lib/haarcascades/haarcascade_mcs_lefteye.xml in findaface-0.0.4 vs lib/haarcascades/haarcascade_mcs_lefteye.xml in findaface-0.0.5

- old
+ new

@@ -80,23712 +80,19093 @@ COMMERCIAL USE: If you have any commercial interest in this work please contact mcastrillon@iusiani.ulpgc.es --> <opencv_storage> -<ojoI type_id="opencv-haar-classifier"> - <size> - 18 12</size> +<cascade type_id="opencv-cascade-classifier"><stageType>BOOST</stageType> + <featureType>HAAR</featureType> + <height>18</height> + <width>12</width> + <stageParams> + <maxWeakCount>279</maxWeakCount></stageParams> + <featureParams> + <maxCatCount>0</maxCatCount></featureParams> + <stageNum>14</stageNum> <stages> <_> - <!-- stage 0 --> - <trees> + <maxWeakCount>16</maxWeakCount> + <stageThreshold>-1.7205799818038940e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 9 12 -1.</_> - <_> - 2 4 9 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2298166006803513</threshold> - <left_val>0.7448793053627014</left_val> - <right_val>-0.6734349727630615</right_val></_></_> + <internalNodes> + 0 -1 0 -2.2981660068035126e-01</internalNodes> + <leafValues> + 7.4487930536270142e-01 -6.7343497276306152e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 12 8 -1.</_> - <_> - 3 8 12 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1534516960382462</threshold> - <left_val>-0.6007816195487976</left_val> - <right_val>0.4448564946651459</right_val></_></_> + <internalNodes> + 0 -1 1 1.5345169603824615e-01</internalNodes> + <leafValues> + -6.0078161954879761e-01 4.4485649466514587e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 2 6 2 -1.</_> - <_> - 10 4 2 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0609385594725609</threshold> - <left_val>0.5612637996673584</left_val> - <right_val>-0.3199233114719391</right_val></_></_> + <internalNodes> + 0 -1 2 -6.0938559472560883e-02</internalNodes> + <leafValues> + 5.6126379966735840e-01 -3.1992331147193909e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 9 4 2 -1.</_> - <_> - 13 10 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0585549898678437e-004</threshold> - <left_val>-0.3604696094989777</left_val> - <right_val>0.2683595120906830</right_val></_></_> + <internalNodes> + 0 -1 3 1.0585549898678437e-04</internalNodes> + <leafValues> + -3.6046960949897766e-01 2.6835951209068298e-01</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 10 -1.</_> - <_> - 6 0 6 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2314763069152832</threshold> - <left_val>0.4616630077362061</left_val> - <right_val>-0.2083043009042740</right_val></_></_> + <internalNodes> + 0 -1 4 -2.3147630691528320e-01</internalNodes> + <leafValues> + 4.6166300773620605e-01 -2.0830430090427399e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 9 4 2 -1.</_> - <_> - 13 10 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0179834198206663</threshold> - <left_val>0.0637709423899651</left_val> - <right_val>-0.5207654833793640</right_val></_></_> + <internalNodes> + 0 -1 5 1.7983419820666313e-02</internalNodes> + <leafValues> + 6.3770942389965057e-02 -5.2076548337936401e-01</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 4 2 -1.</_> - <_> - 1 10 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.9604099583812058e-005</threshold> - <left_val>-0.5231478214263916</left_val> - <right_val>0.1950525939464569</right_val></_></_> + <internalNodes> + 0 -1 6 3.9604099583812058e-05</internalNodes> + <leafValues> + -5.2314782142639160e-01 1.9505259394645691e-01</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 1 3 -1.</_> - <_> - 16 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0414137765765190e-003</threshold> - <left_val>0.1087462976574898</left_val> - <right_val>-0.5987842082977295</right_val></_></_> + <internalNodes> + 0 -1 7 4.0414137765765190e-03</internalNodes> + <leafValues> + 1.0874629765748978e-01 -5.9878420829772949e-01</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 1 8 6 -1.</_> - <_> - 5 3 8 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0764225274324417</threshold> - <left_val>0.4467296898365021</left_val> - <right_val>-0.1537691950798035</right_val></_></_> + <internalNodes> + 0 -1 8 -7.6422527432441711e-02</internalNodes> + <leafValues> + 4.4672968983650208e-01 -1.5376919507980347e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 7 6 -1.</_> - <_> - 7 3 7 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0905535817146301</threshold> - <left_val>-0.1128019019961357</left_val> - <right_val>0.6283273100852966</right_val></_></_> + <internalNodes> + 0 -1 9 9.0553581714630127e-02</internalNodes> + <leafValues> + -1.1280190199613571e-01 6.2832731008529663e-01</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 1 3 -1.</_> - <_> - 1 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.9092499539256096e-003</threshold> - <left_val>0.1037560030817986</left_val> - <right_val>-0.6867117881774902</right_val></_></_> + <internalNodes> + 0 -1 10 4.9092499539256096e-03</internalNodes> + <leafValues> + 1.0375600308179855e-01 -6.8671178817749023e-01</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 0 1 12 -1.</_> - <_> - 17 6 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0398592315614223</threshold> - <left_val>0.0533530600368977</left_val> - <right_val>-0.2477817982435226</right_val></_></_> + <internalNodes> + 0 -1 11 3.9859231561422348e-02</internalNodes> + <leafValues> + 5.3353060036897659e-02 -2.4778179824352264e-01</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 12 -1.</_> - <_> - 0 6 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0142149003222585</threshold> - <left_val>-0.4909302890300751</left_val> - <right_val>0.1429515928030014</right_val></_></_> + <internalNodes> + 0 -1 12 -1.4214900322258472e-02</internalNodes> + <leafValues> + -4.9093028903007507e-01 1.4295159280300140e-01</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 1 5 4 -1.