 6 4 12 -1.</_> - <_> - 3 10 4 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.9610757529735565e-003</threshold> - <left_val>-0.3672207891941071</left_val> - <right_val>0.4315434992313385</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 22 12 -1.</_> - <_> - 25 0 11 6 2.</_> - <_> - 14 6 11 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0633948296308517</threshold> - <left_val>-0.2073971033096314</left_val> - <right_val>0.5742601752281189</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 1 7 6 -1.</_> - <_> - 6 3 7 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0531933493912220</threshold> - <left_val>0.7255092263221741</left_val> - <right_val>-0.1434202045202255</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 5 14 3 -1.</_> - <_> - 12 6 14 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0154607696458697</threshold> - <left_val>-0.0960538163781166</left_val> - <right_val>0.7578523755073547</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 6 7 4 -1.</_> - <_> - 6 7 7 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0176431406289339</threshold> - <left_val>0.6681562066078186</left_val> - <right_val>-0.1417672932147980</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 3 6 4 -1.</_> - <_> - 18 4 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5065636560320854e-003</threshold> - <left_val>-0.0962597429752350</left_val> - <right_val>0.4699633121490479</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 5 6 -1.</_> - <_> - 4 7 5 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0446049533784389e-003</threshold> - <left_val>-0.1973251998424530</left_val> - <right_val>0.4283801019191742</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 33 0 3 4 -1.</_> - <_> - 34 0 1 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.2312041148543358e-003</threshold> - <left_val>0.1186169013381004</left_val> - <right_val>-0.6103963255882263</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 6 18 -1.</_> - <_> - 9 9 6 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0401590503752232</threshold> - <left_val>-0.4166434109210968</left_val> - <right_val>0.2167232930660248</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 24 6 -1.</_> - <_> - 14 8 8 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2852425873279572</threshold> - <left_val>-0.1043575033545494</left_val> - <right_val>0.8573396801948547</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 8 4 4 -1.</_> - <_> - 16 9 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9264221452176571e-003</threshold> - <left_val>0.4706046879291534</left_val> - <right_val>-0.1399745941162109</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 8 13 4 -1.</_> - <_> - 13 9 13 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0137817002832890</threshold> - <left_val>-0.1271356940269470</left_val> - <right_val>0.4461891949176788</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 16 2 2 -1.</_> - <_> - 0 17 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9873598618432879e-004</threshold> - <left_val>0.4702663123607636</left_val> - <right_val>-0.1548373997211456</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 14 1 4 -1.</_> - <_> - 35 15 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.5621389320585877e-004</threshold> - <left_val>0.1885481029748917</left_val> - <right_val>-0.0778397768735886</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 14 1 4 -1.</_> - <_> - 0 15 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7597760092467070e-004</threshold> - <left_val>0.5769770145416260</left_val> - <right_val>-0.1335622072219849</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 6 9 7 -1.</_> - <_> - 18 6 3 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0106659103184938</threshold> - <left_val>-0.4106529951095581</left_val> - <right_val>0.1556212007999420</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 3 4 -1.</_> - <_> - 1 0 1 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.4135230816900730e-003</threshold> - <left_val>-0.7636343240737915</left_val> - <right_val>0.1020964980125427</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 16 2 2 -1.</_> - <_> - 35 16 1 1 2.</_> - <_> - 34 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.6471868447260931e-005</threshold> - <left_val>-0.1644393056631088</left_val> - <right_val>0.2290841937065125</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 16 2 2 -1.</_> - <_> - 0 16 1 1 2.</_> - <_> - 1 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1611599368043244e-004</threshold> - <left_val>-0.1629032939672470</left_val> - <right_val>0.4575636088848114</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 22 0 10 4 -1.</_> - <_> - 22 0 5 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0108227198943496</threshold> - <left_val>-0.2446253001689911</left_val> - <right_val>0.1388894021511078</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 4 6 14 -1.</_> - <_> - 15 4 3 7 2.</_> - <_> - 18 11 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0150849102064967</threshold> - <left_val>-0.5781347751617432</left_val> - <right_val>0.1156411990523338</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 3 8 10 -1.</_> - <_> - 17 3 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0257159601897001</threshold> - <left_val>0.0396311990916729</left_val> - <right_val>-0.6527001261711121</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 5 -1.</_> - <_> - 1 0 1 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.6093570049852133e-003</threshold> - <left_val>0.1142188981175423</left_val> - <right_val>-0.5680108070373535</right_val></_></_></trees> - <stage_threshold>-1.3707510232925415</stage_threshold> - <parent>4</parent> - <next>-1</next></_> - <_> - <!-- stage 6 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 8 6 -1.</_> - <_> - 5 3 8 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0518619008362293</threshold> - <left_val>0.7043117284774780</left_val> - <right_val>-0.2214370071887970</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 19 0 11 18 -1.</_> - <_> - 19 9 11 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0503416284918785</threshold> - <left_val>-0.4639782905578613</left_val> - <right_val>0.2804746031761169</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 8 24 6 -1.</_> - <_> - 14 10 8 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2570973038673401</threshold> - <left_val>-0.1312427967786789</left_val> - <right_val>0.8239594101905823</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 6 10 3 -1.</_> - <_> - 14 7 10 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0110318996012211</threshold> - <left_val>-0.1425814032554627</left_val> - <right_val>0.6382390260696411</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 7 11 4 -1.</_> - <_> - 12 8 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0185650903731585</threshold> - <left_val>-0.1512387990951538</left_val> - <right_val>0.5988119244575501</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 0 16 6 -1.</_> - <_> - 26 0 8 3 2.</_> - <_> - 18 3 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0175023507326841</threshold> - <left_val>-0.1261979937553406</left_val> - <right_val>0.3817803859710693</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 7 3 -1.</_> - <_> - 4 4 7 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.2723729535937309e-003</threshold> - <left_val>-0.1510328948497772</left_val> - <right_val>0.5812842249870300</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 4 4 4 -1.</_> - <_> - 18 5 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.1504750996828079e-003</threshold> - <left_val>-0.0654647573828697</left_val> - <right_val>0.5639755129814148</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 10 4 -1.</_> - <_> - 4 4 10 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0185527391731739</threshold> - <left_val>0.5315709710121155</left_val> - <right_val>-0.1252657026052475</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 8 8 10 -1.</_> - <_> - 18 8 4 5 2.</_> - <_> - 14 13 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0231014806777239</threshold> - <left_val>-0.6794939041137695</left_val> - <right_val>0.1104625985026360</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 4 1 -1.</_> - <_> - 5 0 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.8539339362177998e-004</threshold> - <left_val>0.3010003864765167</left_val> - <right_val>-0.2120669931173325</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 20 0 10 8 -1.</_> - <_> - 25 0 5 4 2.</_> - <_> - 20 4 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0173191204667091</threshold> - <left_val>-0.0937381312251091</left_val> - <right_val>0.2100856006145477</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 0 10 8 -1.</_> - <_> - 13 0 5 4 2.</_> - <_> - 18 4 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0143056204542518</threshold> - <left_val>0.1800594925880432</left_val> - <right_val>-0.3977671861648560</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 21 5 6 13 -1.</_> - <_> - 23 5 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0257633402943611</threshold> - <left_val>8.7056998163461685e-003</left_val> - <right_val>-0.6289495229721069</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 6 13 -1.</_> - <_> - 11 5 2 13 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0153833404183388</threshold> - <left_val>-0.5341547131538391</left_val> - <right_val>0.1038073003292084</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 5 5 3 -1.</_> - <_> - 27 6 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0605469578877091e-003</threshold> - <left_val>-0.0901285186409950</left_val> - <right_val>0.1679212003946304</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 0 3 6 -1.</_> - <_> - 10 2 3 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.5230729263275862e-003</threshold> - <left_val>-0.1711069047451019</left_val> - <right_val>0.3259654045104981</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 26 6 3 6 -1.</_> - <_> - 26 8 3 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0107892798259854</threshold> - <left_val>0.3610992133617401</left_val> - <right_val>-0.0663391500711441</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 36 7 -1.</_> - <_> - 18 11 18 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2795093953609467</threshold> - <left_val>-0.0746058970689774</left_val> - <right_val>0.7336987853050232</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 5 5 3 -1.</_> - <_> - 27 6 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.8369540125131607e-003</threshold> - <left_val>0.0448735393583775</left_val> - <right_val>-0.1860270053148270</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 5 3 -1.</_> - <_> - 4 6 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.6195949865505099e-003</threshold> - <left_val>-0.1392249017953873</left_val> - <right_val>0.4343700110912323</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 28 6 4 4 -1.</_> - <_> - 29 7 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0116479499265552</threshold> - <left_val>-0.0743575915694237</left_val> - <right_val>0.5420144200325012</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 15 8 2 -1.</_> - <_> - 16 15 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.9066400863230228e-003</threshold> - <left_val>-0.7055758833885193</left_val> - <right_val>0.0864336192607880</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 5 30 6 -1.</_> - <_> - 13 7 10 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3968684077262878</threshold> - <left_val>-0.0748983696103096</left_val> - <right_val>0.9406285881996155</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 7 16 6 -1.</_> - <_> - 6 9 16 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0576637797057629</threshold> - <left_val>-0.0965584069490433</left_val> - <right_val>0.5418242812156677</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 12 6 -1.</_> - <_> - 14 12 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0603195689618587</threshold> - <left_val>-0.0665010735392571</left_val> - <right_val>0.6402354836463928</right_val></_></_></trees> - <stage_threshold>-1.3303329944610596</stage_threshold> - <parent>5</parent> - <next>-1</next></_> - <_> - <!-- stage 7 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 12 10 -1.</_> - <_> - 6 0 6 5 2.</_> - <_> - 12 5 6 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0190502498298883</threshold> - <left_val>-0.4443340897560120</left_val> - <right_val>0.4394856989383698</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 25 2 7 16 -1.</_> - <_> - 25 10 7 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0201983004808426</threshold> - <left_val>-0.3170621991157532</left_val> - <right_val>0.1043293029069901</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 18 7 -1.</_> - <_> - 15 6 6 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0214780308306217</threshold> - <left_val>-0.3502483963966370</left_val> - <right_val>0.2635537087917328</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 26 18 -1.</_> - <_> - 18 0 13 9 2.</_> - <_> - 5 9 13 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1018775999546051</threshold> - <left_val>-0.5988957881927490</left_val> - <right_val>0.1768579930067062</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 10 3 -1.</_> - <_> - 10 7 10 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0109741603955626</threshold> - <left_val>-0.1489523947238922</left_val> - <right_val>0.6011521816253662</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 6 6 4 -1.</_> - <_> - 17 7 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0114767104387283</threshold> - <left_val>0.4066570997238159</left_val> - <right_val>-0.1240468993782997</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 6 6 7 -1.</_> - <_> - 18 6 3 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0234311502426863</threshold> - <left_val>-0.7148783206939697</left_val> - <right_val>0.1427811980247498</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 26 6 5 4 -1.</_> - <_> - 26 7 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.4963559806346893e-003</threshold> - <left_val>-0.1704585999250412</left_val> - <right_val>0.1719308048486710</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 12 1 6 -1.</_> - <_> - 0 15 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.4855772759765387e-004</threshold> - <left_val>0.3155323863029480</left_val> - <right_val>-0.2144445031881332</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 18 14 -1.</_> - <_> - 18 4 9 7 2.</_> - <_> - 9 11 9 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0749126300215721</threshold> - <left_val>0.0912405624985695</left_val> - <right_val>-0.6395121216773987</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 6 3 -1.</_> - <_> - 6 6 6 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>6.8816398270428181e-003</threshold> - <left_val>-0.1490440964698792</left_val> - <right_val>0.4795236885547638</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 5 6 3 -1.</_> - <_> - 29 7 2 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0382125787436962</threshold> - <left_val>0.5288773775100708</left_val> - <right_val>-0.0618947297334671</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 3 3 -1.</_> - <_> - 6 9 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.4051730073988438e-003</threshold> - <left_val>-0.1193412989377976</left_val> - <right_val>0.5061342120170593</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 28 5 6 5 -1.</_> - <_> - 30 7 2 5 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0239668991416693</threshold> - <left_val>-0.0897205099463463</left_val> - <right_val>0.3315277993679047</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 5 6 -1.</_> - <_> - 6 7 5 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0341629907488823</threshold> - <left_val>0.5313478112220764</left_val> - <right_val>-0.1466650068759918</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 31 0 4 1 -1.</_> - <_> - 31 0 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.9642219413071871e-003</threshold> - <left_val>0.0907835885882378</left_val> - <right_val>-0.4303255975246429</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 4 1 -1.</_> - <_> - 3 0 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.6757910796441138e-005</threshold> - <left_val>0.2255253940820694</left_val> - <right_val>-0.2822071015834808</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 11 4 3 -1.</_> - <_> - 17 12 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.2862399239093065e-003</threshold> - <left_val>0.4051502048969269</left_val> - <right_val>-0.1177619993686676</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 3 7 4 -1.</_> - <_> - 12 4 7 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0116883097216487</threshold> - <left_val>-0.0918571278452873</left_val> - <right_val>0.6283488869667053</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 9 9 3 -1.</_> - <_> - 14 10 9 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0287420637905598e-003</threshold> - <left_val>0.3926180899143219</left_val> - <right_val>-0.1228715032339096</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 17 21 1 -1.</_> - <_> - 8 17 7 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0137213403359056</threshold> - <left_val>-0.5529879927635193</left_val> - <right_val>0.0910412818193436</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 9 20 4 -1.</_> - <_> - 12 9 10 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0756266415119171</threshold> - <left_val>-0.0449295900762081</left_val> - <right_val>0.1744275987148285</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 9 22 4 -1.</_> - <_> - 14 9 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0934344828128815</threshold> - <left_val>-0.0845939517021179</left_val> - <right_val>0.6013116240501404</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 25 0 3 3 -1.</_> - <_> - 26 1 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>5.8748829178512096e-003</threshold> - <left_val>-0.0441314987838268</left_val> - <right_val>0.3956570923328400</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 9 4 3 -1.</_> - <_> - 14 10 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0064537897706032e-003</threshold> - <left_val>-0.1141439974308014</left_val> - <right_val>0.3792538046836853</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 19 4 9 3 -1.</_> - <_> - 22 4 3 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0229454599320889</threshold> - <left_val>0.0246731899678707</left_val> - <right_val>-0.4152199923992157</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 9 3 -1.</_> - <_> - 11 4 3 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0128104602918029</threshold> - <left_val>-0.5155742764472961</left_val> - <right_val>0.0913196131587029</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 15 36 3 -1.</_> - <_> - 12 16 12 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2042552977800369</threshold> - <left_val>-0.0659275427460670</left_val> - <right_val>0.7594249248504639</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 4 2 -1.</_> - <_> - 2 0 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.9796327948570251e-003</threshold> - <left_val>0.1080627962946892</left_val> - <right_val>-0.5001627206802368</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 19 9 2 9 -1.</_> - <_> - 19 12 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0283976309001446</threshold> - <left_val>-0.0371529608964920</left_val> - <right_val>0.5401064753532410</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 8 3 -1.</_> - <_> - 13 8 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.0867150314152241e-003</threshold> - <left_val>-0.1197860985994339</left_val> - <right_val>0.3569226861000061</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 30 4 2 2 -1.</_> - <_> - 31 4 1 1 2.</_> - <_> - 30 5 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.1456899412441999e-004</threshold> - <left_val>0.1874015033245087</left_val> - <right_val>-0.0884172022342682</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 4 2 2 -1.</_> - <_> - 4 4 1 1 2.</_> - <_> - 5 5 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8941858909092844e-004</threshold> - <left_val>-0.1259797960519791</left_val> - <right_val>0.3998227119445801</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 7 4 3 -1.</_> - <_> - 18 8 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3047619722783566e-003</threshold> - <left_val>0.1549997031688690</left_val> - <right_val>-0.0753860473632813</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 1 8 -1.</_> - <_> - 9 0 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0129750100895762</threshold> - <left_val>-0.5534411072731018</left_val> - <right_val>0.0823542475700378</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 25 6 10 3 -1.</_> - <_> - 25 7 10 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.7442410401999950e-003</threshold> - <left_val>0.0276998002082109</left_val> - <right_val>-0.3483599126338959</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 6 10 3 -1.</_> - <_> - 1 7 10 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4850629270076752e-003</threshold> - <left_val>-0.1297612935304642</left_val> - <right_val>0.3790883123874664</right_val></_></_></trees> - <stage_threshold>-1.5300060510635376</stage_threshold> - <parent>6</parent> - <next>-1</next></_> - <_> - <!-- stage 8 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 14 12 -1.</_> - <_> - 6 6 7 6 2.</_> - <_> - 13 12 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0403868816792965</threshold> - <left_val>0.5960354804992676</left_val> - <right_val>-0.3574176132678986</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 31 14 3 4 -1.</_> - <_> - 31 16 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6068649175576866e-005</threshold> - <left_val>0.4462898075580597</left_val> - <right_val>-0.3595947027206421</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 12 2 4 -1.</_> - <_> - 1 14 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.7622239906340837e-003</threshold> - <left_val>0.1794701963663101</left_val> - <right_val>-0.7563151121139526</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 12 5 -1.</_> - <_> - 19 0 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0309677198529243</threshold> - <left_val>-0.2884705066680908</left_val> - <right_val>0.0768705308437347</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 0 8 14 -1.</_> - <_> - 12 0 4 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0305665601044893</threshold> - <left_val>0.1400360018014908</left_val> - <right_val>-0.7175536751747131</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 28 1 8 7 -1.</_> - <_> - 30 3 4 7 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>9.9054910242557526e-004</threshold> - <left_val>0.0829155892133713</left_val> - <right_val>-0.2919717133045197</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 14 20 4 -1.</_> - <_> - 8 14 10 2 2.</_> - <_> - 18 16 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0125777004286647</threshold> - <left_val>0.1538071930408478</left_val> - <right_val>-0.4688293039798737</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 11 24 3 -1.</_> - <_> - 14 12 8 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1239292025566101</threshold> - <left_val>-0.0908238589763641</left_val> - <right_val>0.7383757233619690</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 27 6 -1.</_> - <_> - 13 7 9 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3773748874664307</threshold> - <left_val>-0.0542329512536526</left_val> - <right_val>0.9229121804237366</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 22 18 -1.</_> - <_> - 18 0 11 9 2.</_> - <_> - 7 9 11 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1099637001752853</threshold> - <left_val>0.0915962681174278</left_val> - <right_val>-0.6597716808319092</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 3 2 -1.</_> - <_> - 16 1 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.2721329694613814e-003</threshold> - <left_val>0.3347575068473816</left_val> - <right_val>-0.1829068958759308</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 17 36 1 -1.</_> - <_> - 9 17 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0469062514603138</threshold> - <left_val>-0.0839710533618927</left_val> - <right_val>0.6984758973121643</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 5 12 1 -1.</_> - <_> - 5 5 6 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>3.2869930146262050e-004</threshold> - <left_val>0.1879463046789169</left_val> - <right_val>-0.2929005920886993</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 15 2 1 -1.</_> - <_> - 34 15 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>1.7333080177195370e-004</threshold> - <left_val>-0.2696416079998016</left_val> - <right_val>0.3494757115840912</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 16 4 -1.</_> - <_> - 7 9 16 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0198009591549635</threshold> - <left_val>-0.1467922925949097</left_val> - <right_val>0.4399561882019043</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 10 1 6 -1.</_> - <_> - 35 12 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.0056760695297271e-004</threshold> - <left_val>-0.1372741013765335</left_val> - <right_val>0.2221331000328064</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 8 3 4 -1.</_> - <_> - 13 9 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4923149719834328e-003</threshold> - <left_val>0.3473525941371918</left_val> - <right_val>-0.1594821065664291</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 10 1 6 -1.</_> - <_> - 35 12 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.2736999603221193e-005</threshold> - <left_val>0.3152787089347839</left_val> - <right_val>-0.2306694984436035</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 0 1 4 -1.</_> - <_> - 11 1 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>6.6625140607357025e-004</threshold> - <left_val>-0.2013110071420670</left_val> - <right_val>0.2869189083576202</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 10 1 6 -1.</_> - <_> - 35 12 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.3850460163666867e-005</threshold> - <left_val>-0.2021923959255219</left_val> - <right_val>0.2307330965995789</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 0 1 14 -1.</_> - <_> - 18 0 1 7 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0409726314246655</threshold> - <left_val>0.0795431807637215</left_val> - <right_val>-0.8079563975334168</right_val></_></_></trees> - <stage_threshold>-1.4114329814910889</stage_threshold> - <parent>7</parent> - <next>-1</next></_> - <_> - <!-- stage 9 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 16 12 -1.</_> - <_> - 5 6 8 6 2.</_> - <_> - 13 12 8 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0469829291105270</threshold> - <left_val>0.7082253098487854</left_val> - <right_val>-0.3703424036502838</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 1 7 8 -1.</_> - <_> - 16 3 7 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-7.5753079727292061e-004</threshold> - <left_val>-0.1255030930042267</left_val> - <right_val>0.1394442021846771</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 4 8 10 -1.</_> - <_> - 14 4 4 5 2.</_> - <_> - 18 9 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0153272999450564</threshold> - <left_val>0.2161353975534439</left_val> - <right_val>-0.5629395246505737</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 22 0 9 3 -1.</_> - <_> - 25 0 3 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0181470401585102</threshold> - <left_val>-0.0320796482264996</left_val> - <right_val>0.3234755992889404</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 26 8 -1.</_> - <_> - 0 10 13 4 2.</_> - <_> - 13 14 13 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0473471917212009</threshold> - <left_val>-0.1738158017396927</left_val> - <right_val>0.5758044719696045</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 10 16 8 -1.</_> - <_> - 23 10 8 4 2.</_> - <_> - 15 14 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0598379410803318</threshold> - <left_val>0.4779787063598633</left_val> - <right_val>-0.1026028022170067</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 24 18 -1.</_> - <_> - 6 0 12 9 2.</_> - <_> - 18 9 12 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0527967996895313</threshold> - <left_val>-0.4798848927021027</left_val> - <right_val>0.1878775954246521</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 0 9 6 -1.</_> - <_> - 21 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0243854299187660</threshold> - <left_val>-0.3084166944026947</left_val> - <right_val>8.7605630978941917e-003</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 9 6 -1.</_> - <_> - 12 0 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0252883005887270</threshold> - <left_val>0.1391403973102570</left_val> - <right_val>-0.7109494209289551</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 30 1 5 14 -1.</_> - <_> - 30 8 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0216124504804611</threshold> - <left_val>-0.2328253984451294</left_val> - <right_val>0.0809946805238724</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 1 5 14 -1.</_> - <_> - 1 8 5 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.4023479092866182e-003</threshold> - <left_val>-0.2298990041017532</left_val> - <right_val>0.3788951039314270</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 8 26 6 -1.</_> - <_> - 23 8 13 3 2.</_> - <_> - 10 11 13 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1127460002899170</threshold> - <left_val>-0.0154747096821666</left_val> - <right_val>0.5703054070472717</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 28 6 -1.</_> - <_> - 0 8 14 3 2.</_> - <_> - 14 11 14 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0345168709754944</threshold> - <left_val>-0.1230008006095886</left_val> - <right_val>0.5677536725997925</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 0 24 12 -1.</_> - <_> - 24 0 12 6 2.</_> - <_> - 12 6 12 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0789848119020462</threshold> - <left_val>-0.1424216926097870</left_val> - <right_val>0.4694185853004456</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 1 14 2 -1.</_> - <_> - 3 1 14 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0153778595849872</threshold> - <left_val>0.6394686102867127</left_val> - <right_val>-0.1123619005084038</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 33 16 3 2 -1.</_> - <_> - 33 17 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.2373620595317334e-004</threshold> - <left_val>0.5558329820632935</left_val> - <right_val>-0.2724758088588715</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 0 9 14 -1.</_> - <_> - 15 0 3 14 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0247623901814222</threshold> - <left_val>-0.5040485858917236</left_val> - <right_val>0.1407779008150101</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 28 16 8 2 -1.</_> - <_> - 32 16 4 1 2.</_> - <_> - 28 17 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.4061157142277807e-005</threshold> - <left_val>0.3719528019428253</left_val> - <right_val>-0.2250299006700516</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 8 6 6 -1.</_> - <_> - 15 10 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0202563591301441</threshold> - <left_val>0.5105100870132446</left_val> - <right_val>-0.1429875940084457</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 6 22 6 -1.</_> - <_> - 24 6 11 3 2.</_> - <_> - 13 9 11 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0481228791177273</threshold> - <left_val>-0.0669795125722885</left_val> - <right_val>0.3662230968475342</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 26 4 -1.</_> - <_> - 0 10 13 2 2.</_> - <_> - 13 12 13 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0237878002226353</threshold> - <left_val>0.5081325173377991</left_val> - <right_val>-0.1290815025568008</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 24 16 4 2 -1.</_> - <_> - 24 17 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0520319920033216e-003</threshold> - <left_val>-0.1560467034578323</left_val> - <right_val>0.0662133172154427</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 16 3 2 -1.</_> - <_> - 9 17 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6640200521796942e-003</threshold> - <left_val>-0.7254558205604553</left_val> - <right_val>0.0823654532432556</right_val></_></_></trees> - <stage_threshold>-1.3777890205383301</stage_threshold> - <parent>8</parent> - <next>-1</next></_> - <_> - <!-- stage 10 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 7 18 8 -1.</_> - <_> - 3 7 9 4 2.</_> - <_> - 12 11 9 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0502246208488941</threshold> - <left_val>0.7084565758705139</left_val> - <right_val>-0.2558549940586090</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 23 0 8 4 -1.