</_> - <_> - 13 3 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.9114010073244572e-003</threshold> - <left_val>0.1615788936614990</left_val> - <right_val>-0.1557170003652573</right_val></_></_> + <internalNodes> + 0 -1 13 -5.9114010073244572e-03</internalNodes> + <leafValues> + 1.6157889366149902e-01 -1.5571700036525726e-01</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 9 12 -1.</_> - <_> - 2 4 9 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2295580953359604</threshold> - <left_val>-0.3087595999240875</left_val> - <right_val>0.2236312925815582</right_val></_></_> + <internalNodes> + 0 -1 14 -2.2955809533596039e-01</internalNodes> + <leafValues> + -3.0875959992408752e-01 2.2363129258155823e-01</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 6 2 1 -1.</_> - <_> - 16 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3946291599422693e-005</threshold> - <left_val>0.2899464964866638</left_val> - <right_val>-0.2995545864105225</right_val></_></_></trees> - <stage_threshold>-1.7205799818038940</stage_threshold> - <parent>-1</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 15 -9.3946291599422693e-05</internalNodes> + <leafValues> + 2.8994649648666382e-01 -2.9955458641052246e-01</leafValues></_></weakClassifiers></_> <_> - <!-- stage 1 --> - <trees> + <maxWeakCount>21</maxWeakCount> + <stageThreshold>-1.7609959840774536e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 5 10 6 -1.</_> - <_> - 1 8 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1273180991411209</threshold> - <left_val>-0.6540071964263916</left_val> - <right_val>0.5686634778976440</right_val></_></_> + <internalNodes> + 0 -1 16 1.2731809914112091e-01</internalNodes> + <leafValues> + -6.5400719642639160e-01 5.6866347789764404e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 18 9 -1.</_> - <_> - 6 4 6 3 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.7443348765373230</threshold> - <left_val>0.6887040734291077</left_val> - <right_val>-0.3481042981147766</right_val></_></_> + <internalNodes> + 0 -1 17 -7.4433487653732300e-01</internalNodes> + <leafValues> + 6.8870407342910767e-01 -3.4810429811477661e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 5 4 -1.</_> - <_> - 0 10 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.2184786656871438e-005</threshold> - <left_val>-0.6404988765716553</left_val> - <right_val>0.2268168926239014</right_val></_></_> + <internalNodes> + 0 -1 18 6.2184786656871438e-05</internalNodes> + <leafValues> + -6.4049887657165527e-01 2.2681689262390137e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 2 2 6 -1.</_> - <_> - 8 4 2 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0761576071381569</threshold> - <left_val>0.4083384871482849</left_val> - <right_val>-0.0694039091467857</right_val></_></_> + <internalNodes> + 0 -1 19 -7.6157607138156891e-02</internalNodes> + <leafValues> + 4.0833848714828491e-01 -6.9403909146785736e-02</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 2 6 2 -1.</_> - <_> - 10 4 2 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0695553123950958</threshold> - <left_val>0.4669008851051331</left_val> - <right_val>-0.2024791985750198</right_val></_></_> + <internalNodes> + 0 -1 20 -6.9555312395095825e-02</internalNodes> + <leafValues> + 4.6690088510513306e-01 -2.0247919857501984e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 10 6 -1.</_> - <_> - 4 3 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1093100011348724</threshold> - <left_val>0.5958420038223267</left_val> - <right_val>-0.2100190967321396</right_val></_></_> + <internalNodes> + 0 -1 21 -1.0931000113487244e-01</internalNodes> + <leafValues> + 5.9584200382232666e-01 -2.1001909673213959e-01</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 10 12 2 -1.</_> - <_> - 3 11 12 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.5818720789393410e-005</threshold> - <left_val>-0.4652096927165985</left_val> - <right_val>0.2089612036943436</right_val></_></_> + <internalNodes> + 0 -1 22 3.5818720789393410e-05</internalNodes> + <leafValues> + -4.6520969271659851e-01 2.0896120369434357e-01</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 4 2 -1.</_> - <_> - 8 10 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.0066677182912827e-003</threshold> - <left_val>-0.6993219852447510</left_val> - <right_val>0.0942883566021919</right_val></_></_> + <internalNodes> + 0 -1 23 -8.0066677182912827e-03</internalNodes> + <leafValues> + -6.9932198524475098e-01 9.4288356602191925e-02</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 3 4 2 -1.</_> - <_> - 8 3 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0295706801116467</threshold> - <left_val>-0.1544265002012253</left_val> - <right_val>0.4666836857795715</right_val></_></_> + <internalNodes> + 0 -1 24 2.9570680111646652e-02</internalNodes> + <leafValues> + -1.5442650020122528e-01 4.6668368577957153e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 4 2 -1.</_> - <_> - 8 10 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.4920160695910454e-003</threshold> - <left_val>0.0885883569717407</left_val> - <right_val>-0.6708428263664246</right_val></_></_> + <internalNodes> + 0 -1 25 7.4920160695910454e-03</internalNodes> + <leafValues> + 8.8588356971740723e-02 -6.7084282636642456e-01</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 2 -1.</_> - <_> - 6 0 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0371686704456806</threshold> - <left_val>0.2547774910926819</left_val> - <right_val>-0.2516421973705292</right_val></_></_> + <internalNodes> + 0 -1 26 -3.7168670445680618e-02</internalNodes> + <leafValues> + 2.5477749109268188e-01 -2.5164219737052917e-01</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 10 6 -1.</_> - <_> - 4 4 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1205727979540825</threshold> - <left_val>0.4600830078125000</left_val> - <right_val>-0.1189170032739639</right_val></_></_> + <internalNodes> + 0 -1 27 -1.2057279795408249e-01</internalNodes> + <leafValues> + 4.6008300781250000e-01 -1.1891700327396393e-01</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 1 3 -1.</_> - <_> - 1 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7710228934884071e-003</threshold> - <left_val>-0.6138092875480652</left_val> - <right_val>0.0865445435047150</right_val></_></_> + <internalNodes> + 0 -1 28 -3.7710228934884071e-03</internalNodes> + <leafValues> + -6.1380928754806519e-01 8.6544543504714966e-02</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 10 1 2 -1.</_> - <_> - 15 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.5496661439538002e-005</threshold> - <left_val>-0.1868880987167358</left_val> - <right_val>0.1358494013547897</right_val></_></_> + <internalNodes> + 0 -1 29 3.5496661439538002e-05</internalNodes> + <leafValues> + -1.8688809871673584e-01 1.3584940135478973e-01</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 10 1 2 -1.</_> - <_> - 2 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6192409675568342e-003</threshold> - <left_val>-0.5401371121406555</left_val> - <right_val>0.0976944863796234</right_val></_></_> + <internalNodes> + 0 -1 30 -1.6192409675568342e-03</internalNodes> + <leafValues> + -5.4013711214065552e-01 9.7694486379623413e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 9 2 2 -1.</_> - <_> - 16 9 1 1 2.</_> - <_> - 15 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.6828289012191817e-005</threshold> - <left_val>-0.1571511030197144</left_val> - <right_val>0.1751237064599991</right_val></_></_> + <internalNodes> + 0 -1 31 3.6828289012191817e-05</internalNodes> + <leafValues> + -1.5715110301971436e-01 1.7512370645999908e-01</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 2 2 -1.</_> - <_> - 1 9 1 1 2.</_> - <_> - 2 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.0976690797833726e-005</threshold> - <left_val>-0.2203579992055893</left_val> - <right_val>0.2433484941720963</right_val></_></_> + <internalNodes> + 0 -1 32 4.0976690797833726e-05</internalNodes> + <leafValues> + -2.2035799920558929e-01 2.4334849417209625e-01</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 8 6 -1.</_> - <_> - 5 2 8 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0703476071357727</threshold> - <left_val>0.4308302998542786</left_val> - <right_val>-0.1228130012750626</right_val></_></_> + <internalNodes> + 0 -1 33 -7.0347607135772705e-02</internalNodes> + <leafValues> + 4.3083029985427856e-01 -1.2281300127506256e-01</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 11 6 -1.</_> - <_> - 2 2 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0944692716002464</threshold> - <left_val>-0.1215931996703148</left_val> - <right_val>0.4496718049049377</right_val></_></_> + <internalNodes> + 0 -1 34 9.4469271600246429e-02</internalNodes> + <leafValues> + -1.2159319967031479e-01 4.4967180490493774e-01</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 3 -1.</_> - <_> - 8 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0114427404478192</threshold> - <left_val>-0.6551647186279297</left_val> - <right_val>0.0749616026878357</right_val></_></_> + <internalNodes> + 0 -1 35 -1.1442740447819233e-02</internalNodes> + <leafValues> + -6.5516471862792969e-01 7.4961602687835693e-02</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 11 4 1 -1.</_> - <_> - 5 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3098648786544800e-003</threshold> - <left_val>-0.6597430109977722</left_val> - <right_val>0.0587489381432533</right_val></_></_></trees> - <stage_threshold>-1.7609959840774536</stage_threshold> - <parent>0</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 36 -5.3098648786544800e-03</internalNodes> + <leafValues> + -6.5974301099777222e-01 5.8748938143253326e-02</leafValues></_></weakClassifiers></_> <_> - <!-- stage 2 --> - <trees> + <maxWeakCount>39</maxWeakCount> + <stageThreshold>-1.7233569622039795e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 12 8 -1.</_> - <_> - 3 8 12 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2444213926792145</threshold> - <left_val>-0.6077681183815002</left_val> - <right_val>0.5200480222702026</right_val></_></_> + <internalNodes> + 0 -1 37 2.4442139267921448e-01</internalNodes> + <leafValues> + -6.0776811838150024e-01 5.2004802227020264e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 4 6 -1.</_> - <_> - 7 3 4 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0664216801524162</threshold> - <left_val>0.2178324013948441</left_val> - <right_val>-0.2194934040307999</right_val></_></_> + <internalNodes> + 0 -1 38 -6.6421680152416229e-02</internalNodes> + <leafValues> + 2.1783240139484406e-01 -2.1949340403079987e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 12 6 -1.</_> - <_> - 0 5 6 3 2.</_> - <_> - 6 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3814172148704529</threshold> - <left_val>1.3418859907687875e-006</left_val> - <right_val>-4.1691070312500000e+004</right_val></_></_> + <internalNodes> + 0 -1 39 3.8141721487045288e-01</internalNodes> + <leafValues> + 1.3418859907687875e-06 -4.1691070312500000e+04</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 3 6 -1.</_> - <_> - 7 3 3 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1548420935869217</threshold> - <left_val>0.1426136940717697</left_val> - <right_val>-0.0111637003719807</right_val></_></_> + <internalNodes> + 0 -1 40 -1.5484209358692169e-01</internalNodes> + <leafValues> + 1.4261369407176971e-01 -1.1163700371980667e-02</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 6 3 -1.