</_> - <_> - 23 0 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0140728699043393</threshold> - <left_val>0.0630331784486771</left_val> - <right_val>-0.0598385296761990</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 8 4 -1.</_> - <_> - 9 0 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0178040098398924</threshold> - <left_val>0.1941471993923187</left_val> - <right_val>-0.5844426751136780</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 10 24 3 -1.</_> - <_> - 14 11 8 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1304673999547958</threshold> - <left_val>-0.1151698008179665</left_val> - <right_val>0.8504030108451843</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 5 6 -1.</_> - <_> - 5 7 5 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0175068005919456</threshold> - <left_val>-0.2071896940469742</left_val> - <right_val>0.4643828868865967</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 16 26 2 -1.</_> - <_> - 18 16 13 1 2.</_> - <_> - 5 17 13 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.4240020476281643e-003</threshold> - <left_val>-0.6656516790390015</left_val> - <right_val>0.1403498947620392</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 7 24 4 -1.</_> - <_> - 0 7 12 2 2.</_> - <_> - 12 9 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0345711186528206</threshold> - <left_val>0.6511297821998596</left_val> - <right_val>-0.1490191966295242</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 23 14 13 4 -1.</_> - <_> - 23 15 13 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.2270249687135220e-003</threshold> - <left_val>-1.6027219826355577e-003</left_val> - <right_val>0.3895606100559235</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 10 18 8 -1.</_> - <_> - 2 10 9 4 2.</_> - <_> - 11 14 9 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0506620407104492</threshold> - <left_val>0.5803576707839966</left_val> - <right_val>-0.1514143943786621</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 10 6 4 -1.</_> - <_> - 15 11 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0715770125389099e-003</threshold> - <left_val>0.5300896763801575</left_val> - <right_val>-0.1449830979108810</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 24 2 -1.</_> - <_> - 0 6 12 1 2.</_> - <_> - 12 7 12 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0118635101243854</threshold> - <left_val>0.6729742288589478</left_val> - <right_val>-0.1106354966759682</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 0 18 18 -1.</_> - <_> - 17 9 18 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0605200305581093</threshold> - <left_val>-0.3316448926925659</left_val> - <right_val>0.2119556069374085</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 11 2 -1.</_> - <_> - 1 1 11 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.7340779826045036e-003</threshold> - <left_val>-0.6941440105438232</left_val> - <right_val>0.0727053135633469</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 6 8 12 -1.</_> - <_> - 19 6 4 6 2.</_> - <_> - 15 12 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0324861407279968</threshold> - <left_val>-0.5185081958770752</left_val> - <right_val>0.0592126213014126</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 32 12 -1.</_> - <_> - 2 1 16 6 2.</_> - <_> - 18 7 16 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0832797065377235</threshold> - <left_val>0.1206794008612633</left_val> - <right_val>-0.5309563279151917</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 29 10 7 8 -1.</_> - <_> - 29 12 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8782817581668496e-004</threshold> - <left_val>-0.2737655937671661</left_val> - <right_val>0.2716251909732819</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 2 8 10 -1.</_> - <_> - 12 2 4 5 2.</_> - <_> - 16 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0175391808152199</threshold> - <left_val>-0.5690230131149292</left_val> - <right_val>0.1228737011551857</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 12 6 4 -1.</_> - <_> - 15 13 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.8226347900927067e-003</threshold> - <left_val>0.4386585950851440</left_val> - <right_val>-0.1493742018938065</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 12 8 6 -1.</_> - <_> - 0 14 8 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0100575601682067</threshold> - <left_val>-0.6616886258125305</left_val> - <right_val>0.1144542992115021</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 9 26 8 -1.</_> - <_> - 23 9 13 4 2.</_> - <_> - 10 13 13 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0903454273939133</threshold> - <left_val>-0.0666652470827103</left_val> - <right_val>0.2870647907257080</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 22 10 -1.</_> - <_> - 7 8 11 5 2.</_> - <_> - 18 13 11 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0675872936844826</threshold> - <left_val>-0.5363761186599731</left_val> - <right_val>0.1123751997947693</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 9 8 3 -1.</_> - <_> - 14 10 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.1747528165578842e-003</threshold> - <left_val>0.4434241950511932</left_val> - <right_val>-0.1297765970230103</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 3 4 9 -1.</_> - <_> - 11 6 4 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0115505503490567</threshold> - <left_val>0.3273158073425293</left_val> - <right_val>-0.1700761020183563</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 29 14 2 2 -1.</_> - <_> - 29 14 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-1.7406829283572733e-004</threshold> - <left_val>0.1327867954969406</left_val> - <right_val>-0.1081293970346451</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 13 8 3 -1.</_> - <_> - 14 14 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.6040047891438007e-003</threshold> - <left_val>-0.1226582005620003</left_val> - <right_val>0.4412580132484436</right_val></_></_></trees> - <stage_threshold>-1.3266400098800659</stage_threshold> - <parent>9</parent> - <next>-1</next></_> - <_> - <!-- stage 11 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 3 7 8 -1.</_> - <_> - 9 5 7 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0469432808458805</threshold> - <left_val>0.6094344258308411</left_val> - <right_val>-0.2637800872325897</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 28 13 1 4 -1.</_> - <_> - 28 13 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-1.6899159527383745e-004</threshold> - <left_val>0.1665875017642975</left_val> - <right_val>-0.1254196017980576</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 13 4 1 -1.</_> - <_> - 8 13 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>2.7983370237052441e-003</threshold> - <left_val>0.1905744969844818</left_val> - <right_val>-0.6568077206611633</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 4 3 -1.</_> - <_> - 16 10 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0413960814476013e-003</threshold> - <left_val>-0.1731746941804886</left_val> - <right_val>0.6362075209617615</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 8 10 4 -1.</_> - <_> - 13 9 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.6033362895250320e-003</threshold> - <left_val>0.6025841832160950</left_val> - <right_val>-0.2316936999559403</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 8 8 3 -1.</_> - <_> - 14 9 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.8247945532202721e-003</threshold> - <left_val>-0.1756583005189896</left_val> - <right_val>0.7104166746139526</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 10 6 2 -1.</_> - <_> - 4 12 2 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-9.2786159366369247e-003</threshold> - <left_val>-0.6890857219696045</left_val> - <right_val>0.1789650022983551</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 10 6 3 -1.</_> - <_> - 16 11 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.0826768167316914e-003</threshold> - <left_val>-0.1706372052431107</left_val> - <right_val>0.5375748276710510</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 8 13 -1.</_> - <_> - 12 5 4 13 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0390073694288731</threshold> - <left_val>-0.6834635734558106</left_val> - <right_val>0.1441708058118820</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 36 8 -1.</_> - <_> - 18 0 18 4 2.</_> - <_> - 0 4 18 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0703379511833191</threshold> - <left_val>-0.6508566737174988</left_val> - <right_val>0.1008547991514206</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 5 8 12 -1.</_> - <_> - 1 5 4 6 2.</_> - <_> - 5 11 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0331666991114616</threshold> - <left_val>-0.1932571977376938</left_val> - <right_val>0.4779865145683289</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 8 18 10 -1.</_> - <_> - 27 8 9 5 2.</_> - <_> - 18 13 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0752889066934586</threshold> - <left_val>-0.0695677325129509</left_val> - <right_val>0.4125064909458160</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 18 10 -1.</_> - <_> - 0 8 9 5 2.</_> - <_> - 9 13 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0705017298460007</threshold> - <left_val>0.7157300710678101</left_val> - <right_val>-0.1022270023822784</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 5 14 3 -1.</_> - <_> - 11 6 14 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0122494902461767</threshold> - <left_val>-0.1061242967844009</left_val> - <right_val>0.6295958161354065</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 16 6 -1.</_> - <_> - 10 8 16 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0706446766853333</threshold> - <left_val>-0.0973746329545975</left_val> - <right_val>0.6762204170227051</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 24 16 -1.</_> - <_> - 19 2 12 8 2.</_> - <_> - 7 10 12 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1624888032674789</threshold> - <left_val>0.0527133606374264</left_val> - <right_val>-0.8494657278060913</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 18 15 -1.</_> - <_> - 6 6 6 5 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1380825042724609</threshold> - <left_val>0.1406479030847549</left_val> - <right_val>-0.4764721095561981</right_val></_></_></trees> - <stage_threshold>-1.4497200250625610</stage_threshold> - <parent>10</parent> - <next>-1</next></_> - <_> - <!-- stage 12 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 16 6 -1.</_> - <_> - 12 5 8 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0418823398649693</threshold> - <left_val>-0.8077452778816223</left_val> - <right_val>0.2640967071056366</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 29 0 6 11 -1.</_> - <_> - 31 2 2 11 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0536229908466339</threshold> - <left_val>0.5580704212188721</left_val> - <right_val>-0.2498968988656998</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 8 9 1 -1.</_> - <_> - 5 11 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>9.3709938228130341e-003</threshold> - <left_val>0.2650170028209686</left_val> - <right_val>-0.5990694761276245</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 17 3 -1.</_> - <_> - 10 7 17 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0139097301289439</threshold> - <left_val>-0.1470918059349060</left_val> - <right_val>0.7354667186737061</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 6 6 2 -1.</_> - <_> - 20 8 2 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0190035700798035</threshold> - <left_val>-0.1887511014938355</left_val> - <right_val>0.7487422227859497</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 11 12 3 -1.</_> - <_> - 13 12 12 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.9199850074946880e-003</threshold> - <left_val>-0.1599563956260681</left_val> - <right_val>0.5673577785491943</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 3 8 8 -1.</_> - <_> - 2 3 4 4 2.</_> - <_> - 6 7 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0247051399201155</threshold> - <left_val>0.7556992173194885</left_val> - <right_val>-0.1235088035464287</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 12 18 4 -1.</_> - <_> - 27 12 9 2 2.</_> - <_> - 18 14 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0160583592951298</threshold> - <left_val>-0.1282460987567902</left_val> - <right_val>0.5129454731941223</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 5 11 3 -1.</_> - <_> - 11 6 11 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.8288700208067894e-003</threshold> - <left_val>-0.1686663925647736</left_val> - <right_val>0.6152185201644898</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 7 14 4 -1.</_> - <_> - 14 8 14 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0175563395023346</threshold> - <left_val>-0.1090169996023178</left_val> - <right_val>0.5803176164627075</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 16 10 -1.</_> - <_> - 9 8 8 5 2.</_> - <_> - 17 13 8 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0421881191432476</threshold> - <left_val>0.1486624032258987</left_val> - <right_val>-0.6922233104705811</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 17 2 1 -1.</_> - <_> - 18 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.0687207840383053e-004</threshold> - <left_val>0.0315808691084385</left_val> - <right_val>-0.3700995147228241</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 10 5 3 -1.</_> - <_> - 13 11 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7651190757751465e-003</threshold> - <left_val>-0.2133754044771195</left_val> - <right_val>0.4704301059246063</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 17 2 1 -1.</_> - <_> - 18 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.2231520377099514e-003</threshold> - <left_val>-0.7818967103958130</left_val> - <right_val>0.0209542606025934</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 8 3 -1.</_> - <_> - 6 6 8 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>8.5432287305593491e-003</threshold> - <left_val>-0.1455352008342743</left_val> - <right_val>0.6789504289627075</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 17 2 1 -1.</_> - <_> - 18 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0657219283748418e-004</threshold> - <left_val>0.2437624037265778</left_val> - <right_val>-0.0675588026642799</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 5 3 -1.</_> - <_> - 10 6 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6798270195722580e-003</threshold> - <left_val>0.6684169769287109</left_val> - <right_val>-0.1388788074254990</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 5 34 10 -1.</_> - <_> - 19 5 17 5 2.</_> - <_> - 2 10 17 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1220175996422768</threshold> - <left_val>0.1102816015481949</left_val> - <right_val>-0.7530742287635803</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 12 3 -1.</_> - <_> - 6 5 6 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0204043406993151</threshold> - <left_val>0.1645383983850479</left_val> - <right_val>-0.5223162174224854</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 6 1 6 -1.</_> - <_> - 35 8 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.0343370791524649e-004</threshold> - <left_val>-0.1301285028457642</left_val> - <right_val>0.2635852992534638</right_val></_></_></trees> - <stage_threshold>-1.4622910022735596</stage_threshold> - <parent>11</parent> - <next>-1</next></_> - <_> - <!-- stage 13 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 13 6 -1.</_> - <_> - 10 8 13 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0727917104959488</threshold> - <left_val>-0.1372790038585663</left_val> - <right_val>0.8291574716567993</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 5 6 4 -1.</_> - <_> - 15 6 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.5939209200441837e-003</threshold> - <left_val>-0.1678012013435364</left_val> - <right_val>0.5683972239494324</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 11 4 -1.</_> - <_> - 4 3 11 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0235623903572559</threshold> - <left_val>0.6500560045242310</left_val> - <right_val>-0.1424535065889359</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 26 6 10 6 -1.</_> - <_> - 31 6 5 3 2.</_> - <_> - 26 9 5 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0173929501324892</threshold> - <left_val>-0.1529144942760468</left_val> - <right_val>0.3425354063510895</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 7 11 8 -1.</_> - <_> - 10 9 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0718258023262024</threshold> - <left_val>-0.0991311371326447</left_val> - <right_val>0.8279678821563721</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 28 2 4 9 -1.</_> - <_> - 29 3 2 9 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0136738000437617</threshold> - <left_val>-0.0417872704565525</left_val> - <right_val>0.5078148245811462</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 2 10 4 -1.</_> - <_> - 7 3 10 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0285859592258930</threshold> - <left_val>0.7011532187461853</left_val> - <right_val>-0.1314471065998077</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 31 0 5 2 -1.</_> - <_> - 31 1 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1845720261335373e-004</threshold> - <left_val>0.2845467031002045</left_val> - <right_val>-0.3123202919960022</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 16 12 -1.</_> - <_> - 10 10 16 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0520956814289093</threshold> - <left_val>0.4181294143199921</left_val> - <right_val>-0.1699313074350357</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 4 4 3 -1.</_> - <_> - 18 5 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.2256329432129860e-003</threshold> - <left_val>-0.0904662087559700</left_val> - <right_val>0.3008623123168945</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 10 6 6 -1.</_> - <_> - 11 12 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0347716398537159</threshold> - <left_val>-0.0842167884111404</left_val> - <right_val>0.7801663875579834</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 8 1 10 -1.</_> - <_> - 35 13 1 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3356630224734545e-003</threshold> - <left_val>0.3316453099250794</left_val> - <right_val>-0.1696092039346695</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 36 8 -1.</_> - <_> - 18 10 18 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2510198056697846</threshold> - <left_val>-0.1392046958208084</left_val> - <right_val>0.6633893251419067</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 7 6 8 -1.</_> - <_> - 19 7 3 4 2.</_> - <_> - 16 11 3 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.9689997732639313e-003</threshold> - <left_val>-0.3713817000389099</left_val> - <right_val>0.1290012001991272</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 6 8 4 -1.</_> - <_> - 7 6 4 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0143037298694253</threshold> - <left_val>0.1572919934988022</left_val> - <right_val>-0.5093821287155151</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 21 11 4 3 -1.</_> - <_> - 21 12 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0856059901416302e-003</threshold> - <left_val>0.4656791090965271</left_val> - <right_val>-0.0662708207964897</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 1 8 -1.</_> - <_> - 0 13 1 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6260809176601470e-004</threshold> - <left_val>0.2933731079101563</left_val> - <right_val>-0.2333986014127731</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 7 6 4 -1.</_> - <_> - 29 9 2 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0344354808330536</threshold> - <left_val>0.7002474069595337</left_val> - <right_val>-0.1013351008296013</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 14 8 4 -1.</_> - <_> - 12 14 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.2570890188217163e-003</threshold> - <left_val>-0.5628641247749329</left_val> - <right_val>0.1314862072467804</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 17 2 1 -1.</_> - <_> - 18 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.8352940939366817e-004</threshold> - <left_val>0.0262274891138077</left_val> - <right_val>-0.2605080008506775</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 4 11 4 -1.</_> - <_> - 10 5 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0129999397322536</threshold> - <left_val>0.5311700105667114</left_val> - <right_val>-0.1202305033802986</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 12 2 4 -1.</_> - <_> - 17 13 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0009329998865724e-003</threshold> - <left_val>0.3964129984378815</left_val> - <right_val>-0.1599515974521637</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 4 5 3 -1.</_> - <_> - 13 5 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.1314200498163700e-003</threshold> - <left_val>-0.1492992043495178</left_val> - <right_val>0.4295912086963654</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 12 11 2 -1.</_> - <_> - 13 13 11 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7364455685019493e-003</threshold> - <left_val>-0.1127102002501488</left_val> - <right_val>0.4945647120475769</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 16 2 2 -1.</_> - <_> - 1 16 1 1 2.</_> - <_> - 2 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.6352869463153183e-004</threshold> - <left_val>-0.1212491989135742</left_val> - <right_val>0.4943937957286835</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 7 6 4 -1.</_> - <_> - 29 9 2 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0538859590888023</threshold> - <left_val>0.7035598754882813</left_val> - <right_val>-0.0132305501028895</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 7 6 6 -1.</_> - <_> - 4 9 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.2885672301054001e-003</threshold> - <left_val>-0.1754055023193359</left_val> - <right_val>0.3567946851253510</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 30 6 4 5 -1.</_> - <_> - 31 7 2 5 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.9539399594068527e-003</threshold> - <left_val>-0.0998840034008026</left_val> - <right_val>0.3137167096138001</right_val></_></_></trees> - <stage_threshold>-1.3885619640350342</stage_threshold> - <parent>12</parent> - <next>-1</next></_> - <_> - <!-- stage 14 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 20 7 -1.</_> - <_> - 13 5 10 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0567523688077927</threshold> - <left_val>-0.3257648050785065</left_val> - <right_val>0.3737593889236450</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 30 2 3 12 -1.</_> - <_> - 30 8 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.0906039327383041e-003</threshold> - <left_val>-0.1391862928867340</left_val> - <right_val>0.1503984034061432</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 12 4 -1.</_> - <_> - 4 2 12 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0412988215684891</threshold> - <left_val>0.4702607989311218</left_val> - <right_val>-0.1617936044931412</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 36 6 -1.</_> - <_> - 12 10 12 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4775018990039825</threshold> - <left_val>-0.1006157994270325</left_val> - <right_val>0.7635074257850647</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 5 30 6 -1.</_> - <_> - 13 7 10 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4226649105548859</threshold> - <left_val>-0.0351909101009369</left_val> - <right_val>0.8303126096725464</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 4 12 9 -1.</_> - <_> - 18 4 4 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0330318994820118</threshold> - <left_val>-0.3750554919242859</left_val> - <right_val>0.0489026196300983</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 17 6 1 -1.</_> - <_> - 3 17 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1923770216526464e-004</threshold> - <left_val>-0.2661466896533966</left_val> - <right_val>0.2234652042388916</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 0 1 2 -1.</_> - <_> - 34 0 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.2101400904357433e-003</threshold> - <left_val>8.7575968354940414e-003</left_val> - <right_val>-0.5938351750373840</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 2 1 -1.</_> - <_> - 2 0 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>3.3337279455736279e-004</threshold> - <left_val>-0.2122765928506851</left_val> - <right_val>0.2473503947257996</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 31 3 3 8 -1.</_> - <_> - 32 4 1 8 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0117938900366426</threshold> - <left_val>-0.0689979493618011</left_val> - <right_val>0.5898082852363586</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 26 12 -1.</_> - <_> - 5 6 13 6 2.</_> - <_> - 18 12 13 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1143207997083664</threshold> - <left_val>-0.7733368277549744</left_val> - <right_val>0.0628622919321060</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 4 12 9 -1.</_> - <_> - 18 4 4 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0824010074138641</threshold> - <left_val>0.0168252792209387</left_val> - <right_val>-0.6170011758804321</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 10 10 -1.</_> - <_> - 13 7 5 5 2.</_> - <_> - 18 12 5 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0181261505931616</threshold> - <left_val>0.0995334684848785</left_val> - <right_val>-0.3830915987491608</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 30 5 4 6 -1.</_> - <_> - 31 6 2 6 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>8.9282449334859848e-003</threshold> - <left_val>-0.1010973975062370</left_val> - <right_val>0.2948305010795593</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 6 4 -1.</_> - <_> - 5 6 6 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0174371004104614</threshold> - <left_val>0.4614987075328827</left_val> - <right_val>-0.1050636023283005</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 29 5 4 5 -1.</_> - <_> - 30 6 2 5 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0112803103402257</threshold> - <left_val>0.4561164975166321</left_val> - <right_val>-0.1013116016983986</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 5 4 -1.</_> - <_> - 6 6 5 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.0190089754760265e-003</threshold> - <left_val>-0.1368626952171326</left_val> - <right_val>0.4173265993595123</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 36 1 -1.</_> - <_> - 12 0 12 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.2439709175378084e-003</threshold> - <left_val>0.2321648001670837</left_val> - <right_val>-0.1791536957025528</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 24 6 -1.</_> - <_> - 14 5 8 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3561589121818543</threshold> - <left_val>-0.0486268103122711</left_val> - <right_val>0.9537345767021179</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 12 6 3 -1.</_> - <_> - 15 13 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.8440749049186707e-003</threshold> - <left_val>-0.1028828024864197</left_val> - <right_val>0.3671778142452240</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 1 9 17 -1.</_> - <_> - 14 1 3 17 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0609500296413898</threshold> - <left_val>0.0561417415738106</left_val> - <right_val>-0.6458569765090942</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 18 1 18 10 -1.</_> - <_> - 18 1 9 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1814922988414764</threshold> - <left_val>0.0308063905686140</left_val> - <right_val>-0.4604896008968353</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 18 10 -1.</_> - <_> - 9 1 9 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0923592597246170</threshold> - <left_val>-0.4524821043014526</left_val> - <right_val>0.0881522372364998</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 30 7 4 5 -1.</_> - <_> - 31 8 2 5 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.6072998344898224e-003</threshold> - <left_val>-0.0971223264932632</left_val> - <right_val>0.2155224978923798</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 1 3 -1.</_> - <_> - 0 11 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6946710790507495e-004</threshold> - <left_val>-0.4089371860027313</left_val> - <right_val>0.0800421908497810</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 33 16 2 2 -1.</_> - <_> - 34 16 1 1 2.</_> - <_> - 33 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0301820293534547e-004</threshold> - <left_val>-0.1153035983443260</left_val> - <right_val>0.2795535027980804</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 16 2 2 -1.</_> - <_> - 1 16 1 1 2.</_> - <_> - 2 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7936851256527007e-004</threshold> - <left_val>-0.1139610037207604</left_val> - <right_val>0.2931660115718842</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 36 3 -1.</_> - <_> - 12 9 12 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2467595934867859</threshold> - <left_val>-0.0385956317186356</left_val> - <right_val>0.8264998197555542</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 7 8 4 -1.</_> - <_> - 14 8 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.4232958033680916e-003</threshold> - <left_val>0.3299596905708313</left_val> - <right_val>-0.1164536997675896</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 9 5 3 -1.</_> - <_> - 17 10 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.2311567813158035e-003</threshold> - <left_val>0.2714211940765381</left_val> - <right_val>-0.1081148013472557</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 1 2 -1.</_> - <_> - 4 0 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>1.5653009759262204e-003</threshold> - <left_val>0.0782537832856178</left_val> - <right_val>-0.5209766030311585</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 31 0 3 2 -1.</_> - <_> - 31 0 3 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-5.0341398455202579e-003</threshold> - <left_val>0.2948805987834930</left_val> - <right_val>-0.0469605103135109</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 2 3 -1.</_> - <_> - 5 0 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>1.4283140189945698e-003</threshold> - <left_val>-0.1379459947347641</left_val> - <right_val>0.2432370930910111</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 13 36 5 -1.</_> - <_> - 0 13 18 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1903136968612671</threshold> - <left_val>-0.0520935095846653</left_val> - <right_val>0.6870803236961365</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 4 3 -1.</_> - <_> - 5 4 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>8.1368777900934219e-003</threshold> - <left_val>-0.0533115193247795</left_val> - <right_val>0.5827271938323975</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 28 7 6 3 -1.</_> - <_> - 30 9 2 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0467283688485622</threshold> - <left_val>0.3552536070346832</left_val> - <right_val>-0.0178062599152327</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 3 6 -1.</_> - <_> - 6 9 3 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0143171697854996</threshold> - <left_val>-0.1262664049863815</left_val> - <right_val>0.2696101069450378</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 5 18 10 -1.</_> - <_> - 23 5 9 5 2.</_> - <_> - 14 10 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0961097329854965</threshold> - <left_val>0.3411748111248016</left_val> - <right_val>-0.0392176099121571</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 18 10 -1.</_> - <_> - 4 5 9 5 2.</_> - <_> - 13 10 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0748788118362427</threshold> - <left_val>-0.0648199021816254</left_val> - <right_val>0.5671138167381287</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 32 17 3 1 -1.</_> - <_> - 33 17 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.1972299843328074e-005</threshold> - <left_val>0.2874209880828857</left_val> - <right_val>-0.1642889976501465</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 17 3 1 -1.</_> - <_> - 2 17 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0099039829801768e-004</threshold> - <left_val>0.2659021019935608</left_val> - <right_val>-0.1299035996198654</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 26 2 -1.</_> - <_> - 18 0 13 1 2.</_> - <_> - 5 1 13 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0155834900215268</threshold> - <left_val>0.0363226197659969</left_val> - <right_val>-0.8874331712722778</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 27 9 -1.</_> - <_> - 9 6 9 3 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7313341423869133e-003</threshold> - <left_val>0.1628185957670212</left_val> - <right_val>-0.1971620023250580</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 0 18 12 -1.