</_> - <_> - 11 3 2 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0792475417256355</threshold> - <left_val>0.4404774904251099</left_val> - <right_val>-0.3525907099246979</right_val></_></_> + <internalNodes> + 0 -1 41 -7.9247541725635529e-02</internalNodes> + <leafValues> + 4.4047749042510986e-01 -3.5259070992469788e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 10 6 2 -1.</_> - <_> - 12 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.3354419544339180e-003</threshold> - <left_val>-0.6746796965599060</left_val> - <right_val>0.1194598972797394</right_val></_></_> + <internalNodes> + 0 -1 42 -6.3354419544339180e-03</internalNodes> + <leafValues> + -6.7467969655990601e-01 1.1945989727973938e-01</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 7 4 -1.</_> - <_> - 0 10 7 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.4770321585237980e-003</threshold> - <left_val>-0.5293681025505066</left_val> - <right_val>0.1670836061239243</right_val></_></_> + <internalNodes> + 0 -1 43 5.4770321585237980e-03</internalNodes> + <leafValues> + -5.2936810255050659e-01 1.6708360612392426e-01</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 11 -1.</_> - <_> - 6 0 6 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1885740011930466</threshold> - <left_val>0.2969254851341248</left_val> - <right_val>-0.2792345881462097</right_val></_></_> + <internalNodes> + 0 -1 44 -1.8857400119304657e-01</internalNodes> + <leafValues> + 2.9692548513412476e-01 -2.7923458814620972e-01</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 4 2 -1.</_> - <_> - 0 11 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.4621960949152708e-003</threshold> - <left_val>-0.5980088710784912</left_val> - <right_val>0.1017761006951332</right_val></_></_> + <internalNodes> + 0 -1 45 -3.4621960949152708e-03</internalNodes> + <leafValues> + -5.9800887107849121e-01 1.0177610069513321e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 3 3 3 -1.</_> - <_> - 12 4 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0330699197947979</threshold> - <left_val>-0.0596848689019680</left_val> - <right_val>0.4051677882671356</right_val></_></_> + <internalNodes> + 0 -1 46 3.3069919794797897e-02</internalNodes> + <leafValues> + -5.9684868901968002e-02 4.0516778826713562e-01</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 3 3 -1.</_> - <_> - 6 4 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0308437794446945</threshold> - <left_val>0.4907310009002686</left_val> - <right_val>-0.1153198033571243</right_val></_></_> + <internalNodes> + 0 -1 47 -3.0843779444694519e-02</internalNodes> + <leafValues> + 4.9073100090026855e-01 -1.1531980335712433e-01</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 10 6 2 -1.</_> - <_> - 11 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0259132403880358</threshold> - <left_val>-0.4961031973361969</left_val> - <right_val>0.0451656803488731</right_val></_></_> + <internalNodes> + 0 -1 48 -2.5913240388035774e-02</internalNodes> + <leafValues> + -4.9610319733619690e-01 4.5165680348873138e-02</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 10 6 2 -1.</_> - <_> - 7 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0216398406773806</threshold> - <left_val>-0.7278860807418823</left_val> - <right_val>0.0586238615214825</right_val></_></_> + <internalNodes> + 0 -1 49 -2.1639840677380562e-02</internalNodes> + <leafValues> + -7.2788608074188232e-01 5.8623861521482468e-02</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 2 2 -1.</_> - <_> - 8 10 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.8874882049858570e-003</threshold> - <left_val>0.0768030732870102</left_val> - <right_val>-0.5808597207069397</right_val></_></_> + <internalNodes> + 0 -1 50 4.8874882049858570e-03</internalNodes> + <leafValues> + 7.6803073287010193e-02 -5.8085972070693970e-01</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 3 4 -1.</_> - <_> - 0 9 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.4114465862512589e-003</threshold> - <left_val>-0.4429189860820770</left_val> - <right_val>0.0951904430985451</right_val></_></_> + <internalNodes> + 0 -1 51 -8.4114465862512589e-03</internalNodes> + <leafValues> + -4.4291898608207703e-01 9.5190443098545074e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 4 5 -1.</_> - <_> - 8 4 2 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0132184904068708</threshold> - <left_val>0.3104842007160187</left_val> - <right_val>-0.1390500068664551</right_val></_></_> + <internalNodes> + 0 -1 52 -1.3218490406870842e-02</internalNodes> + <leafValues> + 3.1048420071601868e-01 -1.3905000686645508e-01</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 6 4 -1.</_> - <_> - 5 0 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0326312296092510</threshold> - <left_val>-0.5940244197845459</left_val> - <right_val>0.0669151991605759</right_val></_></_> + <internalNodes> + 0 -1 53 -3.2631229609251022e-02</internalNodes> + <leafValues> + -5.9402441978454590e-01 6.6915199160575867e-02</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 3 1 -1.</_> - <_> - 10 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.8389490693807602e-003</threshold> - <left_val>0.3895869851112366</left_val> - <right_val>-0.0772191733121872</right_val></_></_> + <internalNodes> + 0 -1 54 -4.8389490693807602e-03</internalNodes> + <leafValues> + 3.8958698511123657e-01 -7.7219173312187195e-02</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 10 2 -1.</_> - <_> - 4 1 10 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0235571991652250</threshold> - <left_val>0.3647531867027283</left_val> - <right_val>-0.1022802963852882</right_val></_></_> + <internalNodes> + 0 -1 55 -2.3557199165225029e-02</internalNodes> + <leafValues> + 3.6475318670272827e-01 -1.0228029638528824e-01</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 4 4 -1.</_> - <_> - 9 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0168236102908850</threshold> - <left_val>-0.7028393745422363</left_val> - <right_val>0.0691695287823677</right_val></_></_> + <internalNodes> + 0 -1 56 -1.6823610290884972e-02</internalNodes> + <leafValues> + -7.0283937454223633e-01 6.9169528782367706e-02</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 4 4 -1.</_> - <_> - 7 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0125289801508188</threshold> - <left_val>-0.5915483236312866</left_val> - <right_val>0.0586381107568741</right_val></_></_> + <internalNodes> + 0 -1 57 -1.2528980150818825e-02</internalNodes> + <leafValues> + -5.9154832363128662e-01 5.8638110756874084e-02</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 3 3 -1.</_> - <_> - 10 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0127369500696659</threshold> - <left_val>-0.0780184566974640</left_val> - <right_val>0.4606426060199738</right_val></_></_> + <internalNodes> + 0 -1 58 1.2736950069665909e-02</internalNodes> + <leafValues> + -7.8018456697463989e-02 4.6064260601997375e-01</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 6 0 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0279473792761564</threshold> - <left_val>0.2610318064689636</left_val> - <right_val>-0.1453696042299271</right_val></_></_> + <internalNodes> + 0 -1 59 -2.7947379276156425e-02</internalNodes> + <leafValues> + 2.6103180646896362e-01 -1.4536960422992706e-01</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 9 3 -1.</_> - <_> - 5 1 9 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0194691792130470</threshold> - <left_val>-0.1085366979241371</left_val> - <right_val>0.2947221100330353</right_val></_></_> + <internalNodes> + 0 -1 60 1.9469179213047028e-02</internalNodes> + <leafValues> + -1.0853669792413712e-01 2.9472211003303528e-01</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 2 3 -1.</_> - <_> - 2 3 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0101435603573918</threshold> - <left_val>0.0815353766083717</left_val> - <right_val>-0.3927153050899506</right_val></_></_> + <internalNodes> + 0 -1 61 1.0143560357391834e-02</internalNodes> + <leafValues> + 8.1535376608371735e-02 -3.9271530508995056e-01</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 8 8 -1.</_> - <_> - 7 2 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1603716015815735</threshold> - <left_val>-0.0435664691030979</left_val> - <right_val>0.4444591999053955</right_val></_></_> + <internalNodes> + 0 -1 62 1.6037160158157349e-01</internalNodes> + <leafValues> + -4.3566469103097916e-02 4.4445919990539551e-01</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 3 1 -1.</_> - <_> - 7 5 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1675389036536217e-003</threshold> - <left_val>0.3652110099792481</left_val> - <right_val>-0.0860250070691109</right_val></_></_> + <internalNodes> + 0 -1 63 -3.1675389036536217e-03</internalNodes> + <leafValues> + 3.6521100997924805e-01 -8.6025007069110870e-02</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 5 3 4 -1.</_> - <_> - 15 6 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0128111904487014</threshold> - <left_val>0.0706042274832726</left_val> - <right_val>-0.5213270783424377</right_val></_></_> + <internalNodes> + 0 -1 64 1.2811190448701382e-02</internalNodes> + <leafValues> + 7.0604227483272552e-02 -5.2132707834243774e-01</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 16 8 -1.</_> - <_> - 0 3 8 4 2.</_> - <_> - 8 7 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1877364069223404</threshold> - <left_val>-0.5362054705619812</left_val> - <right_val>0.0497419089078903</right_val></_></_> + <internalNodes> + 0 -1 65 -1.8773640692234039e-01</internalNodes> + <leafValues> + -5.3620547056198120e-01 4.9741908907890320e-02</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 4 2 4 -1.</_> - <_> - 16 5 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0158114898949862</threshold> - <left_val>-0.5679845213890076</left_val> - <right_val>0.0451337397098541</right_val></_></_> + <internalNodes> + 0 -1 66 -1.5811489894986153e-02</internalNodes> + <leafValues> + -5.6798452138900757e-01 4.5133739709854126e-02</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 2 4 -1.</_> - <_> - 0 5 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.5352314636111259e-003</threshold> - <left_val>0.0609365105628967</left_val> - <right_val>-0.4393881857395172</right_val></_></_> + <internalNodes> + 0 -1 67 8.5352314636111259e-03</internalNodes> + <leafValues> + 6.0936510562896729e-02 -4.3938818573951721e-01</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 2 2 -1.</_> - <_> - 11 6 1 1 2.</_> - <_> - 10 7 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6653081662952900e-003</threshold> - <left_val>0.5175548791885376</left_val> - <right_val>-0.0594102516770363</right_val></_></_> + <internalNodes> + 0 -1 68 -4.6653081662952900e-03</internalNodes> + <leafValues> + 5.1755487918853760e-01 -5.9410251677036285e-02</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 4 2 -1.</_> - <_> - 8 9 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.9853478819131851e-003</threshold> - <left_val>-0.4802243113517761</left_val> - <right_val>0.0635639205574989</right_val></_></_> + <internalNodes> + 0 -1 69 -7.9853478819131851e-03</internalNodes> + <leafValues> + -4.8022431135177612e-01 6.3563920557498932e-02</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 6 4 3 -1.</_> - <_> - 14 6 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0154398195445538</threshold> - <left_val>0.3182120025157929</left_val> - <right_val>-0.1571276038885117</right_val></_></_> + <internalNodes> + 0 -1 70 -1.5439819544553757e-02</internalNodes> + <leafValues> + 3.1821200251579285e-01 -1.5712760388851166e-01</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 9 6 3 -1.