</_> - <_> - 13 6 18 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0452514104545116</threshold> - <left_val>-0.2031500935554504</left_val> - <right_val>0.1573408991098404</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 17 4 1 -1.</_> - <_> - 1 17 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8729529003612697e-004</threshold> - <left_val>-0.1244959011673927</left_val> - <right_val>0.2565822899341583</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 29 13 1 3 -1.</_> - <_> - 28 14 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-2.1028579212725163e-003</threshold> - <left_val>-0.5088729262351990</left_val> - <right_val>0.0340831801295280</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 12 8 6 -1.</_> - <_> - 0 14 8 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.9328099228441715e-003</threshold> - <left_val>-0.3393375873565674</left_val> - <right_val>0.0930555686354637</right_val></_></_> - <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 23 7 3 3 -1.</_> - <_> - 24 7 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.1205590348690748e-003</threshold> - <left_val>-0.0227940604090691</left_val> - <right_val>0.2379353046417236</right_val></_></_> - <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 1 12 6 -1.</_> - <_> - 11 3 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0780286788940430</threshold> - <left_val>-0.0445036217570305</left_val> - <right_val>0.6776394248008728</right_val></_></_> - <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 10 26 8 -1.</_> - <_> - 18 10 13 4 2.</_> - <_> - 5 14 13 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0424769781529903</threshold> - <left_val>0.0925821065902710</left_val> - <right_val>-0.3536301851272583</right_val></_></_> - <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 12 9 6 -1.</_> - <_> - 14 12 3 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0257683005183935</threshold> - <left_val>-0.9091991186141968</left_val> - <right_val>0.0266928393393755</right_val></_></_> - <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 12 12 3 -1.</_> - <_> - 18 13 4 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0614446699619293</threshold> - <left_val>-0.0249543990939856</left_val> - <right_val>0.7212049961090088</right_val></_></_> - <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 12 12 3 -1.</_> - <_> - 14 13 4 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.5776318982243538e-003</threshold> - <left_val>0.1772899031639099</left_val> - <right_val>-0.1972344964742661</right_val></_></_></trees> - <stage_threshold>-1.2766569852828979</stage_threshold> - <parent>13</parent> - <next>-1</next></_> - <_> - <!-- stage 15 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 6 27 6 -1.</_> - <_> - 13 8 9 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2858596146106720</threshold> - <left_val>-0.1539604961872101</left_val> - <right_val>0.6624677181243897</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 9 5 4 -1.</_> - <_> - 17 10 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.2271259054541588e-003</threshold> - <left_val>-0.1074633970856667</left_val> - <right_val>0.4311806857585907</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 16 2 -1.</_> - <_> - 0 0 8 1 2.</_> - <_> - 8 1 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.2924109362065792e-003</threshold> - <left_val>-0.1983013004064560</left_val> - <right_val>0.3842228949069977</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 22 0 8 8 -1.</_> - <_> - 26 0 4 4 2.</_> - <_> - 22 4 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0140045098960400</threshold> - <left_val>-0.1924948990345001</left_val> - <right_val>0.3442491888999939</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 32 12 -1.</_> - <_> - 1 0 16 6 2.</_> - <_> - 17 6 16 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0960232019424438</threshold> - <left_val>0.1299059987068176</left_val> - <right_val>-0.6065304875373840</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 28 7 6 10 -1.</_> - <_> - 31 7 3 5 2.</_> - <_> - 28 12 3 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1803720891475677e-003</threshold> - <left_val>-0.1904646009206772</left_val> - <right_val>0.1891862004995346</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 7 6 10 -1.</_> - <_> - 2 7 3 5 2.</_> - <_> - 5 12 3 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.2172285765409470e-003</threshold> - <left_val>-0.2518267929553986</left_val> - <right_val>0.2664459049701691</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 20 10 3 3 -1.</_> - <_> - 20 11 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4542760327458382e-003</threshold> - <left_val>0.2710269093513489</left_val> - <right_val>-0.1204148977994919</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 10 3 3 -1.</_> - <_> - 13 11 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0185449868440628e-003</threshold> - <left_val>-0.1353860944509506</left_val> - <right_val>0.4733603000640869</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 16 6 2 -1.</_> - <_> - 19 16 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.4214779734611511e-003</threshold> - <left_val>-0.5049971938133240</left_val> - <right_val>0.1042480990290642</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 11 7 3 -1.</_> - <_> - 13 12 7 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5980763435363770e-003</threshold> - <left_val>-0.1034729033708572</left_val> - <right_val>0.5837283730506897</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 25 13 3 2 -1.</_> - <_> - 25 13 3 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.1849957779049873e-003</threshold> - <left_val>0.0588967092335224</left_val> - <right_val>-0.4623228907585144</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 10 4 4 -1.</_> - <_> - 13 11 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6107750385999680e-003</threshold> - <left_val>0.3783561885356903</left_val> - <right_val>-0.1259022951126099</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 16 18 2 -1.</_> - <_> - 26 16 9 1 2.</_> - <_> - 17 17 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8978679329156876e-003</threshold> - <left_val>-0.1369954943656921</left_val> - <right_val>0.2595148086547852</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 13 4 1 -1.</_> - <_> - 9 13 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.2606070637702942e-003</threshold> - <left_val>0.0882339626550674</left_val> - <right_val>-0.6390284895896912</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 1 2 1 -1.</_> - <_> - 34 1 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-4.2996238917112350e-003</threshold> - <left_val>-0.7953972816467285</left_val> - <right_val>0.0170935597270727</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 24 6 -1.</_> - <_> - 13 6 8 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3542361855506897</threshold> - <left_val>-0.0593450404703617</left_val> - <right_val>0.8557919859886169</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 33 16 3 2 -1.</_> - <_> - 33 17 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.0245838570408523e-004</threshold> - <left_val>0.3147065043449402</left_val> - <right_val>-0.1448609977960587</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 17 36 1 -1.</_> - <_> - 18 17 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0271694902330637</threshold> - <left_val>-0.1249295026063919</left_val> - <right_val>0.4280903935432434</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 1 2 1 -1.</_> - <_> - 34 1 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>3.4571529831737280e-003</threshold> - <left_val>0.0397093296051025</left_val> - <right_val>-0.7089157104492188</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 1 2 -1.</_> - <_> - 2 1 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>2.1742798853665590e-003</threshold> - <left_val>0.0658724531531334</left_val> - <right_val>-0.6949694156646729</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 22 0 8 10 -1.</_> - <_> - 24 2 4 10 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0252638105303049</threshold> - <left_val>-0.1169395968317986</left_val> - <right_val>0.1904976963996887</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 4 8 12 -1.</_> - <_> - 12 4 4 6 2.</_> - <_> - 16 10 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0247209891676903</threshold> - <left_val>-0.4965795874595642</left_val> - <right_val>0.1017538011074066</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 26 6 6 6 -1.</_> - <_> - 29 6 3 3 2.</_> - <_> - 26 9 3 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0103848800063133</threshold> - <left_val>-0.1148673966526985</left_val> - <right_val>0.3374153077602387</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 4 6 -1.</_> - <_> - 5 6 2 3 2.</_> - <_> - 7 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.0045028328895569e-003</threshold> - <left_val>-0.1096355020999908</left_val> - <right_val>0.3925519883632660</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 29 5 2 4 -1.</_> - <_> - 29 5 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.1279620751738548e-003</threshold> - <left_val>-0.0649081915616989</left_val> - <right_val>0.4042040109634399</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 18 3 -1.</_> - <_> - 7 5 18 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0197004191577435</threshold> - <left_val>-0.0793758779764175</left_val> - <right_val>0.5308234095573425</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 29 13 2 3 -1.</_> - <_> - 28 14 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.2097331024706364e-003</threshold> - <left_val>0.0407970212399960</left_val> - <right_val>-0.6044098734855652</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 3 3 -1.</_> - <_> - 8 6 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.4459570199251175e-003</threshold> - <left_val>-0.1038623005151749</left_val> - <right_val>0.4093598127365112</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 16 22 2 -1.</_> - <_> - 18 16 11 1 2.</_> - <_> - 7 17 11 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.9610428288578987e-003</threshold> - <left_val>-0.5291494727134705</left_val> - <right_val>0.0805394500494003</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 1 3 -1.</_> - <_> - 0 3 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.7519221445545554e-004</threshold> - <left_val>0.0638044029474258</left_val> - <right_val>-0.5863661766052246</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 3 20 6 -1.</_> - <_> - 26 3 10 3 2.</_> - <_> - 16 6 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0605248510837555</threshold> - <left_val>-0.0337128005921841</left_val> - <right_val>0.2631115913391113</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 8 6 -1.</_> - <_> - 12 5 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0103538101539016</threshold> - <left_val>-0.4792002141475678</left_val> - <right_val>0.0800439566373825</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 8 34 8 -1.</_> - <_> - 18 8 17 4 2.</_> - <_> - 1 12 17 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0227775108069181</threshold> - <left_val>-0.3116275072097778</left_val> - <right_val>0.1189998015761375</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 9 8 8 -1.</_> - <_> - 14 9 4 4 2.</_> - <_> - 18 13 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0224688798189163</threshold> - <left_val>-0.6608346104621887</left_val> - <right_val>0.0522344894707203</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 0 1 3 -1.</_> - <_> - 35 1 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.8432162040844560e-004</threshold> - <left_val>0.0546303391456604</left_val> - <right_val>-0.4639565944671631</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 8 3 5 -1.</_> - <_> - 16 8 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.6177870351821184e-003</threshold> - <left_val>0.6744704246520996</left_val> - <right_val>-0.0587895289063454</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 19 0 10 1 -1.</_> - <_> - 19 0 5 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0300888605415821</threshold> - <left_val>0.0331335216760635</left_val> - <right_val>-0.4646137058734894</right_val></_></_></trees> - <stage_threshold>-1.4061349630355835</stage_threshold> - <parent>14</parent> - <next>-1</next></_> - <_> - <!-- stage 16 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 9 6 -1.</_> - <_> - 7 5 9 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0726009905338287</threshold> - <left_val>0.6390709280967712</left_val> - <right_val>-0.1512455046176910</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 24 6 -1.</_> - <_> - 14 8 8 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3471255898475647</threshold> - <left_val>-0.0790246576070786</left_val> - <right_val>0.7955042123794556</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 8 27 6 -1.</_> - <_> - 13 10 9 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3429723083972931</threshold> - <left_val>-0.1230095997452736</left_val> - <right_val>0.6572809815406799</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 27 6 -1.</_> - <_> - 14 6 9 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3561694025993347</threshold> - <left_val>-0.0537334382534027</left_val> - <right_val>0.8285108208656311</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 5 6 -1.</_> - <_> - 5 8 5 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.0840700753033161e-003</threshold> - <left_val>-0.1284721046686173</left_val> - <right_val>0.3382267951965332</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 0 1 2 -1.</_> - <_> - 35 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6281309945043176e-004</threshold> - <left_val>0.3035660982131958</left_val> - <right_val>-0.2518202960491180</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 10 3 -1.</_> - <_> - 3 4 10 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0112819001078606</threshold> - <left_val>-0.0839143469929695</left_val> - <right_val>0.4347592890262604</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 29 5 2 4 -1.</_> - <_> - 29 5 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.4357059784233570e-003</threshold> - <left_val>-0.0670880377292633</left_val> - <right_val>0.3722797930240631</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 28 16 -1.</_> - <_> - 3 0 14 8 2.</_> - <_> - 17 8 14 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0905762165784836</threshold> - <left_val>-0.5831961035728455</left_val> - <right_val>0.0801467597484589</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 31 0 4 2 -1.</_> - <_> - 31 0 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>8.8247694075107574e-003</threshold> - <left_val>0.1290193051099777</left_val> - <right_val>-0.4760313034057617</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 9 3 9 -1.</_> - <_> - 4 12 3 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6147770695388317e-003</threshold> - <left_val>-0.4000220894813538</left_val> - <right_val>0.1124631017446518</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 32 16 4 2 -1.</_> - <_> - 32 17 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.5541300419718027e-004</threshold> - <left_val>0.3238615989685059</left_val> - <right_val>-0.2333187013864517</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 0 1 10 -1.</_> - <_> - 17 0 1 5 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0265476293861866</threshold> - <left_val>0.0723338723182678</left_val> - <right_val>-0.5837839841842651</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 4 14 8 -1.</_> - <_> - 17 4 7 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0513831414282322</threshold> - <left_val>-0.2244618982076645</left_val> - <right_val>0.0409497395157814</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 11 4 -1.</_> - <_> - 6 2 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.3701129723340273e-003</threshold> - <left_val>-0.1671708971261978</left_val> - <right_val>0.2552697062492371</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 0 1 2 -1.</_> - <_> - 35 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.2581920493394136e-003</threshold> - <left_val>-0.9207922816276550</left_val> - <right_val>3.4371060319244862e-003</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 2 -1.</_> - <_> - 0 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3282749569043517e-004</threshold> - <left_val>0.1857322007417679</left_val> - <right_val>-0.2249896973371506</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 33 0 2 1 -1.</_> - <_> - 33 0 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-2.8032590635120869e-003</threshold> - <left_val>-0.8589754104614258</left_val> - <right_val>0.0463845208287239</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 1 2 -1.</_> - <_> - 3 0 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>1.3141379458829761e-003</threshold> - <left_val>0.0796270668506622</left_val> - <right_val>-0.4610596895217896</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 17 36 1 -1.</_> - <_> - 9 17 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0638845413923264</threshold> - <left_val>-0.0534401498734951</left_val> - <right_val>0.8104500174522400</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 13 3 1 -1.</_> - <_> - 8 14 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-1.9811019301414490e-003</threshold> - <left_val>-0.6382514834403992</left_val> - <right_val>0.0766435563564301</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 4 14 8 -1.</_> - <_> - 17 4 7 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0133598595857620</threshold> - <left_val>-0.0950375497341156</left_val> - <right_val>0.0625333487987518</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 16 4 2 -1.</_> - <_> - 0 17 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0935300088021904e-004</threshold> - <left_val>0.1747954040765762</left_val> - <right_val>-0.2287603020668030</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 12 10 3 -1.</_> - <_> - 13 13 10 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0119106303900480</threshold> - <left_val>-0.0770419836044312</left_val> - <right_val>0.5045837759971619</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 12 36 6 -1.</_> - <_> - 18 12 18 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2395170032978058</threshold> - <left_val>-0.0651228874921799</left_val> - <right_val>0.5042074918746948</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 27 6 -1.</_> - <_> - 14 5 9 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3983140885829926</threshold> - <left_val>-0.0299998205155134</left_val> - <right_val>0.7968547940254211</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 5 3 -1.</_> - <_> - 8 6 5 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>6.1875800602138042e-003</threshold> - <left_val>-0.0853391736745834</left_val> - <right_val>0.3945176899433136</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 7 12 4 -1.</_> - <_> - 15 7 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.4047123566269875e-003</threshold> - <left_val>-0.4344133138656616</left_val> - <right_val>0.0826191008090973</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 5 8 4 -1.</_> - <_> - 15 5 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0117366304621100</threshold> - <left_val>0.0694831609725952</left_val> - <right_val>-0.4870649874210358</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 14 6 4 -1.</_> - <_> - 16 14 3 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0151767702773213</threshold> - <left_val>-0.5854120850563049</left_val> - <right_val>0.0328795611858368</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 5 3 -1.</_> - <_> - 14 11 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0744259711354971e-003</threshold> - <left_val>-0.1314608007669449</left_val> - <right_val>0.2546674013137817</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 25 3 6 4 -1.</_> - <_> - 25 4 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.9391339048743248e-003</threshold> - <left_val>-0.1086023002862930</left_val> - <right_val>0.2783496081829071</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 6 6 8 -1.</_> - <_> - 3 8 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1510310471057892e-003</threshold> - <left_val>-0.1575057953596115</left_val> - <right_val>0.2087786048650742</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 4 5 6 -1.</_> - <_> - 27 6 5 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.3775361739099026e-003</threshold> - <left_val>-0.1320703029632568</left_val> - <right_val>0.3767293989658356</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 6 9 -1.</_> - <_> - 4 4 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0221741795539856</threshold> - <left_val>-0.0901802927255630</left_val> - <right_val>0.4157527089118958</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 21 9 2 4 -1.</_> - <_> - 21 10 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.9948610570281744e-003</threshold> - <left_val>0.2560858130455017</left_val> - <right_val>-0.0990849286317825</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 34 4 -1.</_> - <_> - 1 10 17 2 2.</_> - <_> - 18 12 17 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0315575599670410</threshold> - <left_val>0.0741889998316765</left_val> - <right_val>-0.5494022965431213</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 15 2 3 -1.</_> - <_> - 34 16 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.3111158447572961e-005</threshold> - <left_val>0.3032462894916534</left_val> - <right_val>-0.1778181046247482</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 2 2 -1.</_> - <_> - 3 0 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-3.2675920519977808e-003</threshold> - <left_val>-0.6721243262290955</left_val> - <right_val>0.0591883286833763</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 33 0 1 2 -1.</_> - <_> - 33 0 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.2293380829505622e-004</threshold> - <left_val>-0.1103409975767136</left_val> - <right_val>0.1257317960262299</right_val></_></_></trees> - <stage_threshold>-1.3384460210800171</stage_threshold> - <parent>15</parent> - <next>-1</next></_> - <_> - <!-- stage 17 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 10 8 -1.</_> - <_> - 6 2 10 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0425620190799236</threshold> - <left_val>0.3334665894508362</left_val> - <right_val>-0.2986198067665100</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 6 30 6 -1.</_> - <_> - 13 8 10 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4182719886302948</threshold> - <left_val>-0.0951386988162994</left_val> - <right_val>0.7570992112159729</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 10 4 -1.</_> - <_> - 13 8 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0202563796192408</threshold> - <left_val>0.4778389036655426</left_val> - <right_val>-0.1459210067987442</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 5 6 12 -1.</_> - <_> - 19 5 3 6 2.</_> - <_> - 16 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0189483091235161</threshold> - <left_val>-0.3872750103473663</left_val> - <right_val>0.0524798892438412</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 1 4 6 -1.</_> - <_> - 8 3 4 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0405505895614624</threshold> - <left_val>0.5464624762535095</left_val> - <right_val>-0.0813998579978943</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 7 33 6 -1.</_> - <_> - 13 9 11 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.5187274813652039</threshold> - <left_val>-0.0279305391013622</left_val> - <right_val>0.8458098173141480</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 6 30 3 -1.</_> - <_> - 13 7 10 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2071361988782883</threshold> - <left_val>-0.0588508695363998</left_val> - <right_val>0.7960156202316284</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 11 6 3 -1.</_> - <_> - 15 12 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.1972572952508926e-003</threshold> - <left_val>-0.0999663695693016</left_val> - <right_val>0.4983156025409699</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 5 6 12 -1.</_> - <_> - 14 5 3 6 2.</_> - <_> - 17 11 3 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0174453891813755</threshold> - <left_val>0.0680409595370293</left_val> - <right_val>-0.5669981837272644</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 12 26 6 -1.</_> - <_> - 18 12 13 3 2.</_> - <_> - 5 15 13 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0563102811574936</threshold> - <left_val>-0.6862804293632507</left_val> - <right_val>0.0742225572466850</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 12 27 3 -1.</_> - <_> - 13 13 9 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1809556037187576</threshold> - <left_val>-0.0528081282973289</left_val> - <right_val>0.8448318243026733</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 11 4 3 -1.</_> - <_> - 16 12 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.3450690787285566e-003</threshold> - <left_val>0.2839694023132324</left_val> - <right_val>-0.1112336963415146</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 12 4 2 -1.</_> - <_> - 6 13 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>3.8937770295888186e-003</threshold> - <left_val>0.0654993131756783</left_val> - <right_val>-0.5792096257209778</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 17 2 1 -1.</_> - <_> - 34 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.9383721741614863e-005</threshold> - <left_val>-0.3093047142028809</left_val> - <right_val>0.4223710894584656</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 1 12 -1.</_> - <_> - 16 0 1 6 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0338991582393646</threshold> - <left_val>0.0307075399905443</left_val> - <right_val>-0.7229980826377869</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 17 34 1 -1.</_> - <_> - 2 17 17 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0336443893611431</threshold> - <left_val>0.4266444146633148</left_val> - <right_val>-0.0720057785511017</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 18 4 -1.</_> - <_> - 5 4 18 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0388077609241009</threshold> - <left_val>-0.0417135208845139</left_val> - <right_val>0.6599556803703308</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 17 2 1 -1.</_> - <_> - 34 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.9149548683781177e-005</threshold> - <left_val>0.4933550059795380</left_val> - <right_val>-0.2426010966300964</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 2 -1.</_> - <_> - 0 1 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7580570895224810e-004</threshold> - <left_val>0.1791010946035385</left_val> - <right_val>-0.2192519009113312</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 5 16 3 -1.</_> - <_> - 15 6 16 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0126366596668959</threshold> - <left_val>-0.0712336227297783</left_val> - <right_val>0.2534261941909790</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 9 3 3 -1.</_> - <_> - 13 10 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.3681739587336779e-003</threshold> - <left_val>0.3310086131095886</left_val> - <right_val>-0.1020777970552445</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 20 4 8 14 -1.</_> - <_> - 22 4 4 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0411845296621323</threshold> - <left_val>-0.4787198901176453</left_val> - <right_val>0.0274448096752167</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 20 6 -1.</_> - <_> - 12 5 10 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0172852799296379</threshold> - <left_val>-0.2373382002115250</left_val> - <right_val>0.1541430056095123</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 26 3 6 6 -1.</_> - <_> - 28 5 2 6 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0583733208477497</threshold> - <left_val>0.3635525107383728</left_val> - <right_val>-0.0629119277000427</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 6 6 -1.</_> - <_> - 8 5 6 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0252293199300766</threshold> - <left_val>-0.0943458229303360</left_val> - <right_val>0.4322442114353180</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 0 2 3 -1.</_> - <_> - 34 0 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.7925519756972790e-003</threshold> - <left_val>0.0486642718315125</left_val> - <right_val>-0.4704689085483551</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 16 2 2 -1.</_> - <_> - 0 17 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3549529830925167e-004</threshold> - <left_val>0.1936188042163849</left_val> - <right_val>-0.1933847069740295</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 30 6 4 8 -1.</_> - <_> - 31 7 2 8 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0179694108664989</threshold> - <left_val>0.2900086045265198</left_val> - <right_val>-0.0545452795922756</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 7 4 -1.</_> - <_> - 5 7 7 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0111410403624177</threshold> - <left_val>-0.1080225035548210</left_val> - <right_val>0.3332796096801758</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 20 4 8 14 -1.</_> - <_> - 22 4 4 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0397595092654228</threshold> - <left_val>0.0192408692091703</left_val> - <right_val>-0.4889996051788330</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 8 14 -1.</_> - <_> - 10 4 4 14 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0226527098566294</threshold> - <left_val>-0.5036928057670593</left_val> - <right_val>0.0807737335562706</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 17 6 1 -1.</_> - <_> - 19 17 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0915650054812431e-003</threshold> - <left_val>0.0655540525913239</left_val> - <right_val>-0.2444387972354889</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 20 6 -1.</_> - <_> - 10 0 10 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0687547475099564</threshold> - <left_val>0.0891968086361885</left_val> - <right_val>-0.3565390110015869</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 22 18 -1.</_> - <_> - 8 0 11 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3307105898857117</threshold> - <left_val>0.4649569988250732</left_val> - <right_val>-0.0581836998462677</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 2 8 12 -1.</_> - <_> - 13 2 4 6 2.</_> - <_> - 17 8 4 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0193072296679020</threshold> - <left_val>-0.4415718019008637</left_val> - <right_val>0.0830501168966293</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 10 14 8 -1.</_> - <_> - 18 10 7 4 2.</_> - <_> - 11 14 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0348087586462498</threshold> - <left_val>0.0534805804491043</left_val> - <right_val>-0.5037739872932434</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 16 2 2 -1.</_> - <_> - 1 16 1 1 2.</_> - <_> - 2 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.8908151327632368e-004</threshold> - <left_val>0.3427126109600067</left_val> - <right_val>-0.0899231806397438</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 0 2 1 -1.</_> - <_> - 34 0 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-2.1421869751065969e-003</threshold> - <left_val>-0.6064280271530151</left_val> - <right_val>0.0555892400443554</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 24 4 -1.</_> - <_> - 12 3 12 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1101581007242203</threshold> - <left_val>-0.0547747202217579</left_val> - <right_val>0.6878091096878052</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 19 1 2 3 -1.</_> - <_> - 19 2 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0875208904035389e-004</threshold> - <left_val>-0.0558342188596725</left_val> - <right_val>0.0931682363152504</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 1 2 -1.</_> - <_> - 2 0 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>2.1960400044918060e-003</threshold> - <left_val>0.0539557486772537</left_val> - <right_val>-0.6050305962562561</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 3 6 8 -1.</_> - <_> - 18 3 3 4 2.</_> - <_> - 15 7 3 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0126062501221895</threshold> - <left_val>-0.4686402976512909</left_val> - <right_val>0.0599438697099686</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 5 4 2 -1.</_> - <_> - 14 6 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7497899718582630e-003</threshold> - <left_val>0.2894253134727478</left_val> - <right_val>-0.1129785031080246</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 7 30 9 -1.</_> - <_> - 13 10 10 3 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.6096264123916626</threshold> - <left_val>-0.0478859916329384</left_val> - <right_val>0.5946549177169800</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 12 9 -1.</_> - <_> - 12 8 6 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0450232513248920</threshold> - <left_val>0.0638310685753822</left_val> - <right_val>-0.5295680165290833</right_val></_></_></trees> - <stage_threshold>-1.2722699642181396</stage_threshold> - <parent>16</parent> - <next>-1</next></_> - <_> - <!-- stage 18 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 8 16 5 -1.</_> - <_> - 14 8 8 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0159072801470757</threshold> - <left_val>-0.3819232881069183</left_val> - <right_val>0.2941176891326904</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 30 1 4 10 -1.</_> - <_> - 31 2 2 10 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0304830092936754</threshold> - <left_val>0.6401454806327820</left_val> - <right_val>-0.1133823990821838</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 0 10 8 -1.</_> - <_> - 11 2 10 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0258412398397923</threshold> - <left_val>-0.1765469014644623</left_val> - <right_val>0.2556340098381043</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 32 2 2 14 -1.</_> - <_> - 32 2 1 14 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0121606197208166</threshold> - <left_val>-0.0494619905948639</left_val> - <right_val>0.3473398983478546</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 14 2 -1.</_> - <_> - 4 2 14 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0159101597964764</threshold> - <left_val>0.4796676933765411</left_val> - <right_val>-0.1300950944423676</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 30 14 6 4 -1.</_> - <_> - 30 14 3 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.5282061435282230e-004</threshold> - <left_val>-0.3418492972850800</left_val> - <right_val>0.2309112995862961</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 13 1 4 -1.</_> - <_> - 11 15 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7633582511916757e-004</threshold> - <left_val>-0.1543250977993012</left_val> - <right_val>0.2668730020523071</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 0 14 18 -1.</_> - <_> - 18 0 7 9 2.</_> - <_> - 11 9 7 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0599361397325993</threshold> - <left_val>-0.4880258142948151</left_val> - <right_val>0.0933274477720261</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 20 9 -1.</_> - <_> - 10 1 10 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1134240999817848</threshold> - <left_val>-0.6577144265174866</left_val> - <right_val>0.0591668188571930</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 21 3 8 3 -1.</_> - <_> - 23 3 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.3361280113458633e-003</threshold> - <left_val>-0.1593652069568634</left_val> - <right_val>0.0502370409667492</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 9 2 4 -1.</_> - <_> - 13 10 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.8627740209922194e-003</threshold> - <left_val>0.3073025941848755</left_val> - <right_val>-0.1254066973924637</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 9 11 2 -1.</_> - <_> - 14 10 11 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0126530099660158</threshold> - <left_val>-0.1004493013024330</left_val> - <right_val>0.3749617934226990</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 36 9 -1.</_> - <_> - 12 5 12 3 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.6911857724189758</threshold> - <left_val>-0.0471464097499847</left_val> - <right_val>0.8321244120597839</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 12 2 6 -1.</_> - <_> - 34 15 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6093868655152619e-004</threshold> - <left_val>0.3198773860931397</left_val> - <right_val>-0.2718330919742584</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 4 14 6 -1.</_> - <_> - 11 6 14 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0763450562953949</threshold> - <left_val>0.4309130012989044</left_val> - <right_val>-0.0908882692456245</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 31 0 4 1 -1.</_> - <_> - 31 0 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8098300099372864e-003</threshold> - <left_val>0.0587311200797558</left_val> - <right_val>-0.6199675202369690</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 4 1 -1.</_> - <_> - 3 0 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3322039740160108e-004</threshold> - <left_val>0.2000005990266800</left_val> - <right_val>-0.2012010961771011</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 19 14 6 4 -1.</_> - <_> - 21 14 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0137176299467683</threshold> - <left_val>-0.7309545278549194</left_val> - <right_val>0.0271785296499729</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 14 6 4 -1.</_> - <_> - 13 14 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2303808517754078e-003</threshold> - <left_val>-0.5478098988533020</left_val> - <right_val>0.0687499493360519</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 14 36 1 -1.</_> - <_> - 9 14 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0499227195978165</threshold> - <left_val>-0.0473043099045753</left_val> - <right_val>0.8242310285568237</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 2 2 -1.</_> - <_> - 5 0 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-1.9126719562336802e-003</threshold> - <left_val>-0.5394017100334168</left_val> - <right_val>0.0774475932121277</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 26 3 5 3 -1.</_> - <_> - 26 4 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1384560493752360e-003</threshold> - <left_val>-0.0965376868844032</left_val> - <right_val>0.1548569053411484</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 8 1 3 -1.</_> - <_> - 15 9 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-2.4732090532779694e-003</threshold> - <left_val>0.3559078872203827</left_val> - <right_val>-0.0931698307394981</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 21 11 2 3 -1.</_> - <_> - 21 12 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.1464257780462503e-004</threshold> - <left_val>0.1452019065618515</left_val> - <right_val>-0.0741942077875137</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 6 4 -1.</_> - <_> - 8 6 6 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0204371493309736</threshold> - <left_val>0.4416376948356628</left_val> - <right_val>-0.0809424370527267</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 31 0 2 2 -1.</_> - <_> - 31 0 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-4.0483791381120682e-003</threshold> - <left_val>-0.5999277830123901</left_val> - <right_val>0.0330253802239895</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 3 9 -1.</_> - <_> - 6 7 3 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0111480504274368</threshold> - <left_val>-0.1135832965373993</left_val> - <right_val>0.3264499902725220</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 19 0 11 2 -1.</_> - <_> - 19 0 11 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>9.8842009902000427e-003</threshold> - <left_val>0.0554044805467129</left_val> - <right_val>-0.3273097872734070</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 2 2 -1.</_> - <_> - 5 0 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>3.1296359375119209e-003</threshold> - <left_val>0.0774086564779282</left_val> - <right_val>-0.4595307111740112</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 22 0 14 4 -1.</_> - <_> - 29 0 7 2 2.</_> - <_> - 22 2 7 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.9721839819103479e-003</threshold> - <left_val>-0.1291726976633072</left_val> - <right_val>0.1552311033010483</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 1 4 13 -1.</_> - <_> - 15 1 2 13 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0205544792115688</threshold> - <left_val>0.0876004695892334</left_val> - <right_val>-0.4577418863773346</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 21 3 8 4 -1.</_> - <_> - 23 3 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0230272803455591</threshold> - <left_val>0.3548808991909027</left_val> - <right_val>-0.0205669198185205</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 3 8 4 -1.</_> - <_> - 9 3 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.3903772756457329e-003</threshold> - <left_val>-0.4324072897434235</left_val> - <right_val>0.0920679792761803</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 32 14 2 2 -1.</_> - <_> - 33 14 1 1 2.</_> - <_> - 32 15 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1431539896875620e-003</threshold> - <left_val>0.3959133923053742</left_val> - <right_val>-0.0231928899884224</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 14 2 2 -1.</_> - <_> - 2 14 1 1 2.</_> - <_> - 3 15 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9133709399029613e-004</threshold> - <left_val>0.4274964034557343</left_val> - <right_val>-0.0855242162942886</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 35 5 1 12 -1.</_> - <_> - 35 9 1 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.1292928401380777e-004</threshold> - <left_val>-0.1619673967361450</left_val> - <right_val>0.1961497068405151</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 7 1 9 -1.</_> - <_> - 0 10 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.8478871360421181e-003</threshold> - <left_val>-0.5911636948585510</left_val> - <right_val>0.0624482408165932</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 2 15 6 -1.</_> - <_> - 12 4 15 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0941330492496490</threshold> - <left_val>0.4770160913467407</left_val> - <right_val>-0.0567101612687111</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 17 2 1 -1.</_> - <_> - 1 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0079269850393757e-004</threshold> - <left_val>-0.1625709980726242</left_val> - <right_val>0.2140229046344757</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 17 2 1 -1.</_> - <_> - 34 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.2930231100181118e-005</threshold> - <left_val>-0.1859605014324188</left_val> - <right_val>0.1964769065380096</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 17 2 1 -1.</_> - <_> - 1 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1743210052372888e-004</threshold> - <left_val>0.3182134926319122</left_val> - <right_val>-0.1328738033771515</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 0 16 10 -1.</_> - <_> - 15 0 8 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1275181025266647</threshold> - <left_val>0.0301400795578957</left_val> - <right_val>-0.7411035895347595</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 10 24 8 -1.</_> - <_> - 5 10 12 4 2.</_> - <_> - 17 14 12 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0803262963891029</threshold> - <left_val>0.0415550395846367</left_val> - <right_val>-0.8263683915138245</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 4 3 3 -1.</_> - <_> - 27 5 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.6904190415516496e-003</threshold> - <left_val>-0.1029061973094940</left_val> - <right_val>0.2972418069839478</right_val></_></_></trees> - <stage_threshold>-1.3022350072860718</stage_threshold> - <parent>17</parent> - <next>-1</next></_> - <_> - <!-- stage 19 --> - <trees> - <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 14 12 -1.</_> - <_> - 6 6 7 6 2.</_> - <_> - 13 12 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0461227893829346</threshold> - <left_val>0.4425258934497833</left_val> - <right_val>-0.2991319894790649</right_val></_></_> - <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 24 6 -1.</_> - <_> - 14 7 8 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3672331869602203</threshold> - <left_val>-0.0630117505788803</left_val> - <right_val>0.7712538242340088</right_val></_></_> - <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 6 3 4 -1.</_> - <_> - 12 7 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.0962929595261812e-003</threshold> - <left_val>0.3514241874217987</left_val> - <right_val>-0.1730643957853317</right_val></_></_> - <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 30 7 6 10 -1.</_> - <_> - 33 7 3 5 2.</_> - <_> - 30 12 3 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.2647131532430649e-003</threshold> - <left_val>-0.1607280969619751</left_val> - <right_val>0.1853290945291519</right_val></_></_> - <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 12 6 6 -1.</_> - <_> - 3 12 3 3 2.</_> - <_> - 6 15 3 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.1748649198561907e-003</threshold> - <left_val>-0.1968899965286255</left_val> - <right_val>0.2409728020429611</right_val></_></_> - <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 20 0 13 2 -1.</_> - <_> - 20 0 13 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>8.0439839512109756e-003</threshold> - <left_val>0.0898629724979401</left_val> - <right_val>-0.3655225932598114</right_val></_></_> - <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 10 24 6 -1.</_> - <_> - 14 12 8 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3275249004364014</threshold> - <left_val>-0.0568796806037426</left_val> - <right_val>0.7749336957931519</right_val></_></_> - <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 4 8 8 -1.</_> - <_> - 19 4 4 4 2.</_> - <_> - 15 8 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0190744306892157</threshold> - <left_val>-0.2895380854606628</left_val> - <right_val>0.0622916705906391</right_val></_></_> - <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 4 8 8 -1.</_> - <_> - 13 4 4 4 2.</_> - <_> - 17 8 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0205017495900393</threshold> - <left_val>-0.6262530088424683</left_val> - <right_val>0.0682769715785980</right_val></_></_> - <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 16 2 2 -1.</_> - <_> - 34 16 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.3187010053079575e-005</threshold> - <left_val>-0.2514955997467041</left_val> - <right_val>0.2613196074962616</right_val></_></_> - <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 6 3 3 -1.</_> - <_> - 12 7 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.3275580499321222e-003</threshold> - <left_val>-0.1199077963829041</left_val> - <right_val>0.3651930093765259</right_val></_></_> - <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 21 7 4 4 -1.</_> - <_> - 21 8 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.8408430777490139e-003</threshold> - <left_val>-0.0827485173940659</left_val> - <right_val>0.2365082055330277</right_val></_></_> - <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 8 30 4 -1.</_> - <_> - 2 8 15 2 2.</_> - <_> - 17 10 15 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0464623309671879</threshold> - <left_val>-0.6928564906120300</left_val> - <right_val>0.0781976729631424</right_val></_></_> - <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 27 4 3 4 -1.</_> - <_> - 27 5 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7785700988024473e-003</threshold> - <left_val>0.3437257111072540</left_val> - <right_val>-0.1027545034885407</right_val></_></_> - <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 3 4 -1.</_> - <_> - 5 5 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.6655459767207503e-003</threshold> - <left_val>-0.1160527989268303</left_val> - <right_val>0.3716202974319458</right_val></_></_> - <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 34 16 2 2 -1.</_> - <_> - 34 16 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7107670727418736e-005</threshold> - <left_val>0.4589366912841797</left_val> - <right_val>-0.2123643010854721</right_val></_></_> - <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 16 34 2 -1.</_> - <_> - 0 16 17 1 2.</_> - <_> - 17 17 17 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.0066380798816681e-003</threshold> - <left_val>-0.5953341126441956</left_val> - <right_val>0.0808764025568962</right_val></_></_> - <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 5 15 12 -1.</_> - <_> - 12 9 15 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1378971040248871</threshold> - <left_val>0.3957067131996155</left_val> - <right_val>-0.0898853763937950</right_val></_></_> - <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 36 6 -1.</_> - <_> - 12 10 12 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.5759987235069275</threshold> - <left_val>-0.0538108199834824</left_val> - <right_val>0.8170394897460938</right_val></_></_> - <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 25 4 6 2 -1.</_> - <_> - 25 5 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.3918158840388060e-003</threshold> - <left_val>0.1393374055624008</left_val> - <right_val>-0.0421559289097786</right_val></_></_> - <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 17 2 1 -1.</_> - <_> - 1 17 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4896071408875287e-004</threshold> - <left_val>-0.1485866010189056</left_val> - <right_val>0.2626332938671112</right_val></_></_> - <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 9 9 -1.</_> - <_> - 19 0 3 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0330624915659428</threshold> - <left_val>0.0306599102914333</left_val> - <right_val>-0.3231860101222992</right_val></_></_> - <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 0 9 9 -1.</_> - <_> - 14 0 3 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0443218797445297</threshold> - <left_val>0.0478538200259209</left_val> - <right_val>-0.7813590168952942</right_val></_></_> - <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 20 5 16 5 -1.</_> - <_> - 24 5 8 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0187181904911995</threshold> - <left_val>0.1201262027025223</left_val> - <right_val>-0.1121146976947784</right_val></_></_> - <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 16 9 -1.</_> - <_> - 4 3 8 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0923093706369400</threshold> - <left_val>0.0424630790948868</left_val> - <right_val>-0.8009700179100037</right_val></_></_> - <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 6 26 12 -1.</_> - <_> - 20 6 13 6 2.</_> - <_> - 7 12 13 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0906654372811317</threshold> - <left_val>-0.0223045293241739</left_val> - <right_val>0.1284797936677933</right_val></_></_> - <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 24 12 -1.</_> - <_> - 5 6 12 6 2.</_> - <_> - 17 12 12 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0582949295639992</threshold> - <left_val>-0.3936854004859924</left_val> - <right_val>0.0954821407794952</right_val></_></_> - <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 4 3 12 -1.</_> - <_> - 18 4 1 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.6649780124425888e-003</threshold> - <left_val>-0.0656419470906258</left_val> - <right_val>0.3640717864036560</right_val></_></_> - <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 11 6 1 -1.</_> - <_> - 3 13 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>5.2480432204902172e-003</threshold> - <left_val>0.0687657818198204</left_val> - <right_val>-0.5050830245018005</right_val></_></_> - <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 21 12 14 2 -1.</_> - <_> - 28 12 7 1 2.</_> - <_> - 21 13 7 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.5315659586340189e-003</threshold> - <left_val>-0.0933471694588661</left_val> - <right_val>0.1649612933397293</right_val></_></_> - <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 13 2 3 -1.</_> - <_> - 2 13 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4391160695813596e-004</threshold> - <left_val>-0.1888543963432312</left_val> - <right_val>0.1695670038461685</right_val></_></_> - <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 26 8 3 2 -1.</_> - <_> - 27 9 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-6.3037211075425148e-003</threshold> - <left_val>0.3826352953910828</left_val> - <right_val>-0.0590420998632908</right_val></_></_> - <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 8 2 3 -1.</_> - <_> - 9 9 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>2.2754059173166752e-003</threshold> - <left_val>-0.1224882006645203</left_val> - <right_val>0.2828365862369537</right_val></_></_> - <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 0 18 18 -1.</_> - <_> - 12 0 9 18 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2769486904144287</threshold> - <left_val>0.4851497113704681</left_val> - <right_val>-0.0404825396835804</right_val></_></_> - <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 9 3 3 -1.</_> - <_> - 7 10 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>5.8051547966897488e-003</threshold> - <left_val>-0.0835584178566933</left_val> - <right_val>0.4215149879455566</right_val></_></_> - <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 28 5 5 6 -1.</_> - <_> - 28 7 5 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4654529988765717e-003</threshold> - <left_val>-0.1281685978174210</left_val> - <right_val>0.2077662944793701</right_val></_></_> - <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 9 8 -1.</_> - <_> - 9 1 9 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.8863510861992836e-003</threshold> - <left_val>-0.1719754040241242</left_val> - <right_val>0.2079081982374191</right_val></_></_> - <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 36 2 -1.</_> - <_> - 18 0 18 1 2.</_> - <_> - 0 1 18 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0118171302601695</threshold> - <left_val>-0.5788066983222961</left_val> - <right_val>0.0589591413736343</right_val></_></_> - <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 26 6 -1.</_> - <_> - 5 0 13 3 2.</_> - <_> - 18 3 13 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0641399174928665</threshold> - <left_val>-0.6368926167488098</left_val> - <right_val>0.0417975001037121</right_val></_></_> - <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 28 3 3 3 -1.</_> - <_> - 28 4 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.2179970508441329e-003</threshold> - <left_val>0.2356870025396347</left_val> - <right_val>-0.0805152580142021</right_val></_></_> - <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 5 3 -1.</_> - <_> - 5 4 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8652620967477560e-003</threshold> - <left_val>-0.0931371971964836</left_val> - <right_val>0.3902595043182373</right_val></_></_> - <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 12 8 2 -1.</_> - <_> - 16 12 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7746102102100849e-003</threshold> - <left_val>-0.5753986835479736</left_val> - <right_val>0.0596776902675629</right_val></_></_> - <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 0 9 14 -1.</_> - <_> - 16 0 3 14 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0653770864009857</threshold> - <left_val>0.0341660715639591</left_val> - <right_val>-0.7425342202186585</right_val></_></_> - <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 23 0 10 1 -1.</_> - <_> - 23 0 5 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0162657108157873</threshold> - <left_val>0.0536542609333992</left_val> - <right_val>-0.2365860939025879</right_val></_></_> - <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 14 2 2 -1.</_> - <_> - 8 14 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>2.2717609535902739e-003</threshold> - <left_val>0.0533591099083424</left_val> - <right_val>-0.5494074225425720</right_val></_></_> - <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 12 36 3 -1.</_> - <_> - 12 13 12 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2262602001428604</threshold> - <left_val>-0.0420460589230061</left_val> - <right_val>0.7791252136230469</right_val></_></_> - <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 13 34 4 -1.</_> - <_> - 0 13 17 2 2.</_> - <_> - 17 15 17 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0293774604797363</threshold> - <left_val>-0.5947058796882629</left_val> - <right_val>0.0548178702592850</right_val></_></_></trees> - <stage_threshold>-1.1933319568634033</stage_threshold> - <parent>18</parent> - <next>-1</next></_></stages></SmileDetector> -</opencv_storage> +<?xml version="1.0"?> +<!---------------------------------------------------------------------------- + Smile detector + Contributed by Oscar Deniz Suarez + More information can be found at http://visilab.etsii.uclm.es/personas/oscar/oscar.html + +////////////////////////////////////////////////////////////////////////// +| Contributors License Agreement +| IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +| By downloading, copying, installing or using the software you agree +| to this license. +| If you do not agree to this license, do not download, install, +| copy or use the software. +| +| Copyright (c) 2011, Modesto Castrillon-Santana (IUSIANI, Universidad de +| Las Palmas de Gran Canaria, Spain). +| All rights reserved. +| +| Redistribution and use in source and binary forms, with or without +| modification, are permitted provided that the following conditions are +| met: +| +| * Redistributions of source code must retain the above copyright +| notice, this list of conditions and the following disclaimer. +| * Redistributions in binary form must reproduce the above +| copyright notice, this list of conditions and the following +| disclaimer in the documentation and/or other materials provided +| with the distribution. +| * The name of Contributor may not used to endorse or promote products +| derived from this software without specific prior written permission. +| +| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to +| Top +////////////////////////////////////////////////////////////////////////// + +------------------------------------------------------------------------> +<opencv_storage> +<cascade type_id="opencv-cascade-classifier"><stageType>BOOST</stageType> + <featureType>HAAR</featureType> + <height>36</height> + <width>18</width> + <stageParams> + <maxWeakCount>53</maxWeakCount></stageParams> + <featureParams> + <maxCatCount>0</maxCatCount></featureParams> + <stageNum>20</stageNum> + <stages> + <_> + <maxWeakCount>11</maxWeakCount> + <stageThreshold>-1.2678639888763428e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 0 -4.8783610691316426e-04</internalNodes> + <leafValues> + 5.9219348430633545e-01 -4.4163608551025391e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 1 -4.2209611274302006e-04</internalNodes> + <leafValues> + 3.0318650603294373e-01 -3.2912918925285339e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 2 -4.9940118333324790e-04</internalNodes> + <leafValues> + 4.8563310503959656e-01 -4.2923060059547424e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 3 3.7289198487997055e-02</internalNodes> + <leafValues> + -2.8667300939559937e-01 5.9979999065399170e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 4 1.4334049774333835e-03</internalNodes> + <leafValues> + -3.4893131256103516e-01 4.0482750535011292e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 5 -7.7213020995259285e-03</internalNodes> + <leafValues> + 7.5714188814163208e-01 -1.2225949764251709e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 6 8.1067271530628204e-03</internalNodes> + <leafValues> + -1.6657720506191254e-01 7.5096148252487183e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 7 -7.7238711528480053e-03</internalNodes> + <leafValues> + 6.2662792205810547e-01 -1.9127459824085236e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 8 4.4225031160749495e-04</internalNodes> + <leafValues> + -2.3944470286369324e-01 4.4840618968009949e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 9 -1.6867710510268807e-03</internalNodes> + <leafValues> + -1.8439069390296936e-01 9.1782413423061371e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 10 1.4625620096921921e-02</internalNodes> + <leafValues> + 1.6168059408664703e-01 -8.1501179933547974e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>11</maxWeakCount> + <stageThreshold>-1.5844069719314575e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 11 3.8141138851642609e-02</internalNodes> + <leafValues> + -3.3275881409645081e-01 7.7833342552185059e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 12 -1.3136120105627924e-04</internalNodes> + <leafValues> + 3.6353090405464172e-01 -3.2043468952178955e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 13 -3.8757019210606813e-03</internalNodes> + <leafValues> + 7.1352392435073853e-01 -3.5185989737510681e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 14 1.4266290236264467e-03</internalNodes> + <leafValues> + 6.8100847303867340e-02 -6.1727327108383179e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 15 -2.4605958606116474e-04</internalNodes> + <leafValues> + 5.7271498441696167e-01 -3.7860998511314392e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 16 -3.1822640448808670e-02</internalNodes> + <leafValues> + -6.3484561443328857e-01 1.1641839891672134e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 17 -1.7130950465798378e-02</internalNodes> + <leafValues> + -6.2793147563934326e-01 3.2479470968246460e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 18 -9.3903783708810806e-03</internalNodes> + <leafValues> + -2.7578958868980408e-01 2.2330729663372040e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 19 2.2802520543336868e-03</internalNodes> + <leafValues> + 1.8977640569210052e-01 -6.8817621469497681e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 20 2.6840099599212408e-03</internalNodes> + <leafValues> + -2.2350500524044037e-01 1.3725799322128296e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 21 1.0604639537632465e-02</internalNodes> + <leafValues> + -2.1426230669021606e-01 5.6207871437072754e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>17</maxWeakCount> + <stageThreshold>-1.3820559978485107e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 22 -3.1677199876867235e-04</internalNodes> + <leafValues> + 4.6595481038093567e-01 -3.7425819039344788e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 23 -5.5120628327131271e-02</internalNodes> + <leafValues> + 5.4179787635803223e-01 -2.2657650709152222e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 24 -6.4742640824988484e-04</internalNodes> + <leafValues> + 3.7703070044517517e-01 -3.3486440777778625e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 25 3.9507839083671570e-01</internalNodes> + <leafValues> + -1.8144419789314270e-01 8.1325918436050415e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 26 4.0509410202503204e-02</internalNodes> + <leafValues> + -9.5369413495063782e-02 8.0595618486404419e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 27 4.8735421150922775e-03</internalNodes> + <leafValues> + -1.4023660123348236e-01 6.1643028259277344e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 28 1.0578040033578873e-02</internalNodes> + <leafValues> + 1.2932670116424561e-01 -7.4823349714279175e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 29 9.2986393719911575e-03</internalNodes> + <leafValues> + 5.8940600603818893e-02 -4.4107300043106079e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 30 -5.0301607698202133e-03</internalNodes> + <leafValues> + -6.6309732198715210e-01 1.8104769289493561e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 31 -1.0947990085696802e-04</internalNodes> + <leafValues> + 2.2112590074539185e-01 -2.7309039235115051e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 32 -1.1685509979724884e-01</internalNodes> + <leafValues> + -7.7205967903137207e-01 1.2481659650802612e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 33 -4.3603649828583002e-05</internalNodes> + <leafValues> + 1.3670609891414642e-01 -1.6127939522266388e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 34 -1.5056360280141234e-04</internalNodes> + <leafValues> + 4.4860461354255676e-01 -2.1711289882659912e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 35 -1.6394609585404396e-02</internalNodes> + <leafValues> + -6.5827351808547974e-01 1.6745500266551971e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 36 -1.4482860453426838e-02</internalNodes> + <leafValues> + -6.8345147371292114e-01 1.3456159830093384e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 37 3.9269471017178148e-05</internalNodes> + <leafValues> + -1.4998139441013336e-01 1.6017720103263855e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 38 7.4323131702840328e-03</internalNodes> + <leafValues> + -1.6848459839820862e-01 5.3963989019393921e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>18</maxWeakCount> + <stageThreshold>-1.3879380226135254e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 39 -4.3472499237395823e-04</internalNodes> + <leafValues> + 4.3949240446090698e-01 -4.2248758673667908e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 40 3.2995320856571198e-02</internalNodes> + <leafValues> + -1.9798250496387482e-01 5.9534871578216553e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 41 -4.1011828579939902e-04</internalNodes> + <leafValues> + 4.4403061270713806e-01 -3.0748468637466431e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 42 -8.1969738006591797e-02</internalNodes> + <leafValues> + -5.3334367275238037e-01 