</_> - <_> - 8 9 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0229273904114962</threshold> - <left_val>0.0627980828285217</left_val> - <right_val>-0.5424246788024902</right_val></_></_> + <internalNodes> + 0 -1 71 2.2927390411496162e-02</internalNodes> + <leafValues> + 6.2798082828521729e-02 -5.4242467880249023e-01</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 2 2 -1.</_> - <_> - 10 5 1 1 2.</_> - <_> - 9 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7168919332325459e-003</threshold> - <left_val>0.2762104868888855</left_val> - <right_val>-0.0693103075027466</right_val></_></_> + <internalNodes> + 0 -1 72 -2.7168919332325459e-03</internalNodes> + <leafValues> + 2.7621048688888550e-01 -6.9310307502746582e-02</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 2 -1.</_> - <_> - 7 5 1 1 2.</_> - <_> - 8 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0373970512300730e-003</threshold> - <left_val>-0.0728201270103455</left_val> - <right_val>0.4193499088287354</right_val></_></_> + <internalNodes> + 0 -1 73 3.0373970512300730e-03</internalNodes> + <leafValues> + -7.2820127010345459e-02 4.1934990882873535e-01</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 3 3 2 -1.</_> - <_> - 15 4 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.4063878059387207e-003</threshold> - <left_val>0.0556666217744350</left_val> - <right_val>-0.4395717978477478</right_val></_></_> + <internalNodes> + 0 -1 74 9.4063878059387207e-03</internalNodes> + <leafValues> + 5.5666621774435043e-02 -4.3957179784774780e-01</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 3 2 -1.</_> - <_> - 0 4 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0159840192645788</threshold> - <left_val>-0.6015670895576477</left_val> - <right_val>0.0441371202468872</right_val></_></_></trees> - <stage_threshold>-1.7233569622039795</stage_threshold> - <parent>1</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 75 -1.5984019264578819e-02</internalNodes> + <leafValues> + -6.0156708955764771e-01 4.4137120246887207e-02</leafValues></_></weakClassifiers></_> <_> - <!-- stage 3 --> - <trees> + <maxWeakCount>47</maxWeakCount> + <stageThreshold>-1.7742869853973389e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 12 -1.</_> - <_> - 6 4 6 4 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0876799821853638</threshold> - <left_val>0.6294826269149780</left_val> - <right_val>-0.4179393947124481</right_val></_></_> + <internalNodes> + 0 -1 76 -1.0876799821853638e+00</internalNodes> + <leafValues> + 6.2948262691497803e-01 -4.1793939471244812e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 10 8 -1.</_> - <_> - 8 8 10 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1164439022541046</threshold> - <left_val>-0.4727962017059326</left_val> - <right_val>0.2381493002176285</right_val></_></_> + <internalNodes> + 0 -1 77 1.1644390225410461e-01</internalNodes> + <leafValues> + -4.7279620170593262e-01 2.3814930021762848e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 4 4 -1.</_> - <_> - 2 5 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0160847101360559</threshold> - <left_val>0.3374727070331574</left_val> - <right_val>-0.2752752900123596</right_val></_></_> + <internalNodes> + 0 -1 78 -1.6084710136055946e-02</internalNodes> + <leafValues> + 3.3747270703315735e-01 -2.7527529001235962e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 7 4 4 -1.</_> - <_> - 14 9 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0191960595548153</threshold> - <left_val>-0.5509889125823975</left_val> - <right_val>0.0559420287609100</right_val></_></_> + <internalNodes> + 0 -1 79 -1.9196059554815292e-02</internalNodes> + <leafValues> + -5.5098891258239746e-01 5.5942028760910034e-02</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 6 1 -1.</_> - <_> - 9 4 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0342571213841438</threshold> - <left_val>0.3061361908912659</left_val> - <right_val>-0.2423464059829712</right_val></_></_> + <internalNodes> + 0 -1 80 -3.4257121384143829e-02</internalNodes> + <leafValues> + 3.0613619089126587e-01 -2.4234640598297119e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 8 2 2 -1.</_> - <_> - 16 9 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0106492703780532</threshold> - <left_val>0.0934166908264160</left_val> - <right_val>-0.4897581040859222</right_val></_></_> + <internalNodes> + 0 -1 81 1.0649270378053188e-02</internalNodes> + <leafValues> + 9.3416690826416016e-02 -4.8975810408592224e-01</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 2 2 -1.</_> - <_> - 0 9 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.2133740130811930e-003</threshold> - <left_val>-0.6395238041877747</left_val> - <right_val>0.0791302174329758</right_val></_></_> + <internalNodes> + 0 -1 82 -2.2133740130811930e-03</internalNodes> + <leafValues> + -6.3952380418777466e-01 7.9130217432975769e-02</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 2 4 1 -1.</_> - <_> - 14 2 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.6288450248539448e-003</threshold> - <left_val>0.0535043105483055</left_val> - <right_val>-0.4702880084514618</right_val></_></_> + <internalNodes> + 0 -1 83 4.6288450248539448e-03</internalNodes> + <leafValues> + 5.3504310548305511e-02 -4.7028800845146179e-01</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 6 2 -1.</_> - <_> - 0 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1199862025678158e-003</threshold> - <left_val>-0.6356499791145325</left_val> - <right_val>0.1118744015693665</right_val></_></_> + <internalNodes> + 0 -1 84 -4.1199862025678158e-03</internalNodes> + <leafValues> + -6.3564997911453247e-01 1.1187440156936646e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 9 4 2 -1.</_> - <_> - 14 10 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0232590660452843e-003</threshold> - <left_val>-0.4896839857101440</left_val> - <right_val>0.0505020990967751</right_val></_></_> + <internalNodes> + 0 -1 85 -7.0232590660452843e-03</internalNodes> + <leafValues> + -4.8968398571014404e-01 5.0502099096775055e-02</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 4 2 -1.