1.6718100011348724e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 43 1.7778700217604637e-02</internalNodes> + <leafValues> + -2.0450179278850555e-01 5.1444131135940552e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 44 2.2834699600934982e-02</internalNodes> + <leafValues> + -1.4846070110797882e-01 5.6242787837982178e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 45 3.8604341447353363e-02</internalNodes> + <leafValues> + -1.2731470167636871e-01 8.1494480371475220e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 46 -7.3286908445879817e-04</internalNodes> + <leafValues> + -3.7193441390991211e-01 6.7616499960422516e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 47 -2.3229040205478668e-02</internalNodes> + <leafValues> + 7.1232062578201294e-01 -1.1589390039443970e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 48 -1.9575359299778938e-02</internalNodes> + <leafValues> + -6.8990731239318848e-01 1.3999509811401367e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 49 4.1991271427832544e-04</internalNodes> + <leafValues> + -1.8354649841785431e-01 4.9435558915138245e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 50 -5.7089749723672867e-02</internalNodes> + <leafValues> + 6.2607848644256592e-01 -7.8576847910881042e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 51 2.5699699297547340e-02</internalNodes> + <leafValues> + 1.1557140201330185e-01 -8.1935191154479980e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 52 3.2579619437456131e-02</internalNodes> + <leafValues> + -1.1767739802598953e-01 4.2776221036911011e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 53 -2.0592249929904938e-02</internalNodes> + <leafValues> + 4.8685240745544434e-01 -2.1318539977073669e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 54 -1.7485279589891434e-02</internalNodes> + <leafValues> + -5.2287340164184570e-01 1.3397049903869629e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 55 8.9153228327631950e-04</internalNodes> + <leafValues> + 9.6304491162300110e-02 -6.8863070011138916e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 56 5.7533901184797287e-02</internalNodes> + <leafValues> + -8.7080523371696472e-02 4.0480649471282959e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>25</maxWeakCount> + <stageThreshold>-1.3538850545883179e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 57 -4.6606198884546757e-04</internalNodes> + <leafValues> + 4.2773741483688354e-01 -3.5420769453048706e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 58 3.0554559826850891e-01</internalNodes> + <leafValues> + -1.6392810642719269e-01 8.6065232753753662e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 59 -1.1449400335550308e-02</internalNodes> + <leafValues> + 5.9727329015731812e-01 -2.3234340548515320e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 60 6.3891541212797165e-03</internalNodes> + <leafValues> + -1.2915410101413727e-01 6.1052042245864868e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 61 -8.4334248676896095e-03</internalNodes> + <leafValues> + 4.7928538918495178e-01 -1.9002729654312134e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 62 5.3808931261301041e-02</internalNodes> + <leafValues> + -1.1493770033121109e-01 5.3394538164138794e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 63 -4.7580219688825309e-04</internalNodes> + <leafValues> + -3.4598541259765625e-01 2.5488048791885376e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 64 -1.3450840197037905e-04</internalNodes> + <leafValues> + 2.2414590418338776e-01 -1.9550070166587830e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 65 5.0016911700367928e-04</internalNodes> + <leafValues> + -1.9720549881458282e-01 4.9677640199661255e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 66 1.5063269995152950e-02</internalNodes> + <leafValues> + 1.0630770027637482e-01 -4.1138210892677307e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 67 7.7588870190083981e-03</internalNodes> + <leafValues> + -1.5373119711875916e-01 4.8931619524955750e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 68 4.5410118997097015e-02</internalNodes> + <leafValues> + -7.3559306561946869e-02 2.7737921476364136e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 69 -1.4599669724702835e-02</internalNodes> + <leafValues> + -7.0966827869415283e-01 9.7515560686588287e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 70 1.7236070707440376e-02</internalNodes> + <leafValues> + 1.6869539394974709e-02 -5.7388329505920410e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 71 1.4230710454285145e-02</internalNodes> + <leafValues> + 9.4714500010013580e-02 -7.8395259380340576e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 72 -4.3706860393285751e-02</internalNodes> + <leafValues> + 6.0979652404785156e-01 -1.5601889789104462e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 73 -6.2343222089111805e-04</internalNodes> + <leafValues> + 3.4851190447807312e-01 -2.1704910695552826e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 74 1.9245050847530365e-02</internalNodes> + <leafValues> + -1.1710979789495468e-01 3.0701160430908203e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 75 2.7035778760910034e-01</internalNodes> + <leafValues> + -9.0096436440944672e-02 7.6656961441040039e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 76 -3.5394480801187456e-04</internalNodes> + <leafValues> + -2.0024789869785309e-01 1.2493360042572021e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 77 -3.6013960838317871e-02</internalNodes> + <leafValues> + 6.7028558254241943e-01 -1.0571879893541336e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 78 9.2952791601419449e-03</internalNodes> + <leafValues> + -1.0574710369110107e-01 4.5093879103660583e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 79 -3.3304709359072149e-04</internalNodes> + <leafValues> + 2.7933821082115173e-01 -2.4576769769191742e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 80 -2.9147620807634667e-05</internalNodes> + <leafValues> + 8.5813812911510468e-02 -9.5469586551189423e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 81 4.4382669148035347e-04</internalNodes> + <leafValues> + -2.0220080018043518e-01 5.4543578624725342e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>23</maxWeakCount> + <stageThreshold>-1.3707510232925415e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 82 7.9610757529735565e-03</internalNodes> + <leafValues> + -3.6722078919410706e-01 4.3154349923133850e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 83 6.3394829630851746e-02</internalNodes> + <leafValues> + -2.0739710330963135e-01 5.7426017522811890e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 84 -5.3193349391222000e-02</internalNodes> + <leafValues> + 7.2550922632217407e-01 -1.4342020452022552e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 85 1.5460769645869732e-02</internalNodes> + <leafValues> + -9.6053816378116608e-02 7.5785237550735474e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 86 -1.7643140628933907e-02</internalNodes> + <leafValues> + 6.6815620660781860e-01 -1.4176729321479797e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 87 9.5065636560320854e-03</internalNodes> + <leafValues> + -9.6259742975234985e-02 4.6996331214904785e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 88 4.0446049533784389e-03</internalNodes> + <leafValues> + -1.9732519984245300e-01 4.2838010191917419e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 89 3.2312041148543358e-03</internalNodes> + <leafValues> + 1.1861690133810043e-01 -6.1039632558822632e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 90 -4.0159050375223160e-02</internalNodes> + <leafValues> + -4.1664341092109680e-01 2.1672329306602478e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 91 2.8524258732795715e-01</internalNodes> + <leafValues> + -1.0435750335454941e-01 8.5733968019485474e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 92 -4.9264221452176571e-03</internalNodes> + <leafValues> + 4.7060468792915344e-01 -1.3997459411621094e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 93 1.3781700283288956e-02</internalNodes> + <leafValues> + -1.2713569402694702e-01 4.4618919491767883e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 94 -4.9873598618432879e-04</internalNodes> + <leafValues> + 4.7026631236076355e-01 -1.5483739972114563e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 95 -1.5621389320585877e-04</internalNodes> + <leafValues> + 1.8854810297489166e-01 -7.7839776873588562e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 96 -3.7597760092467070e-04</internalNodes> + <leafValues> + 5.7697701454162598e-01 -1.3356220722198486e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 97 -1.0665910318493843e-02</internalNodes> + <leafValues> + -4.1065299510955811e-01 1.5562120079994202e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 98 -3.4135230816900730e-03</internalNodes> + <leafValues> + -7.6363432407379150e-01 1.0209649801254272e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 99 5.6471868447260931e-05</internalNodes> + <leafValues> + -1.6443930566310883e-01 2.2908419370651245e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 100 2.1611599368043244e-04</internalNodes> + <leafValues> + -1.6290329396724701e-01 4.5756360888481140e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 101 -1.0822719894349575e-02</internalNodes> + <leafValues> + -2.4462530016899109e-01 1.3888940215110779e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 102 -1.5084910206496716e-02</internalNodes> + <leafValues> + -5.7813477516174316e-01 1.1564119905233383e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 103 2.5715960189700127e-02</internalNodes> + <leafValues> + 3.9631199091672897e-02 -6.5270012617111206e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 104 2.6093570049852133e-03</internalNodes> + <leafValues> + 1.1421889811754227e-01 -5.6801080703735352e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>26</maxWeakCount> + <stageThreshold>-1.3303329944610596e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 105 -5.1861900836229324e-02</internalNodes> + <leafValues> + 7.0431172847747803e-01 -2.2143700718879700e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 106 -5.0341628491878510e-02</internalNodes> + <leafValues> + -4.6397829055786133e-01 2.8047460317611694e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 107 2.5709730386734009e-01</internalNodes> + <leafValues> + -1.3124279677867889e-01 8.2395941019058228e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 108 1.1031899601221085e-02</internalNodes> + <leafValues> + -1.4258140325546265e-01 6.3823902606964111e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 109 1.8565090373158455e-02</internalNodes> + <leafValues> + -1.5123879909515381e-01 5.9881192445755005e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 110 1.7502350732684135e-02</internalNodes> + <leafValues> + -1.2619799375534058e-01 3.8178038597106934e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 111 7.2723729535937309e-03</internalNodes> + <leafValues> + -1.5103289484977722e-01 5.8128422498703003e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 112 8.1504750996828079e-03</internalNodes> + <leafValues> + -6.5464757382869720e-02 5.6397551298141479e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 113 -1.8552739173173904e-02</internalNodes> + <leafValues> + 5.3157097101211548e-01 -1.2526570260524750e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 114 -2.3101480677723885e-02</internalNodes> + <leafValues> + -6.7949390411376953e-01 1.1046259850263596e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 115 -1.8539339362177998e-04</internalNodes> + <leafValues> + 3.0100038647651672e-01 -2.1206699311733246e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 116 1.7319120466709137e-02</internalNodes> + <leafValues> + -9.3738131225109100e-02 2.1008560061454773e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 117 1.4305620454251766e-02</internalNodes> + <leafValues> + 1.8005949258804321e-01 -3.9776718616485596e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 118 2.5763340294361115e-02</internalNodes> + <leafValues> + 8.7056998163461685e-03 -6.2894952297210693e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 119 -1.5383340418338776e-02</internalNodes> + <leafValues> + -5.3415471315383911e-01 1.0380730032920837e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 120 1.0605469578877091e-03</internalNodes> + <leafValues> + -9.0128518640995026e-02 1.6792120039463043e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 121 3.5230729263275862e-03</internalNodes> + <leafValues> + -1.7110690474510193e-01 3.2596540451049805e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 122 -1.0789279825985432e-02</internalNodes> + <leafValues> + 3.6109921336174011e-01 -6.6339150071144104e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 123 2.7950939536094666e-01</internalNodes> + <leafValues> + -7.4605897068977356e-02 7.3369878530502319e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 124 3.8369540125131607e-03</internalNodes> + <leafValues> + 4.4873539358377457e-02 -1.8602700531482697e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 125 1.6195949865505099e-03</internalNodes> + <leafValues> + -1.3922490179538727e-01 4.3437001109123230e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 126 1.1647949926555157e-02</internalNodes> + <leafValues> + -7.4357591569423676e-02 5.4201442003250122e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 127 -5.9066400863230228e-03</internalNodes> + <leafValues> + -7.0557588338851929e-01 8.6433619260787964e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 128 3.9686840772628784e-01</internalNodes> + <leafValues> + -7.4898369610309601e-02 9.4062858819961548e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 129 5.7663779705762863e-02</internalNodes> + <leafValues> + -9.6558406949043274e-02 5.4182428121566772e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 130 6.0319568961858749e-02</internalNodes> + <leafValues> + -6.6501073539257050e-02 6.4023548364639282e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>37</maxWeakCount> + <stageThreshold>-1.5300060510635376e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 131 1.9050249829888344e-02</internalNodes> + <leafValues> + -4.4433408975601196e-01 4.3948569893836975e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 132 -2.0198300480842590e-02</internalNodes> + <leafValues> + -3.1706219911575317e-01 1.0432930290699005e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 133 2.1478030830621719e-02</internalNodes> + <leafValues> + -3.5024839639663696e-01 2.6355370879173279e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 134 -1.0187759995460510e-01</internalNodes> + <leafValues> + -5.9889578819274902e-01 1.7685799300670624e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 135 1.0974160395562649e-02</internalNodes> + <leafValues> + -1.4895239472389221e-01 6.0115218162536621e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 136 -1.1476710438728333e-02</internalNodes> + <leafValues> + 4.0665709972381592e-01 -1.2404689937829971e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 137 -2.3431150242686272e-02</internalNodes> + <leafValues> + -7.1487832069396973e-01 1.4278119802474976e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 138 1.4963559806346893e-03</internalNodes> + <leafValues> + -1.7045859992504120e-01 1.7193080484867096e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 139 -5.4855772759765387e-04</internalNodes> + <leafValues> + 3.1553238630294800e-01 -2.1444450318813324e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 140 7.4912630021572113e-02</internalNodes> + <leafValues> + 9.1240562498569489e-02 -6.3951212167739868e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 141 6.8816398270428181e-03</internalNodes> + <leafValues> + -1.4904409646987915e-01 4.7952368855476379e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 142 -3.8212578743696213e-02</internalNodes> + <leafValues> + 5.2887737751007080e-01 -6.1894729733467102e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 143 4.4051730073988438e-03</internalNodes> + <leafValues> + -1.1934129893779755e-01 5.0613421201705933e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 144 2.3966899141669273e-02</internalNodes> + <leafValues> + -8.9720509946346283e-02 3.3152779936790466e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 145 -3.4162990748882294e-02</internalNodes> + <leafValues> + 5.3134781122207642e-01 -1.4666500687599182e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 146 1.9642219413071871e-03</internalNodes> + <leafValues> + 9.0783588588237762e-02 -4.3032559752464294e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 147 9.6757910796441138e-05</internalNodes> + <leafValues> + 2.2552539408206940e-01 -2.8220710158348083e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 148 -3.2862399239093065e-03</internalNodes> + <leafValues> + 4.0515020489692688e-01 -1.1776199936866760e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 149 1.1688309721648693e-02</internalNodes> + <leafValues> + -9.1857127845287323e-02 6.2834888696670532e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 150 -6.0287420637905598e-03</internalNodes> + <leafValues> + 3.9261808991432190e-01 -1.2287150323390961e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 151 -1.3721340335905552e-02</internalNodes> + <leafValues> + -5.5298799276351929e-01 9.1041281819343567e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 152 7.5626641511917114e-02</internalNodes> + <leafValues> + -4.4929590076208115e-02 1.7442759871482849e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 153 9.3434482812881470e-02</internalNodes> + <leafValues> + -8.4593951702117920e-02 6.0131162405014038e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 154 5.8748829178512096e-03</internalNodes> + <leafValues> + -4.4131498783826828e-02 3.9565709233283997e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 155 4.0064537897706032e-03</internalNodes> + <leafValues> + -1.1414399743080139e-01 3.7925380468368530e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 156 2.2945459932088852e-02</internalNodes> + <leafValues> + 2.4673189967870712e-02 -4.1521999239921570e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 157 -1.2810460291802883e-02</internalNodes> + <leafValues> + -5.1557427644729614e-01 9.1319613158702850e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 158 2.0425529778003693e-01</internalNodes> + <leafValues> + -6.5927542746067047e-02 7.5942492485046387e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 159 4.9796327948570251e-03</internalNodes> + <leafValues> + 1.0806279629468918e-01 -5.0016272068023682e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 160 2.8397630900144577e-02</internalNodes> + <leafValues> + -3.7152960896492004e-02 5.4010647535324097e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 161 6.0867150314152241e-03</internalNodes> + <leafValues> + -1.1978609859943390e-01 3.5692268610000610e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 162 -2.1456899412441999e-04</internalNodes> + <leafValues> + 1.8740150332450867e-01 -8.8417202234268188e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 163 2.8941858909092844e-04</internalNodes> + <leafValues> + -1.2597979605197906e-01 3.9982271194458008e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 164 -1.3047619722783566e-03</internalNodes> + <leafValues> + 1.5499970316886902e-01 -7.5386047363281250e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 165 -1.2975010089576244e-02</internalNodes> + <leafValues> + -5.5344110727310181e-01 8.2354247570037842e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 166 7.7442410401999950e-03</internalNodes> + <leafValues> + 2.7699800208210945e-02 -3.4835991263389587e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 167 2.4850629270076752e-03</internalNodes> + <leafValues> + -1.2976129353046417e-01 3.7908831238746643e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>21</maxWeakCount> + <stageThreshold>-1.4114329814910889e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 168 -4.0386881679296494e-02</internalNodes> + <leafValues> + 5.9603548049926758e-01 -3.5741761326789856e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 169 -6.6068649175576866e-05</internalNodes> + <leafValues> + 4.4628980755805969e-01 -3.5959470272064209e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 170 3.7622239906340837e-03</internalNodes> + <leafValues> + 1.7947019636631012e-01 -7.5631511211395264e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 171 -3.0967719852924347e-02</internalNodes> + <leafValues> + -2.8847050666809082e-01 7.6870530843734741e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 172 3.0566560104489326e-02</internalNodes> + <leafValues> + 1.4003600180149078e-01 -7.1755367517471313e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 173 9.9054910242557526e-04</internalNodes> + <leafValues> + 8.2915589213371277e-02 -2.9197171330451965e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 174 1.2577700428664684e-02</internalNodes> + <leafValues> + 1.5380719304084778e-01 -4.6882930397987366e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 175 1.2392920255661011e-01</internalNodes> + <leafValues> + -9.0823858976364136e-02 7.3837572336196899e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 176 3.7737488746643066e-01</internalNodes> + <leafValues> + -5.4232951253652573e-02 9.2291218042373657e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 177 1.0996370017528534e-01</internalNodes> + <leafValues> + 9.1596268117427826e-02 -6.5977168083190918e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 178 -1.2721329694613814e-03</internalNodes> + <leafValues> + 3.3475750684738159e-01 -1.8290689587593079e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 179 4.6906251460313797e-02</internalNodes> + <leafValues> + -8.3971053361892700e-02 6.9847589731216431e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 180 3.2869930146262050e-04</internalNodes> + <leafValues> + 1.8794630467891693e-01 -2.9290059208869934e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 181 1.7333080177195370e-04</internalNodes> + <leafValues> + -2.6964160799980164e-01 3.4947571158409119e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 182 1.9800959154963493e-02</internalNodes> + <leafValues> + -1.4679229259490967e-01 4.3995618820190430e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 183 2.0056760695297271e-04</internalNodes> + <leafValues> + -1.3727410137653351e-01 2.2213310003280640e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 184 -1.4923149719834328e-03</internalNodes> + <leafValues> + 3.4735259413719177e-01 -1.5948210656642914e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 185 -4.2736999603221193e-05</internalNodes> + <leafValues> + 3.1527870893478394e-01 -2.3066949844360352e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 186 6.6625140607357025e-04</internalNodes> + <leafValues> + -2.0131100714206696e-01 2.8691890835762024e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 187 1.3850460163666867e-05</internalNodes> + <leafValues> + -2.0219239592552185e-01 2.3073309659957886e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 188 4.0972631424665451e-02</internalNodes> + <leafValues> + 7.9543180763721466e-02 -8.0795639753341675e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>23</maxWeakCount> + <stageThreshold>-1.3777890205383301e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 189 -4.6982929110527039e-02</internalNodes> + <leafValues> + 7.0822530984878540e-01 -3.7034240365028381e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 190 -7.5753079727292061e-04</internalNodes> + <leafValues> + -1.2550309300422668e-01 1.3944420218467712e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 191 1.5327299945056438e-02</internalNodes> + <leafValues> + 2.1613539755344391e-01 -5.6293952465057373e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 192 1.8147040158510208e-02</internalNodes> + <leafValues> + -3.2079648226499557e-02 3.2347559928894043e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 193 4.7347191721200943e-02</internalNodes> + <leafValues> + -1.7381580173969269e-01 5.7580447196960449e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 194 -5.9837941080331802e-02</internalNodes> + <leafValues> + 4.7797870635986328e-01 -1.0260280221700668e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 195 -5.2796799689531326e-02</internalNodes> + <leafValues> + -4.7988489270210266e-01 1.8787759542465210e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 196 -2.4385429918766022e-02</internalNodes> + <leafValues> + -3.0841669440269470e-01 8.7605630978941917e-03</leafValues></_> + <_> + <internalNodes> + 0 -1 197 2.5288300588726997e-02</internalNodes> + <leafValues> + 1.3914039731025696e-01 -7.1094942092895508e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 198 -2.1612450480461121e-02</internalNodes> + <leafValues> + -2.3282539844512939e-01 8.0994680523872375e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 199 3.4023479092866182e-03</internalNodes> + <leafValues> + -2.2989900410175323e-01 3.7889510393142700e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 200 1.1274600028991699e-01</internalNodes> + <leafValues> + -1.5474709682166576e-02 5.7030540704727173e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 201 3.4516870975494385e-02</internalNodes> + <leafValues> + -1.2300080060958862e-01 5.6775367259979248e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 202 7.8984811902046204e-02</internalNodes> + <leafValues> + -1.4242169260978699e-01 4.6941858530044556e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 203 -1.5377859584987164e-02</internalNodes> + <leafValues> + 6.3946861028671265e-01 -1.1236190050840378e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 204 -2.2373620595317334e-04</internalNodes> + <leafValues> + 5.5583298206329346e-01 -2.7247580885887146e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 205 -2.4762390181422234e-02</internalNodes> + <leafValues> + -5.0404858589172363e-01 1.4077790081501007e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 206 -9.4061157142277807e-05</internalNodes> + <leafValues> + 3.7195280194282532e-01 -2.2502990067005157e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 207 -2.0256359130144119e-02</internalNodes> + <leafValues> + 5.1051008701324463e-01 -1.4298759400844574e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 208 4.8122879117727280e-02</internalNodes> + <leafValues> + -6.6979512572288513e-02 3.6622309684753418e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 209 -2.3787800222635269e-02</internalNodes> + <leafValues> + 5.0813251733779907e-01 -1.2908150255680084e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 210 -1.0520319920033216e-03</internalNodes> + <leafValues> + -1.5604670345783234e-01 6.6213317215442657e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 211 -2.6640200521796942e-03</internalNodes> + <leafValues> + -7.2545582056045532e-01 8.2365453243255615e-02</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>25</maxWeakCount> + <stageThreshold>-1.3266400098800659e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 212 -5.0224620848894119e-02</internalNodes> + <leafValues> + 7.0845657587051392e-01 -2.5585499405860901e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 213 1.4072869904339314e-02</internalNodes> + <leafValues> + 6.3033178448677063e-02 -5.9838529676198959e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 214 1.7804009839892387e-02</internalNodes> + <leafValues> + 1.9414719939231873e-01 -5.8444267511367798e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 215 1.3046739995479584e-01</internalNodes> + <leafValues> + -1.1516980081796646e-01 8.5040301084518433e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 216 1.7506800591945648e-02</internalNodes> + <leafValues> + -2.0718969404697418e-01 4.6438288688659668e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 217 -7.4240020476281643e-03</internalNodes> + <leafValues> + -6.6565167903900146e-01 1.4034989476203918e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 218 -3.4571118652820587e-02</internalNodes> + <leafValues> + 6.5112978219985962e-01 -1.4901919662952423e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 219 4.2270249687135220e-03</internalNodes> + <leafValues> + -1.6027219826355577e-03 3.8956061005592346e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 220 -5.0662040710449219e-02</internalNodes> + <leafValues> + 5.8035767078399658e-01 -1.5141439437866211e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 221 -7.0715770125389099e-03</internalNodes> + <leafValues> + 5.3008967638015747e-01 -1.4498309791088104e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 222 -1.1863510124385357e-02</internalNodes> + <leafValues> + 6.7297422885894775e-01 -1.1063549667596817e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 223 -6.0520030558109283e-02</internalNodes> + <leafValues> + -3.3164489269256592e-01 2.1195560693740845e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 224 -7.7340779826045036e-03</internalNodes> + <leafValues> + -6.9414401054382324e-01 7.2705313563346863e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 225 -3.2486140727996826e-02</internalNodes> + <leafValues> + -5.1850819587707520e-01 5.9212621301412582e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 226 8.3279706537723541e-02</internalNodes> + <leafValues> + 1.2067940086126328e-01 -5.3095632791519165e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 227 7.8782817581668496e-04</internalNodes> + <leafValues> + -2.7376559376716614e-01 2.7162519097328186e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 228 -1.7539180815219879e-02</internalNodes> + <leafValues> + -5.6902301311492920e-01 1.2287370115518570e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 229 -5.8226347900927067e-03</internalNodes> + <leafValues> + 4.3865859508514404e-01 -1.4937420189380646e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 230 -1.0057560168206692e-02</internalNodes> + <leafValues> + -6.6168862581253052e-01 1.1445429921150208e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 231 9.0345427393913269e-02</internalNodes> + <leafValues> + -6.6665247082710266e-02 2.8706479072570801e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 232 -6.7587293684482574e-02</internalNodes> + <leafValues> + -5.3637611865997314e-01 1.1237519979476929e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 233 -8.1747528165578842e-03</internalNodes> + <leafValues> + 4.4342419505119324e-01 -1.2977659702301025e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 234 -1.1550550349056721e-02</internalNodes> + <leafValues> + 3.2731580734252930e-01 -1.7007610201835632e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 235 -1.7406829283572733e-04</internalNodes> + <leafValues> + 1.3278679549694061e-01 -1.0812939703464508e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 236 4.6040047891438007e-03</internalNodes> + <leafValues> + -1.2265820056200027e-01 4.4125801324844360e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>17</maxWeakCount> + <stageThreshold>-1.4497200250625610e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 237 -4.6943280845880508e-02</internalNodes> + <leafValues> + 6.0943442583084106e-01 -2.6378008723258972e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 238 -1.6899159527383745e-04</internalNodes> + <leafValues> + 1.6658750176429749e-01 -1.2541960179805756e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 239 2.7983370237052441e-03</internalNodes> + <leafValues> + 1.9057449698448181e-01 -6.5680772066116333e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 240 4.0413960814476013e-03</internalNodes> + <leafValues> + -1.7317469418048859e-01 6.3620752096176147e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 241 -8.6033362895250320e-03</internalNodes> + <leafValues> + 6.0258418321609497e-01 -2.3169369995594025e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 242 8.8247945532202721e-03</internalNodes> + <leafValues> + -1.7565830051898956e-01 7.1041667461395264e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 243 -9.2786159366369247e-03</internalNodes> + <leafValues> + -6.8908572196960449e-01 1.7896500229835510e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 244 6.0826768167316914e-03</internalNodes> + <leafValues> + -1.7063720524311066e-01 5.3757482767105103e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 245 -3.9007369428873062e-02</internalNodes> + <leafValues> + -6.8346357345581055e-01 1.4417080581188202e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 246 -7.0337951183319092e-02</internalNodes> + <leafValues> + -6.5085667371749878e-01 1.0085479915142059e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 247 3.3166699111461639e-02</internalNodes> + <leafValues> + -1.9325719773769379e-01 4.7798651456832886e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 248 7.5288906693458557e-02</internalNodes> + <leafValues> + -6.9567732512950897e-02 4.1250649094581604e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 249 -7.0501729846000671e-02</internalNodes> + <leafValues> + 7.1573007106781006e-01 -1.0222700238227844e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 250 1.2249490246176720e-02</internalNodes> + <leafValues> + -1.0612429678440094e-01 6.2959581613540649e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 251 7.0644676685333252e-02</internalNodes> + <leafValues> + -9.7374632954597473e-02 6.7622041702270508e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 252 1.6248880326747894e-01</internalNodes> + <leafValues> + 5.2713360637426376e-02 -8.4946572780609131e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 253 1.3808250427246094e-01</internalNodes> + <leafValues> + 1.4064790308475494e-01 -4.7647210955619812e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>20</maxWeakCount> + <stageThreshold>-1.4622910022735596e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 254 -4.1882339864969254e-02</internalNodes> + <leafValues> + -8.0774527788162231e-01 2.6409670710563660e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 255 -5.3622990846633911e-02</internalNodes> + <leafValues> + 5.5807042121887207e-01 -2.4989689886569977e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 256 9.3709938228130341e-03</internalNodes> + <leafValues> + 2.6501700282096863e-01 -5.9906947612762451e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 257 1.3909730128943920e-02</internalNodes> + <leafValues> + -1.4709180593490601e-01 7.3546671867370605e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 258 1.9003570079803467e-02</internalNodes> + <leafValues> + -1.8875110149383545e-01 7.4874222278594971e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 259 5.9199850074946880e-03</internalNodes> + <leafValues> + -1.5995639562606812e-01 5.6735777854919434e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 260 -2.4705139920115471e-02</internalNodes> + <leafValues> + 7.5569921731948853e-01 -1.2350880354642868e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 261 1.6058359295129776e-02</internalNodes> + <leafValues> + -1.2824609875679016e-01 5.1294547319412231e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 262 8.8288700208067894e-03</internalNodes> + <leafValues> + -1.6866639256477356e-01 6.1521852016448975e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 263 1.7556339502334595e-02</internalNodes> + <leafValues> + -1.0901699960231781e-01 5.8031761646270752e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 264 4.2188119143247604e-02</internalNodes> + <leafValues> + 1.4866240322589874e-01 -6.9222331047058105e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 265 5.0687207840383053e-04</internalNodes> + <leafValues> + 3.1580869108438492e-02 -3.7009951472282410e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 266 2.7651190757751465e-03</internalNodes> + <leafValues> + -2.1337540447711945e-01 4.7043010592460632e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 267 -1.2231520377099514e-03</internalNodes> + <leafValues> + -7.8189671039581299e-01 2.0954260602593422e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 268 8.5432287305593491e-03</internalNodes> + <leafValues> + -1.4553520083427429e-01 6.7895042896270752e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 269 -2.0657219283748418e-04</internalNodes> + <leafValues> + 2.4376240372657776e-01 -6.7558802664279938e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 270 -4.6798270195722580e-03</internalNodes> + <leafValues> + 6.6841697692871094e-01 -1.3887880742549896e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 271 1.2201759964227676e-01</internalNodes> + <leafValues> + 1.1028160154819489e-01 -7.5307422876358032e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 272 2.0404340699315071e-02</internalNodes> + <leafValues> + 1.6453839838504791e-01 -5.2231621742248535e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 273 8.0343370791524649e-04</internalNodes> + <leafValues> + -1.3012850284576416e-01 2.6358529925346375e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>28</maxWeakCount> + <stageThreshold>-1.3885619640350342e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 274 7.2791710495948792e-02</internalNodes> + <leafValues> + -1.3727900385856628e-01 8.2915747165679932e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 275 7.5939209200441837e-03</internalNodes> + <leafValues> + -1.6780120134353638e-01 5.6839722394943237e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 276 -2.3562390357255936e-02</internalNodes> + <leafValues> + 6.5005600452423096e-01 -1.4245350658893585e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 277 1.7392950132489204e-02</internalNodes> + <leafValues> + -1.5291449427604675e-01 3.4253540635108948e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 278 7.1825802326202393e-02</internalNodes> + <leafValues> + -9.9131137132644653e-02 8.2796788215637207e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 279 1.3673800043761730e-02</internalNodes> + <leafValues> + -4.1787270456552505e-02 5.0781482458114624e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 280 -2.8585959225893021e-02</internalNodes> + <leafValues> + 7.0115321874618530e-01 -1.3144710659980774e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 281 -4.1845720261335373e-04</internalNodes> + <leafValues> + 2.8454670310020447e-01 -3.1232029199600220e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 282 -5.2095681428909302e-02</internalNodes> + <leafValues> + 4.1812941431999207e-01 -1.6993130743503571e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 283 3.2256329432129860e-03</internalNodes> + <leafValues> + -9.0466208755970001e-02 3.0086231231689453e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 284 3.4771639853715897e-02</internalNodes> + <leafValues> + -8.4216788411140442e-02 7.8016638755798340e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 285 -1.3356630224734545e-03</internalNodes> + <leafValues> + 3.3164530992507935e-01 -1.6960920393466949e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 286 2.5101980566978455e-01</internalNodes> + <leafValues> + -1.3920469582080841e-01 6.6338932514190674e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 287 -9.9689997732639313e-03</internalNodes> + <leafValues> + -3.7138170003890991e-01 1.2900120019912720e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 288 1.4303729869425297e-02</internalNodes> + <leafValues> + 1.5729199349880219e-01 -5.0938212871551514e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 289 -7.0856059901416302e-03</internalNodes> + <leafValues> + 4.6567910909652710e-01 -6.6270820796489716e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 290 -4.6260809176601470e-04</internalNodes> + <leafValues> + 2.9337310791015625e-01 -2.3339860141277313e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 291 -3.4435480833053589e-02</internalNodes> + <leafValues> + 7.0024740695953369e-01 -1.0133510082960129e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 292 -7.2570890188217163e-03</internalNodes> + <leafValues> + -5.6286412477493286e-01 1.3148620724678040e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 293 4.8352940939366817e-04</internalNodes> + <leafValues> + 2.6227489113807678e-02 -2.6050800085067749e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 294 -1.2999939732253551e-02</internalNodes> + <leafValues> + 5.3117001056671143e-01 -1.2023050338029861e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 295 -1.0009329998865724e-03</internalNodes> + <leafValues> + 3.9641299843788147e-01 -1.5995159745216370e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 296 4.1314200498163700e-03</internalNodes> + <leafValues> + -1.4929920434951782e-01 4.2959120869636536e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 297 8.7364455685019493e-03</internalNodes> + <leafValues> + -1.1271020025014877e-01 4.9456471204757690e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 298 2.6352869463153183e-04</internalNodes> + <leafValues> + -1.2124919891357422e-01 4.9439379572868347e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 299 -5.3885959088802338e-02</internalNodes> + <leafValues> + 7.0355987548828125e-01 -1.3230550102889538e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 300 4.2885672301054001e-03</internalNodes> + <leafValues> + -1.7540550231933594e-01 3.5679468512535095e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 301 7.9539399594068527e-03</internalNodes> + <leafValues> + -9.9884003400802612e-02 3.1371670961380005e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>53</maxWeakCount> + <stageThreshold>-1.2766569852828979e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 302 5.6752368807792664e-02</internalNodes> + <leafValues> + -3.2576480507850647e-01 3.7375938892364502e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 303 7.0906039327383041e-03</internalNodes> + <leafValues> + -1.3918629288673401e-01 1.5039840340614319e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 304 -4.1298821568489075e-02</internalNodes> + <leafValues> + 4.7026079893112183e-01 -1.6179360449314117e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 305 4.7750189900398254e-01</internalNodes> + <leafValues> + -1.0061579942703247e-01 7.6350742578506470e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 306 4.2266491055488586e-01</internalNodes> + <leafValues> + -3.5190910100936890e-02 8.3031260967254639e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 307 -3.3031899482011795e-02</internalNodes> + <leafValues> + -3.7505549192428589e-01 4.8902619630098343e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 308 1.1923770216526464e-04</internalNodes> + <leafValues> + -2.6614668965339661e-01 2.2346520423889160e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 309 4.2101400904357433e-03</internalNodes> + <leafValues> + 8.7575968354940414e-03 -5.9383517503738403e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 310 3.3337279455736279e-04</internalNodes> + <leafValues> + -2.1227659285068512e-01 2.4735039472579956e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 311 1.1793890036642551e-02</internalNodes> + <leafValues> + -6.8997949361801147e-02 5.8980828523635864e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 312 -1.1432079970836639e-01</internalNodes> + <leafValues> + -7.7333682775497437e-01 6.2862291932106018e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 313 8.2401007413864136e-02</internalNodes> + <leafValues> + 1.6825279220938683e-02 -6.1700117588043213e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 314 1.8126150593161583e-02</internalNodes> + <leafValues> + 9.9533468484878540e-02 -3.8309159874916077e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 315 8.9282449334859848e-03</internalNodes> + <leafValues> + -1.0109739750623703e-01 2.9483050107955933e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 316 -1.7437100410461426e-02</internalNodes> + <leafValues> + 4.6149870753288269e-01 -1.0506360232830048e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 317 -1.1280310340225697e-02</internalNodes> + <leafValues> + 4.5611649751663208e-01 -1.0131160169839859e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 318 7.0190089754760265e-03</internalNodes> + <leafValues> + -1.3686269521713257e-01 4.1732659935951233e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 319 -3.2439709175378084e-03</internalNodes> + <leafValues> + 2.3216480016708374e-01 -1.7915369570255280e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 320 3.5615891218185425e-01</internalNodes> + <leafValues> + -4.8626810312271118e-02 9.5373457670211792e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 321 3.8440749049186707e-03</internalNodes> + <leafValues> + -1.0288280248641968e-01 3.6717781424522400e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 322 6.0950029641389847e-02</internalNodes> + <leafValues> + 5.6141741573810577e-02 -6.4585697650909424e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 323 1.8149229884147644e-01</internalNodes> + <leafValues> + 3.0806390568614006e-02 -4.6048960089683533e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 324 -9.2359259724617004e-02</internalNodes> + <leafValues> + -4.5248210430145264e-01 8.8152237236499786e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 325 7.6072998344898224e-03</internalNodes> + <leafValues> + -9.7122326493263245e-02 2.1552249789237976e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 326 -4.6946710790507495e-04</internalNodes> + <leafValues> + -4.0893718600273132e-01 8.0042190849781036e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 327 1.0301820293534547e-04</internalNodes> + <leafValues> + -1.1530359834432602e-01 2.7955350279808044e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 328 2.7936851256527007e-04</internalNodes> + <leafValues> + -1.1396100372076035e-01 2.9316601157188416e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 329 2.4675959348678589e-01</internalNodes> + <leafValues> + -3.8595631718635559e-02 8.2649981975555420e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 330 -8.4232958033680916e-03</internalNodes> + <leafValues> + 3.2995969057083130e-01 -1.1645369976758957e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 331 -4.2311567813158035e-03</internalNodes> + <leafValues> + 2.7142119407653809e-01 -1.0811480134725571e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 332 1.5653009759262204e-03</internalNodes> + <leafValues> + 7.8253783285617828e-02 -5.2097660303115845e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 333 -5.0341398455202579e-03</internalNodes> + <leafValues> + 2.9488059878349304e-01 -4.6960510313510895e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 334 1.4283140189945698e-03</internalNodes> + <leafValues> + -1.3794599473476410e-01 2.4323709309101105e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 335 1.9031369686126709e-01</internalNodes> + <leafValues> + -5.2093509584665298e-02 6.8708032369613647e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 336 8.1368777900934219e-03</internalNodes> + <leafValues> + -5.3311519324779510e-02 5.8272719383239746e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 337 -4.6728368848562241e-02</internalNodes> + <leafValues> + 3.5525360703468323e-01 -1.7806259915232658e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 338 1.4317169785499573e-02</internalNodes> + <leafValues> + -1.2626640498638153e-01 2.6961010694503784e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 339 -9.6109732985496521e-02</internalNodes> + <leafValues> + 3.4117481112480164e-01 -3.9217609912157059e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 340 7.4878811836242676e-02</internalNodes> + <leafValues> + -6.4819902181625366e-02 5.6711381673812866e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 341 -5.1972299843328074e-05</internalNodes> + <leafValues> + 2.8742098808288574e-01 -1.6428899765014648e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 342 -2.0099039829801768e-04</internalNodes> + <leafValues> + 2.6590210199356079e-01 -1.2990359961986542e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 343 1.5583490021526814e-02</internalNodes> + <leafValues> + 3.6322619765996933e-02 -8.8743317127227783e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 344 6.7313341423869133e-03</internalNodes> + <leafValues> + 1.6281859576702118e-01 -1.9716200232505798e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 345 -4.5251410454511642e-02</internalNodes> + <leafValues> + -2.0315009355545044e-01 1.5734089910984039e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 346 2.8729529003612697e-04</internalNodes> + <leafValues> + -1.2449590116739273e-01 2.5658228993415833e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 347 -2.1028579212725163e-03</internalNodes> + <leafValues> + -5.0887292623519897e-01 3.4083180129528046e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 348 -3.9328099228441715e-03</internalNodes> + <leafValues> + -3.3933758735656738e-01 9.3055568635463715e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 349 3.1205590348690748e-03</internalNodes> + <leafValues> + -2.2794060409069061e-02 2.3793530464172363e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 350 7.8028678894042969e-02</internalNodes> + <leafValues> + -4.4503621757030487e-02 6.7763942480087280e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 351 4.2476978152990341e-02</internalNodes> + <leafValues> + 9.2582106590270996e-02 -3.5363018512725830e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 352 -2.5768300518393517e-02</internalNodes> + <leafValues> + -9.0919911861419678e-01 2.6692839339375496e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 353 6.1444669961929321e-02</internalNodes> + <leafValues> + -2.4954399093985558e-02 7.2120499610900879e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 354 3.5776318982243538e-03</internalNodes> + <leafValues> + 1.7728990316390991e-01 -1.9723449647426605e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>38</maxWeakCount> + <stageThreshold>-1.4061349630355835e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 355 2.8585961461067200e-01</internalNodes> + <leafValues> + -1.5396049618721008e-01 6.6246771812438965e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 356 9.2271259054541588e-03</internalNodes> + <leafValues> + -1.0746339708566666e-01 4.3118068575859070e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 357 2.2924109362065792e-03</internalNodes> + <leafValues> + -1.9830130040645599e-01 3.8422289490699768e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 358 1.4004509896039963e-02</internalNodes> + <leafValues> + -1.9249489903450012e-01 3.4424918889999390e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 359 9.6023201942443848e-02</internalNodes> + <leafValues> + 1.2990599870681763e-01 -6.0653048753738403e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 360 6.1803720891475677e-03</internalNodes> + <leafValues> + -1.9046460092067719e-01 1.8918620049953461e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 361 8.2172285765409470e-03</internalNodes> + <leafValues> + -2.5182679295539856e-01 2.6644590497016907e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 362 -1.4542760327458382e-03</internalNodes> + <leafValues> + 2.7102690935134888e-01 -1.2041489779949188e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 363 3.0185449868440628e-03</internalNodes> + <leafValues> + -1.3538609445095062e-01 4.7336030006408691e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 364 -3.4214779734611511e-03</internalNodes> + <leafValues> + -5.0499719381332397e-01 1.0424809902906418e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 365 9.5980763435363770e-03</internalNodes> + <leafValues> + -1.0347290337085724e-01 5.8372837305068970e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 366 4.1849957779049873e-03</internalNodes> + <leafValues> + 5.8896709233522415e-02 -4.6232289075851440e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 367 -4.6107750385999680e-03</internalNodes> + <leafValues> + 3.7835618853569031e-01 -1.2590229511260986e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 368 2.8978679329156876e-03</internalNodes> + <leafValues> + -1.3699549436569214e-01 2.5951480865478516e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 369 4.2606070637702942e-03</internalNodes> + <leafValues> + 8.8233962655067444e-02 -6.3902848958969116e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 370 -4.2996238917112350e-03</internalNodes> + <leafValues> + -7.9539728164672852e-01 1.7093559727072716e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 371 3.5423618555068970e-01</internalNodes> + <leafValues> + -5.9345040470361710e-02 8.5579198598861694e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 372 -3.0245838570408523e-04</internalNodes> + <leafValues> + 3.1470650434494019e-01 -1.4486099779605865e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 373 2.7169490233063698e-02</internalNodes> + <leafValues> + -1.2492950260639191e-01 4.2809039354324341e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 374 3.4571529831737280e-03</internalNodes> + <leafValues> + 3.9709329605102539e-02 -7.0891571044921875e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 375 2.1742798853665590e-03</internalNodes> + <leafValues> + 6.5872453153133392e-02 -6.9496941566467285e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 376 2.5263810530304909e-02</internalNodes> + <leafValues> + -1.1693959683179855e-01 1.9049769639968872e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 377 -2.4720989167690277e-02</internalNodes> + <leafValues> + -4.9657958745956421e-01 1.0175380110740662e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 378 1.0384880006313324e-02</internalNodes> + <leafValues> + -1.1486739665269852e-01 3.3741530776023865e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 379 5.0045028328895569e-03</internalNodes> + <leafValues> + -1.0963550209999084e-01 3.9255198836326599e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 380 7.1279620751738548e-03</internalNodes> + <leafValues> + -6.4908191561698914e-02 4.0420401096343994e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 381 1.9700419157743454e-02</internalNodes> + <leafValues> + -7.9375877976417542e-02 5.3082340955734253e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 382 4.2097331024706364e-03</internalNodes> + <leafValues> + 4.0797021239995956e-02 -6.0440987348556519e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 383 4.4459570199251175e-03</internalNodes> + <leafValues> + -1.0386230051517487e-01 4.0935981273651123e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 384 -5.9610428288578987e-03</internalNodes> + <leafValues> + -5.2914947271347046e-01 8.0539450049400330e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 385 5.7519221445545554e-04</internalNodes> + <leafValues> + 6.3804402947425842e-02 -5.8636617660522461e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 386 6.0524851083755493e-02</internalNodes> + <leafValues> + -3.3712800592184067e-02 2.6311159133911133e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 387 -1.0353810153901577e-02</internalNodes> + <leafValues> + -4.7920021414756775e-01 8.0043956637382507e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 388 -2.2777510806918144e-02</internalNodes> + <leafValues> + -3.1162750720977783e-01 1.1899980157613754e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 389 -2.2468879818916321e-02</internalNodes> + <leafValues> + -6.6083461046218872e-01 5.2234489470720291e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 390 5.8432162040844560e-04</internalNodes> + <leafValues> + 5.4630339145660400e-02 -4.6395659446716309e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 391 -3.6177870351821184e-03</internalNodes> + <leafValues> + 6.7447042465209961e-01 -5.8789528906345367e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 392 3.0088860541582108e-02</internalNodes> + <leafValues> + 3.3133521676063538e-02 -4.6461370587348938e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>40</maxWeakCount> + <stageThreshold>-1.3384460210800171e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 393 -7.2600990533828735e-02</internalNodes> + <leafValues> + 6.3907092809677124e-01 -1.5124550461769104e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 394 3.4712558984756470e-01</internalNodes> + <leafValues> + -7.9024657607078552e-02 7.9550421237945557e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 395 3.4297230839729309e-01</internalNodes> + <leafValues> + -1.2300959974527359e-01 6.5728098154067993e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 396 3.5616940259933472e-01</internalNodes> + <leafValues> + -5.3733438253402710e-02 8.2851082086563110e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 397 6.0840700753033161e-03</internalNodes> + <leafValues> + -1.2847210466861725e-01 3.3822679519653320e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 398 -1.6281309945043176e-04</internalNodes> + <leafValues> + 3.0356609821319580e-01 -2.5182029604911804e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 399 1.1281900107860565e-02</internalNodes> + <leafValues> + -8.3914346992969513e-02 4.3475928902626038e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 400 7.4357059784233570e-03</internalNodes> + <leafValues> + -6.7088037729263306e-02 3.7227979302406311e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 401 -9.0576216578483582e-02</internalNodes> + <leafValues> + -5.8319610357284546e-01 8.0146759748458862e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 402 8.8247694075107574e-03</internalNodes> + <leafValues> + 1.2901930510997772e-01 -4.7603130340576172e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 403 -2.6147770695388317e-03</internalNodes> + <leafValues> + -4.0002208948135376e-01 1.1246310174465179e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 404 -2.5541300419718027e-04</internalNodes> + <leafValues> + 3.2386159896850586e-01 -2.3331870138645172e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 405 2.6547629386186600e-02</internalNodes> + <leafValues> + 7.2333872318267822e-02 -5.8378398418426514e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 406 -5.1383141428232193e-02</internalNodes> + <leafValues> + -2.2446189820766449e-01 4.0949739515781403e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 407 3.3701129723340273e-03</internalNodes> + <leafValues> + -1.6717089712619781e-01 2.5526970624923706e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 408 -2.2581920493394136e-03</internalNodes> + <leafValues> + -9.2079228162765503e-01 3.4371060319244862e-03</leafValues></_> + <_> + <internalNodes> + 0 -1 409 -1.3282749569043517e-04</internalNodes> + <leafValues> + 1.8573220074176788e-01 -2.2498969733715057e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 410 -2.8032590635120869e-03</internalNodes> + <leafValues> + -8.5897541046142578e-01 4.6384520828723907e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 411 1.3141379458829761e-03</internalNodes> + <leafValues> + 7.9627066850662231e-02 -4.6105968952178955e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 412 6.3884541392326355e-02</internalNodes> + <leafValues> + -5.3440149873495102e-02 8.1045001745223999e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 413 -1.9811019301414490e-03</internalNodes> + <leafValues> + -6.3825148344039917e-01 7.6643556356430054e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 414 1.3359859585762024e-02</internalNodes> + <leafValues> + -9.5037549734115601e-02 6.2533348798751831e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 415 -1.0935300088021904e-04</internalNodes> + <leafValues> + 1.7479540407657623e-01 -2.2876030206680298e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 416 1.1910630390048027e-02</internalNodes> + <leafValues> + -7.7041983604431152e-02 5.0458377599716187e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 417 2.3951700329780579e-01</internalNodes> + <leafValues> + -6.5122887492179871e-02 5.0420749187469482e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 418 3.9831408858299255e-01</internalNodes> + <leafValues> + -2.9999820515513420e-02 7.9685479402542114e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 419 6.1875800602138042e-03</internalNodes> + <leafValues> + -8.5339173674583435e-02 3.9451768994331360e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 420 -9.4047123566269875e-03</internalNodes> + <leafValues> + -4.3441331386566162e-01 8.2619100809097290e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 421 1.1736630462110043e-02</internalNodes> + <leafValues> + 6.9483160972595215e-02 -4.8706498742103577e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 422 -1.5176770277321339e-02</internalNodes> + <leafValues> + -5.8541208505630493e-01 3.2879561185836792e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 423 3.0744259711354971e-03</internalNodes> + <leafValues> + -1.3146080076694489e-01 2.5466740131378174e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 424 2.9391339048743248e-03</internalNodes> + <leafValues> + -1.0860230028629303e-01 2.7834960818290710e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 425 2.1510310471057892e-03</internalNodes> + <leafValues> + -1.5750579535961151e-01 2.0877860486507416e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 426 5.3775361739099026e-03</internalNodes> + <leafValues> + -1.3207030296325684e-01 3.7672939896583557e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 427 2.2174179553985596e-02</internalNodes> + <leafValues> + -9.0180292725563049e-02 4.1575270891189575e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 428 -1.9948610570281744e-03</internalNodes> + <leafValues> + 2.5608581304550171e-01 -9.9084928631782532e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 429 3.1557559967041016e-02</internalNodes> + <leafValues> + 7.4188999831676483e-02 -5.4940229654312134e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 430 -4.3111158447572961e-05</internalNodes> + <leafValues> + 3.0324628949165344e-01 -1.7781810462474823e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 431 -3.2675920519977808e-03</internalNodes> + <leafValues> + -6.7212432622909546e-01 5.9188328683376312e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 432 4.2293380829505622e-04</internalNodes> + <leafValues> + -1.1034099757671356e-01 1.2573179602622986e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>45</maxWeakCount> + <stageThreshold>-1.2722699642181396e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 433 -4.2562019079923630e-02</internalNodes> + <leafValues> + 3.3346658945083618e-01 -2.9861980676651001e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 434 4.1827198863029480e-01</internalNodes> + <leafValues> + -9.5138698816299438e-02 7.5709921121597290e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 435 -2.0256379619240761e-02</internalNodes> + <leafValues> + 4.7783890366554260e-01 -1.4592100679874420e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 436 -1.8948309123516083e-02</internalNodes> + <leafValues> + -3.8727501034736633e-01 5.2479889243841171e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 437 -4.0550589561462402e-02</internalNodes> + <leafValues> + 5.4646247625350952e-01 -8.1399857997894287e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 438 5.1872748136520386e-01</internalNodes> + <leafValues> + -2.7930539101362228e-02 8.4580981731414795e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 439 2.0713619887828827e-01</internalNodes> + <leafValues> + -5.8850869536399841e-02 7.9601562023162842e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 440 8.1972572952508926e-03</internalNodes> + <leafValues> + -9.9966369569301605e-02 4.9831560254096985e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 441 1.7445389181375504e-02</internalNodes> + <leafValues> + 6.8040959537029266e-02 -5.6699818372726440e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 442 -5.6310281157493591e-02</internalNodes> + <leafValues> + -6.8628042936325073e-01 7.4222557246685028e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 443 1.8095560371875763e-01</internalNodes> + <leafValues> + -5.2808128297328949e-02 8.4483182430267334e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 444 -2.3450690787285566e-03</internalNodes> + <leafValues> + 2.8396940231323242e-01 -1.1123369634151459e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 445 3.8937770295888186e-03</internalNodes> + <leafValues> + 6.5499313175678253e-02 -5.7920962572097778e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 446 3.9383721741614863e-05</internalNodes> + <leafValues> + -3.0930471420288086e-01 4.2237108945846558e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 447 3.3899158239364624e-02</internalNodes> + <leafValues> + 3.0707539990544319e-02 -7.2299808263778687e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 448 -3.3644389361143112e-02</internalNodes> + <leafValues> + 4.2664441466331482e-01 -7.2005778551101685e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 449 3.8807760924100876e-02</internalNodes> + <leafValues> + -4.1713520884513855e-02 6.5995568037033081e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 450 -3.9149548683781177e-05</internalNodes> + <leafValues> + 4.9335500597953796e-01 -2.4260109663009644e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 451 -2.7580570895224810e-04</internalNodes> + <leafValues> + 1.7910109460353851e-01 -2.1925190091133118e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 452 1.2636659666895866e-02</internalNodes> + <leafValues> + -7.1233622729778290e-02 2.5342619419097900e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 453 -3.3681739587336779e-03</internalNodes> + <leafValues> + 3.3100861310958862e-01 -1.0207779705524445e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 454 -4.1184529662132263e-02</internalNodes> + <leafValues> + -4.7871989011764526e-01 2.7444809675216675e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 455 1.7285279929637909e-02</internalNodes> + <leafValues> + -2.3733820021152496e-01 1.5414300560951233e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 456 -5.8373320847749710e-02</internalNodes> + <leafValues> + 3.6355251073837280e-01 -6.2911927700042725e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 457 2.5229319930076599e-02</internalNodes> + <leafValues> + -9.4345822930335999e-02 4.3224421143531799e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 458 4.7925519756972790e-03</internalNodes> + <leafValues> + 4.8664271831512451e-02 -4.7046890854835510e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 459 -1.3549529830925167e-04</internalNodes> + <leafValues> + 1.9361880421638489e-01 -1.9338470697402954e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 460 -1.7969410866498947e-02</internalNodes> + <leafValues> + 2.9000860452651978e-01 -5.4545279592275620e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 461 1.1141040362417698e-02</internalNodes> + <leafValues> + -1.0802250355482101e-01 3.3327960968017578e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 462 3.9759509265422821e-02</internalNodes> + <leafValues> + 1.9240869209170341e-02 -4.8899960517883301e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 463 -2.2652709856629372e-02</internalNodes> + <leafValues> + -5.0369280576705933e-01 8.0773733556270599e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 464 1.0915650054812431e-03</internalNodes> + <leafValues> + 6.5554052591323853e-02 -2.4443879723548889e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 465 6.8754747509956360e-02</internalNodes> + <leafValues> + 8.9196808636188507e-02 -3.5653901100158691e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 466 -3.3071058988571167e-01</internalNodes> + <leafValues> + 4.6495699882507324e-01 -5.8183699846267700e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 467 -1.9307229667901993e-02</internalNodes> + <leafValues> + -4.4157180190086365e-01 8.3050116896629333e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 468 3.4808758646249771e-02</internalNodes> + <leafValues> + 5.3480580449104309e-02 -5.0377398729324341e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 469 -3.8908151327632368e-04</internalNodes> + <leafValues> + 3.4271261096000671e-01 -8.9923180639743805e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 470 -2.1421869751065969e-03</internalNodes> + <leafValues> + -6.0642802715301514e-01 5.5589240044355392e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 471 1.1015810072422028e-01</internalNodes> + <leafValues> + -5.4774720221757889e-02 6.8780910968780518e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 472 3.0875208904035389e-04</internalNodes> + <leafValues> + -5.5834218859672546e-02 9.3168236315250397e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 473 2.1960400044918060e-03</internalNodes> + <leafValues> + 5.3955748677253723e-02 -6.0503059625625610e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 474 -1.2606250122189522e-02</internalNodes> + <leafValues> + -4.6864029765129089e-01 5.9943869709968567e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 475 -2.7497899718582630e-03</internalNodes> + <leafValues> + 2.8942531347274780e-01 -1.1297850310802460e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 476 6.0962641239166260e-01</internalNodes> + <leafValues> + -4.7885991632938385e-02 5.9465491771697998e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 477 4.5023251324892044e-02</internalNodes> + <leafValues> + 6.3831068575382233e-02 -5.2956801652908325e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>44</maxWeakCount> + <stageThreshold>-1.3022350072860718e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 478 1.5907280147075653e-02</internalNodes> + <leafValues> + -3.8192328810691833e-01 2.9411768913269043e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 479 -3.0483009293675423e-02</internalNodes> + <leafValues> + 6.4014548063278198e-01 -1.1338239908218384e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 480 2.5841239839792252e-02</internalNodes> + <leafValues> + -1.7654690146446228e-01 2.5563400983810425e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 481 1.2160619720816612e-02</internalNodes> + <leafValues> + -4.9461990594863892e-02 3.4733989834785461e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 482 -1.5910159796476364e-02</internalNodes> + <leafValues> + 4.7966769337654114e-01 -1.3009509444236755e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 483 3.5282061435282230e-04</internalNodes> + <leafValues> + -3.4184929728507996e-01 2.3091129958629608e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 484 6.7633582511916757e-04</internalNodes> + <leafValues> + -1.5432509779930115e-01 2.6687300205230713e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 485 -5.9936139732599258e-02</internalNodes> + <leafValues> + -4.8802581429481506e-01 9.3327447772026062e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 486 -1.1342409998178482e-01</internalNodes> + <leafValues> + -6.5771442651748657e-01 5.9166818857192993e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 487 -4.3361280113458633e-03</internalNodes> + <leafValues> + -1.5936520695686340e-01 5.0237040966749191e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 488 -1.8627740209922194e-03</internalNodes> + <leafValues> + 3.0730259418487549e-01 -1.2540669739246368e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 489 1.2653009966015816e-02</internalNodes> + <leafValues> + -1.0044930130243301e-01 3.7496179342269897e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 490 6.9118577241897583e-01</internalNodes> + <leafValues> + -4.7146409749984741e-02 8.3212441205978394e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 491 -2.6093868655152619e-04</internalNodes> + <leafValues> + 3.1987738609313965e-01 -2.7183309197425842e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 492 -7.6345056295394897e-02</internalNodes> + <leafValues> + 4.3091300129890442e-01 -9.0888269245624542e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 493 2.8098300099372864e-03</internalNodes> + <leafValues> + 5.8731120079755783e-02 -6.1996752023696899e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 494 -1.3322039740160108e-04</internalNodes> + <leafValues> + 2.0000059902667999e-01 -2.0120109617710114e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 495 -1.3717629946768284e-02</internalNodes> + <leafValues> + -7.3095452785491943e-01 2.7178529649972916e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 496 -6.2303808517754078e-03</internalNodes> + <leafValues> + -5.4780989885330200e-01 6.8749949336051941e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 497 4.9922719597816467e-02</internalNodes> + <leafValues> + -4.7304309904575348e-02 8.2423102855682373e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 498 -1.9126719562336802e-03</internalNodes> + <leafValues> + -5.3940171003341675e-01 7.7447593212127686e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 499 1.1384560493752360e-03</internalNodes> + <leafValues> + -9.6537686884403229e-02 1.5485690534114838e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 500 -2.4732090532779694e-03</internalNodes> + <leafValues> + 3.5590788722038269e-01 -9.3169830739498138e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 501 -7.1464257780462503e-04</internalNodes> + <leafValues> + 1.4520190656185150e-01 -7.4194207787513733e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 502 -2.0437149330973625e-02</internalNodes> + <leafValues> + 4.4163769483566284e-01 -8.0942437052726746e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 503 -4.0483791381120682e-03</internalNodes> + <leafValues> + -5.9992778301239014e-01 3.3025380223989487e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 504 1.1148050427436829e-02</internalNodes> + <leafValues> + -1.1358329653739929e-01 3.2644999027252197e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 505 9.8842009902000427e-03</internalNodes> + <leafValues> + 5.5404480546712875e-02 -3.2730978727340698e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 506 3.1296359375119209e-03</internalNodes> + <leafValues> + 7.7408656477928162e-02 -4.5953071117401123e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 507 2.9721839819103479e-03</internalNodes> + <leafValues> + -1.2917269766330719e-01 1.5523110330104828e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 508 2.0554479211568832e-02</internalNodes> + <leafValues> + 8.7600469589233398e-02 -4.5774188637733459e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 509 -2.3027280345559120e-02</internalNodes> + <leafValues> + 3.5488089919090271e-01 -2.0566919818520546e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 510 -8.3903772756457329e-03</internalNodes> + <leafValues> + -4.3240728974342346e-01 9.2067979276180267e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 511 -1.1431539896875620e-03</internalNodes> + <leafValues> + 3.9591339230537415e-01 -2.3192889988422394e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 512 -4.9133709399029613e-04</internalNodes> + <leafValues> + 4.2749640345573425e-01 -8.5524216294288635e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 513 5.1292928401380777e-04</internalNodes> + <leafValues> + -1.6196739673614502e-01 1.9614970684051514e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 514 -5.8478871360421181e-03</internalNodes> + <leafValues> + -5.9116369485855103e-01 6.2448240816593170e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 515 -9.4133049249649048e-02</internalNodes> + <leafValues> + 4.7701609134674072e-01 -5.6710161268711090e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 516 1.0079269850393757e-04</internalNodes> + <leafValues> + -1.6257099807262421e-01 2.1402290463447571e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 517 3.2930231100181118e-05</internalNodes> + <leafValues> + -1.8596050143241882e-01 1.9647690653800964e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 518 -1.1743210052372888e-04</internalNodes> + <leafValues> + 3.1821349263191223e-01 -1.3287380337715149e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 519 1.2751810252666473e-01</internalNodes> + <leafValues> + 3.0140079557895660e-02 -7.4110358953475952e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 520 8.0326296389102936e-02</internalNodes> + <leafValues> + 4.1555039584636688e-02 -8.2636839151382446e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 521 1.6904190415516496e-03</internalNodes> + <leafValues> + -1.0290619730949402e-01 2.9724180698394775e-01</leafValues></_></weakClassifiers></_> + <_> + <maxWeakCount>47</maxWeakCount> + <stageThreshold>-1.1933319568634033e+00</stageThreshold> + <weakClassifiers> + <_> + <internalNodes> + 0 -1 522 -4.6122789382934570e-02</internalNodes> + <leafValues> + 4.4252589344978333e-01 -2.9913198947906494e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 523 3.6723318696022034e-01</internalNodes> + <leafValues> + -6.3011750578880310e-02 7.7125382423400879e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 524 -3.0962929595261812e-03</internalNodes> + <leafValues> + 3.5142418742179871e-01 -1.7306439578533173e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 525 9.2647131532430649e-03</internalNodes> + <leafValues> + -1.6072809696197510e-01 1.8532909452915192e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 526 3.1748649198561907e-03</internalNodes> + <leafValues> + -1.9688999652862549e-01 2.4097280204296112e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 527 8.0439839512109756e-03</internalNodes> + <leafValues> + 8.9862972497940063e-02 -3.6552259325981140e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 528 3.2752490043640137e-01</internalNodes> + <leafValues> + -5.6879680603742599e-02 7.7493369579315186e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 529 -1.9074430689215660e-02</internalNodes> + <leafValues> + -2.8953808546066284e-01 6.2291670590639114e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 530 -2.0501749590039253e-02</internalNodes> + <leafValues> + -6.2625300884246826e-01 6.8276971578598022e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 531 5.3187010053079575e-05</internalNodes> + <leafValues> + -2.5149559974670410e-01 2.6131960749626160e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 532 3.3275580499321222e-03</internalNodes> + <leafValues> + -1.1990779638290405e-01 3.6519300937652588e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 533 5.8408430777490139e-03</internalNodes> + <leafValues> + -8.2748517394065857e-02 2.3650820553302765e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 534 -4.6462330967187881e-02</internalNodes> + <leafValues> + -6.9285649061203003e-01 7.8197672963142395e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 535 -3.7785700988024473e-03</internalNodes> + <leafValues> + 3.4372571110725403e-01 -1.0275450348854065e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 536 1.6655459767207503e-03</internalNodes> + <leafValues> + -1.1605279892683029e-01 3.7162029743194580e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 537 -5.7107670727418736e-05</internalNodes> + <leafValues> + 4.5893669128417969e-01 -2.1236430108547211e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 538 -9.0066380798816681e-03</internalNodes> + <leafValues> + -5.9533411264419556e-01 8.0876402556896210e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 539 -1.3789710402488708e-01</internalNodes> + <leafValues> + 3.9570671319961548e-01 -8.9885376393795013e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 540 5.7599872350692749e-01</internalNodes> + <leafValues> + -5.3810819983482361e-02 8.1703948974609375e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 541 -2.3918158840388060e-03</internalNodes> + <leafValues> + 1.3933740556240082e-01 -4.2155928909778595e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 542 2.4896071408875287e-04</internalNodes> + <leafValues> + -1.4858660101890564e-01 2.6263329386711121e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 543 3.3062491565942764e-02</internalNodes> + <leafValues> + 3.0659910291433334e-02 -3.2318601012229919e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 544 4.4321879744529724e-02</internalNodes> + <leafValues> + 4.7853820025920868e-02 -7.8135901689529419e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 545 -1.8718190491199493e-02</internalNodes> + <leafValues> + 1.2012620270252228e-01 -1.1211469769477844e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 546 9.2309370636940002e-02</internalNodes> + <leafValues> + 4.2463079094886780e-02 -8.0097001791000366e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 547 9.0665437281131744e-02</internalNodes> + <leafValues> + -2.2304529324173927e-02 1.2847979366779327e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 548 -5.8294929563999176e-02</internalNodes> + <leafValues> + -3.9368540048599243e-01 9.5482140779495239e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 549 4.6649780124425888e-03</internalNodes> + <leafValues> + -6.5641947090625763e-02 3.6407178640365601e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 550 5.2480432204902172e-03</internalNodes> + <leafValues> + 6.8765781819820404e-02 -5.0508302450180054e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 551 2.5315659586340189e-03</internalNodes> + <leafValues> + -9.3347169458866119e-02 1.6496129333972931e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 552 2.4391160695813596e-04</internalNodes> + <leafValues> + -1.8885439634323120e-01 1.6956700384616852e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 553 -6.3037211075425148e-03</internalNodes> + <leafValues> + 3.8263529539108276e-01 -5.9042099863290787e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 554 2.2754059173166752e-03</internalNodes> + <leafValues> + -1.2248820066452026e-01 2.8283658623695374e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 555 -2.7694869041442871e-01</internalNodes> + <leafValues> + 4.8514971137046814e-01 -4.0482539683580399e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 556 5.8051547966897488e-03</internalNodes> + <leafValues> + -8.3558417856693268e-02 4.2151498794555664e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 557 2.4654529988765717e-03</internalNodes> + <leafValues> + -1.2816859781742096e-01 2.0776629447937012e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 558 7.8863510861992836e-03</internalNodes> + <leafValues> + -1.7197540402412415e-01 2.0790819823741913e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 559 -1.1817130260169506e-02</internalNodes> + <leafValues> + -5.7880669832229614e-01 5.8959141373634338e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 560 -6.4139917492866516e-02</internalNodes> + <leafValues> + -6.3689261674880981e-01 4.1797500103712082e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 561 -1.2179970508441329e-03</internalNodes> + <leafValues> + 2.3568700253963470e-01 -8.0515258014202118e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 562 2.8652620967477560e-03</internalNodes> + <leafValues> + -9.3137197196483612e-02 3.9025950431823730e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 563 -5.7746102102100849e-03</internalNodes> + <leafValues> + -5.7539868354797363e-01 5.9677690267562866e-02</leafValues></_> + <_> + <internalNodes> + 0 -1 564 6.5377086400985718e-02</internalNodes> + <leafValues> + 3.4166071563959122e-02 -7.4253422021865845e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 565 1.6265710815787315e-02</internalNodes> + <leafValues> + 5.3654260933399200e-02 -2.3658609390258789e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 566 2.2717609535902739e-03</internalNodes> + <leafValues> + 5.3359109908342361e-02 -5.4940742254257202e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 567 2.2626020014286041e-01</internalNodes> + <leafValues> + -4.2046058923006058e-02 7.7912521362304688e-01</leafValues></_> + <_> + <internalNodes> + 0 -1 568 -2.9377460479736328e-02</internalNodes> + <leafValues> + -5.9470587968826294e-01 5.4817870259284973e-02</leafValues></_></weakClassifiers></_></stages> + <features> + <_> + <rects> + <_> + 0 0 2 4 -1.</_> + <_> + 0 2 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 34 10 2 8 -1.</_> + <_> + 34 14 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 2 8 -1.</_> + <_> + 0 14 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 15 0 18 10 -1.</_> + <_> + 24 0 9 5 2.</_> + <_> + 15 5 9 5 2.</_></rects></_> + <_> + <rects> + <_> + 7 0 4 4 -1.</_> + <_> + 7 0 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 5 6 4 -1.</_> + <_> + 15 6 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 13 6 8 3 -1.</_> + <_> + 13 7 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 6 8 4 -1.</_> + <_> + 14 7 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 2 8 -1.</_> + <_> + 0 14 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 34 0 2 16 -1.</_> + <_> + 35 0 1 8 2.</_> + <_> + 34 8 1 8 2.</_></rects></_> + <_> + <rects> + <_> + 1 0 4 7 -1.</_> + <_> + 3 0 2 7 2.</_></rects></_> + <_> + <rects> + <_> + 4 7 28 3 -1.</_> + <_> + 11 7 14 3 2.</_></rects></_> + <_> + <rects> + <_> + 34 0 2 2 -1.</_> + <_> + 34 1 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 12 4 6 -1.</_> + <_> + 0 15 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 34 0 2 2 -1.</_> + <_> + 34 1 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 2 -1.</_> + <_> + 0 1 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 5 9 12 -1.</_> + <_> + 20 5 3 12 3.</_></rects></_> + <_> + <rects> + <_> + 10 5 9 12 -1.</_> + <_> + 13 5 3 12 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 32 1 -1.</_> + <_> + 4 0 16 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 3 3 -1.</_> + <_> + 1 0 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 32 7 4 7 -1.</_> + <_> + 33 8 2 7 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 0 8 6 -1.</_> + <_> + 7 0 4 3 2.</_> + <_> + 11 3 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 2 -1.</_> + <_> + 0 1 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 27 1 8 9 -1.</_> + <_> + 29 3 4 9 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 1 10 1 8 -1.</_> + <_> + 1 14 1 4 2.</_></rects></_> + <_> + <rects> + <_> + 3 6 30 9 -1.</_> + <_> + 13 9 10 3 9.</_></rects></_> + <_> + <rects> + <_> + 12 5 8 6 -1.</_> + <_> + 12 7 8 2 3.</_></rects></_> + <_> + <rects> + <_> + 16 4 6 3 -1.</_> + <_> + 16 5 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 18 -1.</_> + <_> + 0 0 1 9 2.</_> + <_> + 1 9 1 9 2.</_></rects></_> + <_> + <rects> + <_> + 34 2 2 14 -1.</_> + <_> + 35 2 1 7 2.</_> + <_> + 34 9 1 7 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 2 14 -1.</_> + <_> + 0 2 1 7 2.</_> + <_> + 1 9 1 7 2.</_></rects></_> + <_> + <rects> + <_> + 35 0 1 4 -1.</_> + <_> + 35 2 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 24 18 -1.</_> + <_> + 5 0 12 9 2.</_> + <_> + 17 9 12 9 2.</_></rects></_> + <_> + <rects> + <_> + 35 16 1 2 -1.</_> + <_> + 35 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 16 1 2 -1.</_> + <_> + 0 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 6 8 12 -1.</_> + <_> + 19 6 4 12 2.</_></rects></_> + <_> + <rects> + <_> + 11 5 8 13 -1.</_> + <_> + 13 5 4 13 2.</_></rects></_> + <_> + <rects> + <_> + 35 16 1 2 -1.</_> + <_> + 35 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 9 12 3 -1.</_> + <_> + 10 10 12 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 10 1 8 -1.</_> + <_> + 0 14 1 4 2.</_></rects></_> + <_> + <rects> + <_> + 20 0 10 10 -1.</_> + <_> + 25 0 5 5 2.</_> + <_> + 20 5 5 5 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 1 4 -1.</_> + <_> + 0 2 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 19 0 13 18 -1.</_> + <_> + 19 9 13 9 2.</_></rects></_> + <_> + <rects> + <_> + 4 0 14 6 -1.</_> + <_> + 4 0 7 3 2.</_> + <_> + 11 3 7 3 2.</_></rects></_> + <_> + <rects> + <_> + 16 5 6 6 -1.</_> + <_> + 16 7 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 13 7 7 8 -1.</_> + <_> + 13 9 7 4 2.</_></rects></_> + <_> + <rects> + <_> + 33 0 3 1 -1.</_> + <_> + 34 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 1 10 4 -1.</_> + <_> + 6 2 10 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 2 6 16 -1.</_> + <_> + 18 2 3 8 2.</_> + <_> + 15 10 3 8 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 1 8 -1.</_> + <_> + 0 14 1 4 2.</_></rects></_> + <_> + <rects> + <_> + 27 4 6 6 -1.</_> + <_> + 29 6 2 6 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 5 8 8 -1.</_> + <_> + 16 5 4 8 2.</_></rects></_> + <_> + <rects> + <_> + 27 5 6 6 -1.</_> + <_> + 29 7 2 6 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 5 6 6 -1.</_> + <_> + 7 7 6 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 5 12 9 -1.</_> + <_> + 15 5 6 9 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 3 1 -1.</_> + <_> + 1 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 15 4 18 6 -1.</_> + <_> + 15 6 18 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 10 1 6 -1.</_> + <_> + 0 13 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 3 6 30 6 -1.</_> + <_> + 13 8 10 2 9.</_></rects></_> + <_> + <rects> + <_> + 11 7 12 4 -1.</_> + <_> + 11 8 12 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 8 9 3 -1.</_> + <_> + 14 9 9 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 8 7 4 -1.</_> + <_> + 14 9 7 2 2.</_></rects></_> + <_> + <rects> + <_> + 12 7 18 6 -1.</_> + <_> + 12 9 18 2 3.</_></rects></_> + <_> + <rects> + <_> + 7 8 3 10 -1.</_> + <_> + 7 13 3 5 2.</_></rects></_> + <_> + <rects> + <_> + 35 10 1 6 -1.</_> + <_> + 35 13 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 1 6 -1.</_> + <_> + 0 13 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 18 13 9 5 -1.</_> + <_> + 21 13 3 5 3.</_></rects></_> + <_> + <rects> + <_> + 15 9 6 4 -1.</_> + <_> + 15 10 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 16 4 18 8 -1.</_> + <_> + 16 6 18 4 2.</_></rects></_> + <_> + <rects> + <_> + 9 14 9 3 -1.</_> + <_> + 12 14 3 3 3.</_></rects></_> + <_> + <rects> + <_> + 32 0 4 6 -1.</_> + <_> + 32 0 2 6 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 4 6 -1.</_> + <_> + 2 0 2 6 2.</_></rects></_> + <_> + <rects> + <_> + 27 0 6 7 -1.</_> + <_> + 29 2 2 7 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 1 4 -1.</_> + <_> + 0 2 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 27 8 6 4 -1.</_> + <_> + 29 10 2 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 9 27 6 -1.</_> + <_> + 13 11 9 2 9.</_></rects></_> + <_> + <rects> + <_> + 31 14 2 3 -1.</_> + <_> + 31 14 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 10 0 5 6 -1.</_> + <_> + 8 2 5 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 7 11 3 -1.</_> + <_> + 14 8 11 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 12 2 6 -1.</_> + <_> + 0 15 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 34 13 2 4 -1.</_> + <_> + 34 15 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 13 2 4 -1.</_> + <_> + 0 15 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 6 4 12 -1.</_> + <_> + 3 10 4 4 3.</_></rects></_> + <_> + <rects> + <_> + 14 0 22 12 -1.</_> + <_> + 25 0 11 6 2.</_> + <_> + 14 6 11 6 2.</_></rects></_> + <_> + <rects> + <_> + 8 1 7 6 -1.</_> + <_> + 6 3 7 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 5 14 3 -1.</_> + <_> + 12 6 14 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 6 7 4 -1.</_> + <_> + 6 7 7 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 18 3 6 4 -1.</_> + <_> + 18 4 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 5 5 6 -1.</_> + <_> + 4 7 5 2 3.</_></rects></_> + <_> + <rects> + <_> + 33 0 3 4 -1.</_> + <_> + 34 0 1 4 3.</_></rects></_> + <_> + <rects> + <_> + 9 0 6 18 -1.</_> + <_> + 9 9 6 9 2.</_></rects></_> + <_> + <rects> + <_> + 6 6 24 6 -1.</_> + <_> + 14 8 8 2 9.</_></rects></_> + <_> + <rects> + <_> + 16 8 4 4 -1.</_> + <_> + 16 9 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 13 8 13 4 -1.</_> + <_> + 13 9 13 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 16 2 2 -1.</_> + <_> + 0 17 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 35 14 1 4 -1.</_> + <_> + 35 15 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 14 1 4 -1.</_> + <_> + 0 15 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 6 9 7 -1.</_> + <_> + 18 6 3 7 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 3 4 -1.</_> + <_> + 1 0 1 4 3.</_></rects></_> + <_> + <rects> + <_> + 34 16 2 2 -1.</_> + <_> + 35 16 1 1 2.</_> + <_> + 34 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 16 2 2 -1.</_> + <_> + 0 16 1 1 2.</_> + <_> + 1 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 22 0 10 4 -1.</_> + <_> + 22 0 5 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 4 6 14 -1.</_> + <_> + 15 4 3 7 2.</_> + <_> + 18 11 3 7 2.</_></rects></_> + <_> + <rects> + <_> + 15 3 8 10 -1.</_> + <_> + 17 3 4 10 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 5 -1.</_> + <_> + 1 0 1 5 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 8 6 -1.</_> + <_> + 5 3 8 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 19 0 11 18 -1.</_> + <_> + 19 9 11 9 2.</_></rects></_> + <_> + <rects> + <_> + 6 8 24 6 -1.</_> + <_> + 14 10 8 2 9.</_></rects></_> + <_> + <rects> + <_> + 14 6 10 3 -1.</_> + <_> + 14 7 10 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 7 11 4 -1.</_> + <_> + 12 8 11 2 2.</_></rects></_> + <_> + <rects> + <_> + 18 0 16 6 -1.</_> + <_> + 26 0 8 3 2.</_> + <_> + 18 3 8 3 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 7 3 -1.</_> + <_> + 4 4 7 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 18 4 4 4 -1.</_> + <_> + 18 5 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 10 4 -1.</_> + <_> + 4 4 10 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 8 8 10 -1.</_> + <_> + 18 8 4 5 2.</_> + <_> + 14 13 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 4 1 -1.</_> + <_> + 5 0 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 20 0 10 8 -1.</_> + <_> + 25 0 5 4 2.</_> + <_> + 20 4 5 4 2.</_></rects></_> + <_> + <rects> + <_> + 13 0 10 8 -1.</_> + <_> + 13 0 5 4 2.</_> + <_> + 18 4 5 4 2.</_></rects></_> + <_> + <rects> + <_> + 21 5 6 13 -1.</_> + <_> + 23 5 2 13 3.</_></rects></_> + <_> + <rects> + <_> + 9 5 6 13 -1.</_> + <_> + 11 5 2 13 3.</_></rects></_> + <_> + <rects> + <_> + 27 5 5 3 -1.</_> + <_> + 27 6 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 10 0 3 6 -1.</_> + <_> + 10 2 3 2 3.</_></rects></_> + <_> + <rects> + <_> + 26 6 3 6 -1.</_> + <_> + 26 8 3 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 11 36 7 -1.</_> + <_> + 18 11 18 7 2.</_></rects></_> + <_> + <rects> + <_> + 27 5 5 3 -1.</_> + <_> + 27 6 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 5 5 3 -1.</_> + <_> + 4 6 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 28 6 4 4 -1.</_> + <_> + 29 7 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 15 8 2 -1.</_> + <_> + 16 15 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 5 30 6 -1.</_> + <_> + 13 7 10 2 9.</_></rects></_> + <_> + <rects> + <_> + 6 7 16 6 -1.</_> + <_> + 6 9 16 2 3.</_></rects></_> + <_> + <rects> + <_> + 14 10 12 6 -1.</_> + <_> + 14 12 12 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 0 12 10 -1.</_> + <_> + 6 0 6 5 2.</_> + <_> + 12 5 6 5 2.</_></rects></_> + <_> + <rects> + <_> + 25 2 7 16 -1.</_> + <_> + 25 10 7 8 2.</_></rects></_> + <_> + <rects> + <_> + 9 6 18 7 -1.</_> + <_> + 15 6 6 7 3.</_></rects></_> + <_> + <rects> + <_> + 5 0 26 18 -1.</_> + <_> + 18 0 13 9 2.</_> + <_> + 5 9 13 9 2.</_></rects></_> + <_> + <rects> + <_> + 10 6 10 3 -1.</_> + <_> + 10 7 10 1 3.</_></rects></_> + <_> + <rects> + <_> + 17 6 6 4 -1.</_> + <_> + 17 7 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 6 6 7 -1.</_> + <_> + 18 6 3 7 2.</_></rects></_> + <_> + <rects> + <_> + 26 6 5 4 -1.</_> + <_> + 26 7 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 12 1 6 -1.</_> + <_> + 0 15 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 9 4 18 14 -1.</_> + <_> + 18 4 9 7 2.</_> + <_> + 9 11 9 7 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 6 3 -1.</_> + <_> + 6 6 6 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 27 5 6 3 -1.</_> + <_> + 29 7 2 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 8 3 3 -1.</_> + <_> + 6 9 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 28 5 6 5 -1.</_> + <_> + 30 7 2 5 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 5 5 6 -1.</_> + <_> + 6 7 5 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 31 0 4 1 -1.</_> + <_> + 31 0 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 0 4 1 -1.</_> + <_> + 3 0 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 11 4 3 -1.</_> + <_> + 17 12 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 3 7 4 -1.</_> + <_> + 12 4 7 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 9 9 3 -1.</_> + <_> + 14 10 9 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 17 21 1 -1.</_> + <_> + 8 17 7 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 9 20 4 -1.</_> + <_> + 12 9 10 4 2.</_></rects></_> + <_> + <rects> + <_> + 3 9 22 4 -1.</_> + <_> + 14 9 11 4 2.</_></rects></_> + <_> + <rects> + <_> + 25 0 3 3 -1.</_> + <_> + 26 1 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 9 4 3 -1.</_> + <_> + 14 10 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 19 4 9 3 -1.</_> + <_> + 22 4 3 3 3.</_></rects></_> + <_> + <rects> + <_> + 8 4 9 3 -1.</_> + <_> + 11 4 3 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 15 36 3 -1.</_> + <_> + 12 16 12 1 9.</_></rects></_> + <_> + <rects> + <_> + 2 0 4 2 -1.</_> + <_> + 2 0 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 19 9 2 9 -1.</_> + <_> + 19 12 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 13 7 8 3 -1.</_> + <_> + 13 8 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 30 4 2 2 -1.</_> + <_> + 31 4 1 1 2.</_> + <_> + 30 5 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 4 2 2 -1.</_> + <_> + 4 4 1 1 2.</_> + <_> + 5 5 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 18 7 4 3 -1.</_> + <_> + 18 8 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 0 1 8 -1.</_> + <_> + 9 0 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 25 6 10 3 -1.</_> + <_> + 25 7 10 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 6 10 3 -1.</_> + <_> + 1 7 10 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 6 14 12 -1.</_> + <_> + 6 6 7 6 2.</_> + <_> + 13 12 7 6 2.</_></rects></_> + <_> + <rects> + <_> + 31 14 3 4 -1.</_> + <_> + 31 16 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 1 12 2 4 -1.</_> + <_> + 1 14 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 0 12 5 -1.</_> + <_> + 19 0 4 5 3.</_></rects></_> + <_> + <rects> + <_> + 10 0 8 14 -1.</_> + <_> + 12 0 4 14 2.</_></rects></_> + <_> + <rects> + <_> + 28 1 8 7 -1.</_> + <_> + 30 3 4 7 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 14 20 4 -1.</_> + <_> + 8 14 10 2 2.</_> + <_> + 18 16 10 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 11 24 3 -1.</_> + <_> + 14 12 8 1 9.</_></rects></_> + <_> + <rects> + <_> + 4 5 27 6 -1.</_> + <_> + 13 7 9 2 9.</_></rects></_> + <_> + <rects> + <_> + 7 0 22 18 -1.</_> + <_> + 18 0 11 9 2.</_> + <_> + 7 9 11 9 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 3 2 -1.</_> + <_> + 16 1 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 17 36 1 -1.</_> + <_> + 9 17 18 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 5 12 1 -1.</_> + <_> + 5 5 6 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 34 15 2 1 -1.</_> + <_> + 34 15 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 8 16 4 -1.</_> + <_> + 7 9 16 2 2.</_></rects></_> + <_> + <rects> + <_> + 35 10 1 6 -1.</_> + <_> + 35 12 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 13 8 3 4 -1.