</_> - <_> - 0 10 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.6173902228474617e-003</threshold> - <left_val>-0.6496281027793884</left_val> - <right_val>0.0647443234920502</right_val></_></_> + <internalNodes> + 0 -1 86 -4.6173902228474617e-03</internalNodes> + <leafValues> + -6.4962810277938843e-01 6.4744323492050171e-02</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 4 7 -1.</_> - <_> - 10 1 2 7 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0265684798359871</threshold> - <left_val>-0.0813612267374992</left_val> - <right_val>0.1012633964419365</right_val></_></_> + <internalNodes> + 0 -1 87 2.6568479835987091e-02</internalNodes> + <leafValues> + -8.1361226737499237e-02 1.0126339644193649e-01</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 2 6 -1.</_> - <_> - 0 7 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1425653994083405</threshold> - <left_val>0.0367571003735065</left_val> - <right_val>-8.6994658203125000e+003</right_val></_></_> + <internalNodes> + 0 -1 88 1.4256539940834045e-01</internalNodes> + <leafValues> + 3.6757100373506546e-02 -8.6994658203125000e+03</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 4 2 -1.</_> - <_> - 9 10 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.9922098666429520e-003</threshold> - <left_val>-0.6254354119300842</left_val> - <right_val>0.0584495589137077</right_val></_></_> + <internalNodes> + 0 -1 89 -7.9922098666429520e-03</internalNodes> + <leafValues> + -6.2543541193008423e-01 5.8449558913707733e-02</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 8 4 -1.</_> - <_> - 6 0 8 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.3245322108268738</threshold> - <left_val>-0.0342194885015488</left_val> - <right_val>-7.6455332031250000e+003</right_val></_></_> + <internalNodes> + 0 -1 90 3.2453221082687378e-01</internalNodes> + <leafValues> + -3.4219488501548767e-02 -7.6455332031250000e+03</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 9 1 2 -1.</_> - <_> - 13 9 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0104542998597026</threshold> - <left_val>-0.4648857116699219</left_val> - <right_val>0.0820055827498436</right_val></_></_> + <internalNodes> + 0 -1 91 -1.0454299859702587e-02</internalNodes> + <leafValues> + -4.6488571166992188e-01 8.2005582749843597e-02</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 6 4 -1.</_> - <_> - 8 1 6 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0480473302304745</threshold> - <left_val>-0.1095091998577118</left_val> - <right_val>0.5144714713096619</right_val></_></_> + <internalNodes> + 0 -1 92 4.8047330230474472e-02</internalNodes> + <leafValues> + -1.0950919985771179e-01 5.1447147130966187e-01</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 12 2 -1.</_> - <_> - 9 0 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0136749502271414</threshold> - <left_val>0.3058204054832459</left_val> - <right_val>-0.2532551884651184</right_val></_></_> + <internalNodes> + 0 -1 93 -1.3674950227141380e-02</internalNodes> + <leafValues> + 3.0582040548324585e-01 -2.5325518846511841e-01</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 9 8 -1.</_> - <_> - 4 2 9 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1114948987960815</threshold> - <left_val>0.3437237143516541</left_val> - <right_val>-0.1527179926633835</right_val></_></_> + <internalNodes> + 0 -1 94 -1.1149489879608154e-01</internalNodes> + <leafValues> + 3.4372371435165405e-01 -1.5271799266338348e-01</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 2 4 -1.</_> - <_> - 9 0 1 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0106498496606946</threshold> - <left_val>0.0533205606043339</left_val> - <right_val>-0.5143492221832275</right_val></_></_> + <internalNodes> + 0 -1 95 1.0649849660694599e-02</internalNodes> + <leafValues> + 5.3320560604333878e-02 -5.1434922218322754e-01</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 3 -1.</_> - <_> - 8 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0135297095403075</threshold> - <left_val>-0.7833893895149231</left_val> - <right_val>0.0557366311550140</right_val></_></_> + <internalNodes> + 0 -1 96 -1.3529709540307522e-02</internalNodes> + <leafValues> + -7.8338938951492310e-01 5.5736631155014038e-02</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 6 6 -1.</_> - <_> - 8 6 2 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1236910969018936</threshold> - <left_val>0.2814615964889526</left_val> - <right_val>-0.1600033938884735</right_val></_></_> + <internalNodes> + 0 -1 97 -1.2369109690189362e-01</internalNodes> + <leafValues> + 2.8146159648895264e-01 -1.6000339388847351e-01</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 10 4 2 -1.</_> - <_> - 7 10 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.5496039353311062e-003</threshold> - <left_val>-0.6141601204872131</left_val> - <right_val>0.0760507732629776</right_val></_></_> + <internalNodes> + 0 -1 98 -7.5496039353311062e-03</internalNodes> + <leafValues> + -6.1416012048721313e-01 7.6050773262977600e-02</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 5 2 -1.</_> - <_> - 13 8 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0318161509931087</threshold> - <left_val>0.0186315793544054</left_val> - <right_val>-0.5537254214286804</right_val></_></_> + <internalNodes> + 0 -1 99 3.1816150993108749e-02</internalNodes> + <leafValues> + 1.8631579354405403e-02 -5.5372542142868042e-01</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 4 4 -1.</_> - <_> - 7 5 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1493735015392304</threshold> - <left_val>-1.6261310083791614e-003</left_val> - <right_val>-4.7522329101562500e+003</right_val></_></_> + <internalNodes> + 0 -1 100 1.4937350153923035e-01</internalNodes> + <leafValues> + -1.6261310083791614e-03 -4.7522329101562500e+03</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 5 2 -1.