</_> + <_> + 13 9 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 35 10 1 6 -1.</_> + <_> + 35 12 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 12 0 1 4 -1.</_> + <_> + 11 1 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 35 10 1 6 -1.</_> + <_> + 35 12 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 18 0 1 14 -1.</_> + <_> + 18 0 1 7 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 6 16 12 -1.</_> + <_> + 5 6 8 6 2.</_> + <_> + 13 12 8 6 2.</_></rects></_> + <_> + <rects> + <_> + 18 1 7 8 -1.</_> + <_> + 16 3 7 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 4 8 10 -1.</_> + <_> + 14 4 4 5 2.</_> + <_> + 18 9 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 22 0 9 3 -1.</_> + <_> + 25 0 3 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 10 26 8 -1.</_> + <_> + 0 10 13 4 2.</_> + <_> + 13 14 13 4 2.</_></rects></_> + <_> + <rects> + <_> + 15 10 16 8 -1.</_> + <_> + 23 10 8 4 2.</_> + <_> + 15 14 8 4 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 24 18 -1.</_> + <_> + 6 0 12 9 2.</_> + <_> + 18 9 12 9 2.</_></rects></_> + <_> + <rects> + <_> + 18 0 9 6 -1.</_> + <_> + 21 0 3 6 3.</_></rects></_> + <_> + <rects> + <_> + 9 0 9 6 -1.</_> + <_> + 12 0 3 6 3.</_></rects></_> + <_> + <rects> + <_> + 30 1 5 14 -1.</_> + <_> + 30 8 5 7 2.</_></rects></_> + <_> + <rects> + <_> + 1 1 5 14 -1.</_> + <_> + 1 8 5 7 2.</_></rects></_> + <_> + <rects> + <_> + 10 8 26 6 -1.</_> + <_> + 23 8 13 3 2.</_> + <_> + 10 11 13 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 8 28 6 -1.</_> + <_> + 0 8 14 3 2.</_> + <_> + 14 11 14 3 2.</_></rects></_> + <_> + <rects> + <_> + 12 0 24 12 -1.</_> + <_> + 24 0 12 6 2.</_> + <_> + 12 6 12 6 2.</_></rects></_> + <_> + <rects> + <_> + 3 1 14 2 -1.</_> + <_> + 3 1 14 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 33 16 3 2 -1.</_> + <_> + 33 17 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 12 0 9 14 -1.</_> + <_> + 15 0 3 14 3.</_></rects></_> + <_> + <rects> + <_> + 28 16 8 2 -1.</_> + <_> + 32 16 4 1 2.</_> + <_> + 28 17 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 8 6 6 -1.</_> + <_> + 15 10 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 13 6 22 6 -1.</_> + <_> + 24 6 11 3 2.</_> + <_> + 13 9 11 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 26 4 -1.</_> + <_> + 0 10 13 2 2.</_> + <_> + 13 12 13 2 2.</_></rects></_> + <_> + <rects> + <_> + 24 16 4 2 -1.</_> + <_> + 24 17 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 16 3 2 -1.</_> + <_> + 9 17 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 7 18 8 -1.</_> + <_> + 3 7 9 4 2.</_> + <_> + 12 11 9 4 2.</_></rects></_> + <_> + <rects> + <_> + 23 0 8 4 -1.</_> + <_> + 23 0 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 8 4 -1.</_> + <_> + 9 0 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 6 10 24 3 -1.</_> + <_> + 14 11 8 1 9.</_></rects></_> + <_> + <rects> + <_> + 7 5 5 6 -1.</_> + <_> + 5 7 5 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 16 26 2 -1.</_> + <_> + 18 16 13 1 2.</_> + <_> + 5 17 13 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 7 24 4 -1.</_> + <_> + 0 7 12 2 2.</_> + <_> + 12 9 12 2 2.</_></rects></_> + <_> + <rects> + <_> + 23 14 13 4 -1.</_> + <_> + 23 15 13 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 10 18 8 -1.</_> + <_> + 2 10 9 4 2.</_> + <_> + 11 14 9 4 2.</_></rects></_> + <_> + <rects> + <_> + 15 10 6 4 -1.</_> + <_> + 15 11 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 6 24 2 -1.</_> + <_> + 0 6 12 1 2.</_> + <_> + 12 7 12 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 0 18 18 -1.</_> + <_> + 17 9 18 9 2.</_></rects></_> + <_> + <rects> + <_> + 1 0 11 2 -1.</_> + <_> + 1 1 11 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 6 8 12 -1.</_> + <_> + 19 6 4 6 2.</_> + <_> + 15 12 4 6 2.</_></rects></_> + <_> + <rects> + <_> + 2 1 32 12 -1.</_> + <_> + 2 1 16 6 2.</_> + <_> + 18 7 16 6 2.</_></rects></_> + <_> + <rects> + <_> + 29 10 7 8 -1.</_> + <_> + 29 12 7 4 2.</_></rects></_> + <_> + <rects> + <_> + 12 2 8 10 -1.</_> + <_> + 12 2 4 5 2.</_> + <_> + 16 7 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 15 12 6 4 -1.</_> + <_> + 15 13 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 12 8 6 -1.</_> + <_> + 0 14 8 2 3.</_></rects></_> + <_> + <rects> + <_> + 10 9 26 8 -1.</_> + <_> + 23 9 13 4 2.</_> + <_> + 10 13 13 4 2.</_></rects></_> + <_> + <rects> + <_> + 7 8 22 10 -1.</_> + <_> + 7 8 11 5 2.</_> + <_> + 18 13 11 5 2.</_></rects></_> + <_> + <rects> + <_> + 14 9 8 3 -1.</_> + <_> + 14 10 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 3 4 9 -1.</_> + <_> + 11 6 4 3 3.</_></rects></_> + <_> + <rects> + <_> + 29 14 2 2 -1.</_> + <_> + 29 14 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 13 8 3 -1.</_> + <_> + 14 14 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 3 7 8 -1.</_> + <_> + 9 5 7 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 28 13 1 4 -1.</_> + <_> + 28 13 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 13 4 1 -1.</_> + <_> + 8 13 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 9 4 3 -1.</_> + <_> + 16 10 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 13 8 10 4 -1.</_> + <_> + 13 9 10 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 8 8 3 -1.</_> + <_> + 14 9 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 10 6 2 -1.</_> + <_> + 4 12 2 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 10 6 3 -1.</_> + <_> + 16 11 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 5 8 13 -1.</_> + <_> + 12 5 4 13 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 36 8 -1.</_> + <_> + 18 0 18 4 2.</_> + <_> + 0 4 18 4 2.</_></rects></_> + <_> + <rects> + <_> + 1 5 8 12 -1.</_> + <_> + 1 5 4 6 2.</_> + <_> + 5 11 4 6 2.</_></rects></_> + <_> + <rects> + <_> + 18 8 18 10 -1.</_> + <_> + 27 8 9 5 2.</_> + <_> + 18 13 9 5 2.</_></rects></_> + <_> + <rects> + <_> + 0 8 18 10 -1.</_> + <_> + 0 8 9 5 2.</_> + <_> + 9 13 9 5 2.</_></rects></_> + <_> + <rects> + <_> + 11 5 14 3 -1.</_> + <_> + 11 6 14 1 3.</_></rects></_> + <_> + <rects> + <_> + 10 6 16 6 -1.</_> + <_> + 10 8 16 2 3.</_></rects></_> + <_> + <rects> + <_> + 7 2 24 16 -1.</_> + <_> + 19 2 12 8 2.</_> + <_> + 7 10 12 8 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 18 15 -1.</_> + <_> + 6 6 6 5 9.</_></rects></_> + <_> + <rects> + <_> + 4 5 16 6 -1.</_> + <_> + 12 5 8 6 2.</_></rects></_> + <_> + <rects> + <_> + 29 0 6 11 -1.</_> + <_> + 31 2 2 11 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 8 9 1 -1.</_> + <_> + 5 11 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 6 17 3 -1.</_> + <_> + 10 7 17 1 3.</_></rects></_> + <_> + <rects> + <_> + 18 6 6 2 -1.</_> + <_> + 20 8 2 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 11 12 3 -1.</_> + <_> + 13 12 12 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 3 8 8 -1.</_> + <_> + 2 3 4 4 2.</_> + <_> + 6 7 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 18 12 18 4 -1.</_> + <_> + 27 12 9 2 2.</_> + <_> + 18 14 9 2 2.</_></rects></_> + <_> + <rects> + <_> + 11 5 11 3 -1.</_> + <_> + 11 6 11 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 7 14 4 -1.</_> + <_> + 14 8 14 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 8 16 10 -1.</_> + <_> + 9 8 8 5 2.</_> + <_> + 17 13 8 5 2.</_></rects></_> + <_> + <rects> + <_> + 18 17 2 1 -1.</_> + <_> + 18 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 13 10 5 3 -1.</_> + <_> + 13 11 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 18 17 2 1 -1.</_> + <_> + 18 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 8 3 -1.</_> + <_> + 6 6 8 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 18 17 2 1 -1.</_> + <_> + 18 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 5 5 3 -1.</_> + <_> + 10 6 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 5 34 10 -1.</_> + <_> + 19 5 17 5 2.</_> + <_> + 2 10 17 5 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 12 3 -1.</_> + <_> + 6 5 6 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 35 6 1 6 -1.</_> + <_> + 35 8 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 10 6 13 6 -1.</_> + <_> + 10 8 13 2 3.</_></rects></_> + <_> + <rects> + <_> + 15 5 6 4 -1.</_> + <_> + 15 6 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 2 11 4 -1.</_> + <_> + 4 3 11 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 26 6 10 6 -1.</_> + <_> + 31 6 5 3 2.</_> + <_> + 26 9 5 3 2.</_></rects></_> + <_> + <rects> + <_> + 10 7 11 8 -1.</_> + <_> + 10 9 11 4 2.</_></rects></_> + <_> + <rects> + <_> + 28 2 4 9 -1.</_> + <_> + 29 3 2 9 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 2 10 4 -1.</_> + <_> + 7 3 10 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 31 0 5 2 -1.</_> + <_> + 31 1 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 6 16 12 -1.</_> + <_> + 10 10 16 4 3.</_></rects></_> + <_> + <rects> + <_> + 18 4 4 3 -1.</_> + <_> + 18 5 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 10 6 6 -1.</_> + <_> + 11 12 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 35 8 1 10 -1.</_> + <_> + 35 13 1 5 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 36 8 -1.</_> + <_> + 18 10 18 8 2.</_></rects></_> + <_> + <rects> + <_> + 16 7 6 8 -1.</_> + <_> + 19 7 3 4 2.</_> + <_> + 16 11 3 4 2.</_></rects></_> + <_> + <rects> + <_> + 7 6 8 4 -1.</_> + <_> + 7 6 4 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 21 11 4 3 -1.</_> + <_> + 21 12 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 9 1 8 -1.</_> + <_> + 0 13 1 4 2.</_></rects></_> + <_> + <rects> + <_> + 27 7 6 4 -1.</_> + <_> + 29 9 2 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 14 8 4 -1.</_> + <_> + 12 14 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 18 17 2 1 -1.</_> + <_> + 18 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 4 11 4 -1.</_> + <_> + 10 5 11 2 2.</_></rects></_> + <_> + <rects> + <_> + 17 12 2 4 -1.</_> + <_> + 17 13 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 13 4 5 3 -1.</_> + <_> + 13 5 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 13 12 11 2 -1.</_> + <_> + 13 13 11 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 16 2 2 -1.</_> + <_> + 1 16 1 1 2.</_> + <_> + 2 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 27 7 6 4 -1.</_> + <_> + 29 9 2 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 7 6 6 -1.</_> + <_> + 4 9 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 30 6 4 5 -1.</_> + <_> + 31 7 2 5 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 5 20 7 -1.</_> + <_> + 13 5 10 7 2.</_></rects></_> + <_> + <rects> + <_> + 30 2 3 12 -1.</_> + <_> + 30 8 3 6 2.</_></rects></_> + <_> + <rects> + <_> + 4 2 12 4 -1.</_> + <_> + 4 2 12 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 8 36 6 -1.</_> + <_> + 12 10 12 2 9.</_></rects></_> + <_> + <rects> + <_> + 3 5 30 6 -1.</_> + <_> + 13 7 10 2 9.</_></rects></_> + <_> + <rects> + <_> + 14 4 12 9 -1.</_> + <_> + 18 4 4 9 3.</_></rects></_> + <_> + <rects> + <_> + 0 17 6 1 -1.</_> + <_> + 3 17 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 34 0 1 2 -1.</_> + <_> + 34 0 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 0 2 1 -1.</_> + <_> + 2 0 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 31 3 3 8 -1.</_> + <_> + 32 4 1 8 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 6 26 12 -1.</_> + <_> + 5 6 13 6 2.</_> + <_> + 18 12 13 6 2.</_></rects></_> + <_> + <rects> + <_> + 14 4 12 9 -1.</_> + <_> + 18 4 4 9 3.</_></rects></_> + <_> + <rects> + <_> + 13 7 10 10 -1.</_> + <_> + 13 7 5 5 2.</_> + <_> + 18 12 5 5 2.</_></rects></_> + <_> + <rects> + <_> + 30 5 4 6 -1.</_> + <_> + 31 6 2 6 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 5 6 4 -1.</_> + <_> + 5 6 6 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 29 5 4 5 -1.</_> + <_> + 30 6 2 5 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 5 5 4 -1.</_> + <_> + 6 6 5 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 36 1 -1.</_> + <_> + 12 0 12 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 3 24 6 -1.</_> + <_> + 14 5 8 2 9.</_></rects></_> + <_> + <rects> + <_> + 15 12 6 3 -1.</_> + <_> + 15 13 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 1 9 17 -1.</_> + <_> + 14 1 3 17 3.</_></rects></_> + <_> + <rects> + <_> + 18 1 18 10 -1.</_> + <_> + 18 1 9 10 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 18 10 -1.</_> + <_> + 9 1 9 10 2.</_></rects></_> + <_> + <rects> + <_> + 30 7 4 5 -1.</_> + <_> + 31 8 2 5 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 10 1 3 -1.</_> + <_> + 0 11 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 33 16 2 2 -1.</_> + <_> + 34 16 1 1 2.</_> + <_> + 33 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 16 2 2 -1.</_> + <_> + 1 16 1 1 2.</_> + <_> + 2 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 8 36 3 -1.</_> + <_> + 12 9 12 1 9.</_></rects></_> + <_> + <rects> + <_> + 14 7 8 4 -1.</_> + <_> + 14 8 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 17 9 5 3 -1.</_> + <_> + 17 10 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 1 2 -1.</_> + <_> + 4 0 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 31 0 3 2 -1.</_> + <_> + 31 0 3 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 0 2 3 -1.</_> + <_> + 5 0 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 13 36 5 -1.</_> + <_> + 0 13 18 5 2.</_></rects></_> + <_> + <rects> + <_> + 6 3 4 3 -1.</_> + <_> + 5 4 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 28 7 6 3 -1.</_> + <_> + 30 9 2 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 7 3 6 -1.</_> + <_> + 6 9 3 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 5 18 10 -1.</_> + <_> + 23 5 9 5 2.</_> + <_> + 14 10 9 5 2.</_></rects></_> + <_> + <rects> + <_> + 4 5 18 10 -1.</_> + <_> + 4 5 9 5 2.</_> + <_> + 13 10 9 5 2.</_></rects></_> + <_> + <rects> + <_> + 32 17 3 1 -1.</_> + <_> + 33 17 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 17 3 1 -1.</_> + <_> + 2 17 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 0 26 2 -1.</_> + <_> + 18 0 13 1 2.</_> + <_> + 5 1 13 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 3 27 9 -1.</_> + <_> + 9 6 9 3 9.</_></rects></_> + <_> + <rects> + <_> + 13 0 18 12 -1.</_> + <_> + 13 6 18 6 2.</_></rects></_> + <_> + <rects> + <_> + 0 17 4 1 -1.</_> + <_> + 1 17 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 29 13 1 3 -1.</_> + <_> + 28 14 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 12 8 6 -1.</_> + <_> + 0 14 8 2 3.</_></rects></_> + <_> + <rects> + <_> + 23 7 3 3 -1.</_> + <_> + 24 7 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 11 1 12 6 -1.</_> + <_> + 11 3 12 2 3.</_></rects></_> + <_> + <rects> + <_> + 5 10 26 8 -1.</_> + <_> + 18 10 13 4 2.</_> + <_> + 5 14 13 4 2.</_></rects></_> + <_> + <rects> + <_> + 11 12 9 6 -1.</_> + <_> + 14 12 3 6 3.</_></rects></_> + <_> + <rects> + <_> + 14 12 12 3 -1.</_> + <_> + 18 13 4 1 9.</_></rects></_> + <_> + <rects> + <_> + 10 12 12 3 -1.</_> + <_> + 14 13 4 1 9.</_></rects></_> + <_> + <rects> + <_> + 4 6 27 6 -1.</_> + <_> + 13 8 9 2 9.</_></rects></_> + <_> + <rects> + <_> + 17 9 5 4 -1.</_> + <_> + 17 10 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 16 2 -1.</_> + <_> + 0 0 8 1 2.</_> + <_> + 8 1 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 22 0 8 8 -1.</_> + <_> + 26 0 4 4 2.</_> + <_> + 22 4 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 1 0 32 12 -1.</_> + <_> + 1 0 16 6 2.</_> + <_> + 17 6 16 6 2.</_></rects></_> + <_> + <rects> + <_> + 28 7 6 10 -1.</_> + <_> + 31 7 3 5 2.</_> + <_> + 28 12 3 5 2.</_></rects></_> + <_> + <rects> + <_> + 2 7 6 10 -1.</_> + <_> + 2 7 3 5 2.</_> + <_> + 5 12 3 5 2.</_></rects></_> + <_> + <rects> + <_> + 20 10 3 3 -1.</_> + <_> + 20 11 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 13 10 3 3 -1.</_> + <_> + 13 11 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 17 16 6 2 -1.</_> + <_> + 19 16 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 13 11 7 3 -1.</_> + <_> + 13 12 7 1 3.</_></rects></_> + <_> + <rects> + <_> + 25 13 3 2 -1.</_> + <_> + 25 13 3 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 10 4 4 -1.</_> + <_> + 13 11 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 17 16 18 2 -1.</_> + <_> + 26 16 9 1 2.</_> + <_> + 17 17 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 13 4 1 -1.</_> + <_> + 9 13 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 34 1 2 1 -1.</_> + <_> + 34 1 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 4 24 6 -1.</_> + <_> + 13 6 8 2 9.</_></rects></_> + <_> + <rects> + <_> + 33 16 3 2 -1.</_> + <_> + 33 17 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 17 36 1 -1.</_> + <_> + 18 17 18 1 2.</_></rects></_> + <_> + <rects> + <_> + 34 1 2 1 -1.</_> + <_> + 34 1 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 1 1 2 -1.</_> + <_> + 2 1 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 22 0 8 10 -1.</_> + <_> + 24 2 4 10 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 4 8 12 -1.</_> + <_> + 12 4 4 6 2.</_> + <_> + 16 10 4 6 2.</_></rects></_> + <_> + <rects> + <_> + 26 6 6 6 -1.</_> + <_> + 29 6 3 3 2.</_> + <_> + 26 9 3 3 2.</_></rects></_> + <_> + <rects> + <_> + 5 6 4 6 -1.</_> + <_> + 5 6 2 3 2.</_> + <_> + 7 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 29 5 2 4 -1.</_> + <_> + 29 5 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 4 18 3 -1.</_> + <_> + 7 5 18 1 3.</_></rects></_> + <_> + <rects> + <_> + 29 13 2 3 -1.</_> + <_> + 28 14 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 5 3 3 -1.</_> + <_> + 8 6 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 16 22 2 -1.</_> + <_> + 18 16 11 1 2.</_> + <_> + 7 17 11 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 1 3 -1.</_> + <_> + 0 3 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 16 3 20 6 -1.</_> + <_> + 26 3 10 3 2.</_> + <_> + 16 6 10 3 2.</_></rects></_> + <_> + <rects> + <_> + 10 5 8 6 -1.</_> + <_> + 12 5 4 6 2.</_></rects></_> + <_> + <rects> + <_> + 1 8 34 8 -1.</_> + <_> + 18 8 17 4 2.</_> + <_> + 1 12 17 4 2.</_></rects></_> + <_> + <rects> + <_> + 14 9 8 8 -1.</_> + <_> + 14 9 4 4 2.</_> + <_> + 18 13 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 35 0 1 3 -1.</_> + <_> + 35 1 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 15 8 3 5 -1.</_> + <_> + 16 8 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 19 0 10 1 -1.</_> + <_> + 19 0 5 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 3 9 6 -1.</_> + <_> + 7 5 9 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 6 24 6 -1.</_> + <_> + 14 8 8 2 9.</_></rects></_> + <_> + <rects> + <_> + 4 8 27 6 -1.</_> + <_> + 13 10 9 2 9.</_></rects></_> + <_> + <rects> + <_> + 5 4 27 6 -1.</_> + <_> + 14 6 9 2 9.</_></rects></_> + <_> + <rects> + <_> + 5 6 5 6 -1.</_> + <_> + 5 8 5 2 3.</_></rects></_> + <_> + <rects> + <_> + 35 0 1 2 -1.</_> + <_> + 35 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 3 10 3 -1.</_> + <_> + 3 4 10 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 29 5 2 4 -1.</_> + <_> + 29 5 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 0 28 16 -1.</_> + <_> + 3 0 14 8 2.</_> + <_> + 17 8 14 8 2.</_></rects></_> + <_> + <rects> + <_> + 31 0 4 2 -1.</_> + <_> + 31 0 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 9 3 9 -1.</_> + <_> + 4 12 3 3 3.</_></rects></_> + <_> + <rects> + <_> + 32 16 4 2 -1.</_> + <_> + 32 17 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 0 1 10 -1.</_> + <_> + 17 0 1 5 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 17 4 14 8 -1.</_> + <_> + 17 4 7 8 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 11 4 -1.</_> + <_> + 6 2 11 2 2.</_></rects></_> + <_> + <rects> + <_> + 35 0 1 2 -1.</_> + <_> + 35 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 1 2 -1.</_> + <_> + 0 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 33 0 2 1 -1.</_> + <_> + 33 0 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 0 1 2 -1.</_> + <_> + 3 0 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 17 36 1 -1.</_> + <_> + 9 17 18 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 13 3 1 -1.</_> + <_> + 8 14 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 17 4 14 8 -1.</_> + <_> + 17 4 7 8 2.</_></rects></_> + <_> + <rects> + <_> + 0 16 4 2 -1.</_> + <_> + 0 17 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 13 12 10 3 -1.</_> + <_> + 13 13 10 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 12 36 6 -1.</_> + <_> + 18 12 18 6 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 27 6 -1.</_> + <_> + 14 5 9 2 9.</_></rects></_> + <_> + <rects> + <_> + 9 5 5 3 -1.</_> + <_> + 8 6 5 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 7 12 4 -1.</_> + <_> + 15 7 6 4 2.</_></rects></_> + <_> + <rects> + <_> + 13 5 8 4 -1.</_> + <_> + 15 5 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 16 14 6 4 -1.</_> + <_> + 16 14 3 4 2.</_></rects></_> + <_> + <rects> + <_> + 14 10 5 3 -1.</_> + <_> + 14 11 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 25 3 6 4 -1.</_> + <_> + 25 4 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 6 6 8 -1.</_> + <_> + 3 8 6 4 2.</_></rects></_> + <_> + <rects> + <_> + 27 4 5 6 -1.</_> + <_> + 27 6 5 2 3.</_></rects></_> + <_> + <rects> + <_> + 4 1 6 9 -1.</_> + <_> + 4 4 6 3 3.</_></rects></_> + <_> + <rects> + <_> + 21 9 2 4 -1.</_> + <_> + 21 10 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 1 10 34 4 -1.</_> + <_> + 1 10 17 2 2.</_> + <_> + 18 12 17 2 2.</_></rects></_> + <_> + <rects> + <_> + 34 15 2 3 -1.</_> + <_> + 34 16 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 0 2 2 -1.</_> + <_> + 3 0 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 33 0 1 2 -1.</_> + <_> + 33 0 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 0 10 8 -1.</_> + <_> + 6 2 10 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 6 30 6 -1.</_> + <_> + 13 8 10 2 9.</_></rects></_> + <_> + <rects> + <_> + 13 7 10 4 -1.</_> + <_> + 13 8 10 2 2.</_></rects></_> + <_> + <rects> + <_> + 16 5 6 12 -1.</_> + <_> + 19 5 3 6 2.</_> + <_> + 16 11 3 6 2.</_></rects></_> + <_> + <rects> + <_> + 10 1 4 6 -1.</_> + <_> + 8 3 4 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 7 33 6 -1.</_> + <_> + 13 9 11 2 9.</_></rects></_> + <_> + <rects> + <_> + 3 6 30 3 -1.</_> + <_> + 13 7 10 1 9.</_></rects></_> + <_> + <rects> + <_> + 15 11 6 3 -1.</_> + <_> + 15 12 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 5 6 12 -1.</_> + <_> + 14 5 3 6 2.</_> + <_> + 17 11 3 6 2.</_></rects></_> + <_> + <rects> + <_> + 5 12 26 6 -1.</_> + <_> + 18 12 13 3 2.</_> + <_> + 5 15 13 3 2.</_></rects></_> + <_> + <rects> + <_> + 4 12 27 3 -1.</_> + <_> + 13 13 9 1 9.</_></rects></_> + <_> + <rects> + <_> + 16 11 4 3 -1.</_> + <_> + 16 12 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 12 4 2 -1.</_> + <_> + 6 13 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 34 17 2 1 -1.</_> + <_> + 34 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 1 12 -1.</_> + <_> + 16 0 1 6 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 17 34 1 -1.</_> + <_> + 2 17 17 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 18 4 -1.</_> + <_> + 5 4 18 2 2.</_></rects></_> + <_> + <rects> + <_> + 34 17 2 1 -1.</_> + <_> + 34 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 2 -1.</_> + <_> + 0 1 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 5 16 3 -1.</_> + <_> + 15 6 16 1 3.</_></rects></_> + <_> + <rects> + <_> + 13 9 3 3 -1.</_> + <_> + 13 10 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 20 4 8 14 -1.</_> + <_> + 22 4 4 14 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 20 6 -1.</_> + <_> + 12 5 10 6 2.</_></rects></_> + <_> + <rects> + <_> + 26 3 6 6 -1.</_> + <_> + 28 5 2 6 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 3 6 6 -1.</_> + <_> + 8 5 6 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 34 0 2 3 -1.</_> + <_> + 34 0 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 16 2 2 -1.</_> + <_> + 0 17 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 30 6 4 8 -1.</_> + <_> + 31 7 2 8 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 6 7 4 -1.</_> + <_> + 5 7 7 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 20 4 8 14 -1.</_> + <_> + 22 4 4 14 2.</_></rects></_> + <_> + <rects> + <_> + 8 4 8 14 -1.</_> + <_> + 10 4 4 14 2.</_></rects></_> + <_> + <rects> + <_> + 17 17 6 1 -1.</_> + <_> + 19 17 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 20 6 -1.</_> + <_> + 10 0 10 6 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 22 18 -1.</_> + <_> + 8 0 11 18 2.</_></rects></_> + <_> + <rects> + <_> + 13 2 8 12 -1.</_> + <_> + 13 2 4 6 2.</_> + <_> + 17 8 4 6 2.</_></rects></_> + <_> + <rects> + <_> + 11 10 14 8 -1.</_> + <_> + 18 10 7 4 2.</_> + <_> + 11 14 7 4 2.</_></rects></_> + <_> + <rects> + <_> + 1 16 2 2 -1.</_> + <_> + 1 16 1 1 2.</_> + <_> + 2 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 34 0 2 1 -1.</_> + <_> + 34 0 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 3 24 4 -1.</_> + <_> + 12 3 12 4 2.</_></rects></_> + <_> + <rects> + <_> + 19 1 2 3 -1.</_> + <_> + 19 2 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 0 1 2 -1.</_> + <_> + 2 0 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 3 6 8 -1.</_> + <_> + 18 3 3 4 2.</_> + <_> + 15 7 3 4 2.</_></rects></_> + <_> + <rects> + <_> + 14 5 4 2 -1.</_> + <_> + 14 6 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 7 30 9 -1.</_> + <_> + 13 10 10 3 9.</_></rects></_> + <_> + <rects> + <_> + 9 8 12 9 -1.</_> + <_> + 12 8 6 9 2.</_></rects></_> + <_> + <rects> + <_> + 10 8 16 5 -1.</_> + <_> + 14 8 8 5 2.</_></rects></_> + <_> + <rects> + <_> + 30 1 4 10 -1.</_> + <_> + 31 2 2 10 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 0 10 8 -1.</_> + <_> + 11 2 10 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 32 2 2 14 -1.</_> + <_> + 32 2 1 14 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 2 14 2 -1.</_> + <_> + 4 2 14 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 30 14 6 4 -1.</_> + <_> + 30 14 3 4 2.</_></rects></_> + <_> + <rects> + <_> + 11 13 1 4 -1.</_> + <_> + 11 15 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 11 0 14 18 -1.</_> + <_> + 18 0 7 9 2.</_> + <_> + 11 9 7 9 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 20 9 -1.</_> + <_> + 10 1 10 9 2.</_></rects></_> + <_> + <rects> + <_> + 21 3 8 3 -1.</_> + <_> + 23 3 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 13 9 2 4 -1.</_> + <_> + 13 10 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 9 11 2 -1.</_> + <_> + 14 10 11 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 36 9 -1.</_> + <_> + 12 5 12 3 9.</_></rects></_> + <_> + <rects> + <_> + 34 12 2 6 -1.</_> + <_> + 34 15 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 11 4 14 6 -1.</_> + <_> + 11 6 14 2 3.</_></rects></_> + <_> + <rects> + <_> + 31 0 4 1 -1.</_> + <_> + 31 0 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 0 4 1 -1.</_> + <_> + 3 0 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 19 14 6 4 -1.</_> + <_> + 21 14 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 11 14 6 4 -1.</_> + <_> + 13 14 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 0 14 36 1 -1.</_> + <_> + 9 14 18 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 2 2 -1.</_> + <_> + 5 0 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 26 3 5 3 -1.</_> + <_> + 26 4 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 16 8 1 3 -1.</_> + <_> + 15 9 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 21 11 2 3 -1.</_> + <_> + 21 12 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 5 6 4 -1.</_> + <_> + 8 6 6 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 31 0 2 2 -1.</_> + <_> + 31 0 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 4 3 9 -1.</_> + <_> + 6 7 3 3 3.</_></rects></_> + <_> + <rects> + <_> + 19 0 11 2 -1.</_> + <_> + 19 0 11 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 0 2 2 -1.</_> + <_> + 5 0 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 22 0 14 4 -1.</_> + <_> + 29 0 7 2 2.</_> + <_> + 22 2 7 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 1 4 13 -1.</_> + <_> + 15 1 2 13 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 21 3 8 4 -1.</_> + <_> + 23 3 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 7 3 8 4 -1.</_> + <_> + 9 3 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 32 14 2 2 -1.</_> + <_> + 33 14 1 1 2.</_> + <_> + 32 15 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 14 2 2 -1.</_> + <_> + 2 14 1 1 2.</_> + <_> + 3 15 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 35 5 1 12 -1.</_> + <_> + 35 9 1 4 3.</_></rects></_> + <_> + <rects> + <_> + 0 7 1 9 -1.</_> + <_> + 0 10 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 12 2 15 6 -1.</_> + <_> + 12 4 15 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 17 2 1 -1.</_> + <_> + 1 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 34 17 2 1 -1.</_> + <_> + 34 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 17 2 1 -1.</_> + <_> + 1 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 0 16 10 -1.</_> + <_> + 15 0 8 10 2.</_></rects></_> + <_> + <rects> + <_> + 5 10 24 8 -1.</_> + <_> + 5 10 12 4 2.</_> + <_> + 17 14 12 4 2.</_></rects></_> + <_> + <rects> + <_> + 27 4 3 3 -1.</_> + <_> + 27 5 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 6 14 12 -1.</_> + <_> + 6 6 7 6 2.</_> + <_> + 13 12 7 6 2.</_></rects></_> + <_> + <rects> + <_> + 6 5 24 6 -1.</_> + <_> + 14 7 8 2 9.</_></rects></_> + <_> + <rects> + <_> + 12 6 3 4 -1.</_> + <_> + 12 7 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 30 7 6 10 -1.</_> + <_> + 33 7 3 5 2.</_> + <_> + 30 12 3 5 2.</_></rects></_> + <_> + <rects> + <_> + 3 12 6 6 -1.</_> + <_> + 3 12 3 3 2.</_> + <_> + 6 15 3 3 2.</_></rects></_> + <_> + <rects> + <_> + 20 0 13 2 -1.</_> + <_> + 20 0 13 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 10 24 6 -1.</_> + <_> + 14 12 8 2 9.</_></rects></_> + <_> + <rects> + <_> + 15 4 8 8 -1.</_> + <_> + 19 4 4 4 2.</_> + <_> + 15 8 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 13 4 8 8 -1.</_> + <_> + 13 4 4 4 2.</_> + <_> + 17 8 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 34 16 2 2 -1.</_> + <_> + 34 16 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 12 6 3 3 -1.</_> + <_> + 12 7 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 21 7 4 4 -1.</_> + <_> + 21 8 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 8 30 4 -1.</_> + <_> + 2 8 15 2 2.</_> + <_> + 17 10 15 2 2.</_></rects></_> + <_> + <rects> + <_> + 27 4 3 4 -1.</_> + <_> + 27 5 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 4 3 4 -1.</_> + <_> + 5 5 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 34 16 2 2 -1.</_> + <_> + 34 16 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 16 34 2 -1.</_> + <_> + 0 16 17 1 2.</_> + <_> + 17 17 17 1 2.</_></rects></_> + <_> + <rects> + <_> + 12 5 15 12 -1.</_> + <_> + 12 9 15 4 3.</_></rects></_> + <_> + <rects> + <_> + 0 8 36 6 -1.</_> + <_> + 12 10 12 2 9.</_></rects></_> + <_> + <rects> + <_> + 25 4 6 2 -1.</_> + <_> + 25 5 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 17 2 1 -1.</_> + <_> + 1 17 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 9 9 -1.</_> + <_> + 19 0 3 9 3.</_></rects></_> + <_> + <rects> + <_> + 11 0 9 9 -1.</_> + <_> + 14 0 3 9 3.</_></rects></_> + <_> + <rects> + <_> + 20 5 16 5 -1.</_> + <_> + 24 5 8 5 2.</_></rects></_> + <_> + <rects> + <_> + 0 3 16 9 -1.</_> + <_> + 4 3 8 9 2.</_></rects></_> + <_> + <rects> + <_> + 7 6 26 12 -1.</_> + <_> + 20 6 13 6 2.</_> + <_> + 7 12 13 6 2.</_></rects></_> + <_> + <rects> + <_> + 5 6 24 12 -1.</_> + <_> + 5 6 12 6 2.</_> + <_> + 17 12 12 6 2.</_></rects></_> + <_> + <rects> + <_> + 17 4 3 12 -1.</_> + <_> + 18 4 1 12 3.</_></rects></_> + <_> + <rects> + <_> + 1 11 6 1 -1.</_> + <_> + 3 13 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 21 12 14 2 -1.</_> + <_> + 28 12 7 1 2.</_> + <_> + 21 13 7 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 13 2 3 -1.</_> + <_> + 2 13 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 26 8 3 2 -1.</_> + <_> + 27 9 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 8 2 3 -1.</_> + <_> + 9 9 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 0 18 18 -1.</_> + <_> + 12 0 9 18 2.</_></rects></_> + <_> + <rects> + <_> + 8 9 3 3 -1.</_> + <_> + 7 10 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 28 5 5 6 -1.</_> + <_> + 28 7 5 2 3.</_></rects></_> + <_> + <rects> + <_> + 9 1 9 8 -1.</_> + <_> + 9 1 9 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 36 2 -1.</_> + <_> + 18 0 18 1 2.</_> + <_> + 0 1 18 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 26 6 -1.</_> + <_> + 5 0 13 3 2.</_> + <_> + 18 3 13 3 2.</_></rects></_> + <_> + <rects> + <_> + 28 3 3 3 -1.</_> + <_> + 28 4 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 3 5 3 -1.</_> + <_> + 5 4 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 12 8 2 -1.</_> + <_> + 16 12 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 13 0 9 14 -1.</_> + <_> + 16 0 3 14 3.</_></rects></_> + <_> + <rects> + <_> + 23 0 10 1 -1.</_> + <_> + 23 0 5 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 14 2 2 -1.</_> + <_> + 8 14 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 12 36 3 -1.</_> + <_> + 12 13 12 1 9.</_></rects></_> + <_> + <rects> + <_> + 0 13 34 4 -1.</_> + <_> + 0 13 17 2 2.</_> + <_> + 17 15 17 2 2.</_></rects></_></features></cascade> +</opencv_storage>