</_> - <_> - 13 8 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0469747781753540</threshold> - <left_val>5.1585468463599682e-003</left_val> - <right_val>-0.6380897164344788</right_val></_></_> + <internalNodes> + 0 -1 101 4.6974778175354004e-02</internalNodes> + <leafValues> + 5.1585468463599682e-03 -6.3808971643447876e-01</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 7 5 2 -1.</_> - <_> - 0 8 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.3677899551112205e-004</threshold> - <left_val>-0.3055922091007233</left_val> - <right_val>0.1362351030111313</right_val></_></_> + <internalNodes> + 0 -1 102 1.3677899551112205e-04</internalNodes> + <leafValues> + -3.0559220910072327e-01 1.3623510301113129e-01</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 0 0 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0322282388806343</threshold> - <left_val>0.2772552073001862</left_val> - <right_val>-0.1286406069993973</right_val></_></_> + <internalNodes> + 0 -1 103 -3.2228238880634308e-02</internalNodes> + <leafValues> + 2.7725520730018616e-01 -1.2864060699939728e-01</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 10 4 2 -1.</_> - <_> - 5 10 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.5994630567729473e-003</threshold> - <left_val>-0.4750213027000427</left_val> - <right_val>0.0787238627672195</right_val></_></_> + <internalNodes> + 0 -1 104 -6.5994630567729473e-03</internalNodes> + <leafValues> + -4.7502130270004272e-01 7.8723862767219543e-02</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 4 3 -1.</_> - <_> - 11 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0209838803857565</threshold> - <left_val>-0.0755615532398224</left_val> - <right_val>0.4307813942432404</right_val></_></_> + <internalNodes> + 0 -1 105 2.0983880385756493e-02</internalNodes> + <leafValues> + -7.5561553239822388e-02 4.3078139424324036e-01</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 4 3 -1.</_> - <_> - 5 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0105135198682547</threshold> - <left_val>0.3756321072578430</left_val> - <right_val>-0.0831511169672012</right_val></_></_> + <internalNodes> + 0 -1 106 -1.0513519868254662e-02</internalNodes> + <leafValues> + 3.7563210725784302e-01 -8.3151116967201233e-02</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 4 2 -1.</_> - <_> - 10 0 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.5620742067694664e-003</threshold> - <left_val>-0.4233325123786926</left_val> - <right_val>0.0439542606472969</right_val></_></_> + <internalNodes> + 0 -1 107 -9.5620742067694664e-03</internalNodes> + <leafValues> + -4.2333251237869263e-01 4.3954260647296906e-02</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 9 1 2 -1.</_> - <_> - 4 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.4352190191857517e-004</threshold> - <left_val>-0.2421430945396423</left_val> - <right_val>0.1134959012269974</right_val></_></_> + <internalNodes> + 0 -1 108 1.4352190191857517e-04</internalNodes> + <leafValues> + -2.4214309453964233e-01 1.1349590122699738e-01</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 8 4 -1.</_> - <_> - 5 1 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0321479514241219</threshold> - <left_val>0.3553853929042816</left_val> - <right_val>-0.0748463124036789</right_val></_></_> + <internalNodes> + 0 -1 109 -3.2147951424121857e-02</internalNodes> + <leafValues> + 3.5538539290428162e-01 -7.4846312403678894e-02</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 5 4 -1.</_> - <_> - 6 1 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0174891501665115</threshold> - <left_val>-0.1348219066858292</left_val> - <right_val>0.3028790950775147</right_val></_></_> + <internalNodes> + 0 -1 110 1.7489150166511536e-02</internalNodes> + <leafValues> + -1.3482190668582916e-01 3.0287909507751465e-01</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 3 2 -1.</_> - <_> - 10 0 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0107521098107100</threshold> - <left_val>0.0258396603167057</left_val> - <right_val>-0.5400351285934448</right_val></_></_> + <internalNodes> + 0 -1 111 1.0752109810709953e-02</internalNodes> + <leafValues> + 2.5839660316705704e-02 -5.4003512859344482e-01</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 18 4 -1.</_> - <_> - 6 8 6 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1190781965851784</threshold> - <left_val>0.2656168043613434</left_val> - <right_val>-0.1014088019728661</right_val></_></_> + <internalNodes> + 0 -1 112 -1.1907819658517838e-01</internalNodes> + <leafValues> + 2.6561680436134338e-01 -1.0140880197286606e-01</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 4 2 -1.</_> - <_> - 10 0 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.6588749177753925e-003</threshold> - <left_val>0.0419859699904919</left_val> - <right_val>-0.2907460927963257</right_val></_></_> + <internalNodes> + 0 -1 113 6.6588749177753925e-03</internalNodes> + <leafValues> + 4.1985969990491867e-02 -2.9074609279632568e-01</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 2 3 -1.</_> - <_> - 0 10 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.3990991115570068e-003</threshold> - <left_val>0.0504555106163025</left_val> - <right_val>-0.4828890860080719</right_val></_></_> + <internalNodes> + 0 -1 114 8.3990991115570068e-03</internalNodes> + <leafValues> + 5.0455510616302490e-02 -4.8288908600807190e-01</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 8 6 -1.</_> - <_> - 6 3 8 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0600846484303474</threshold> - <left_val>-0.0755373910069466</left_val> - <right_val>0.2406816929578781</right_val></_></_> + <internalNodes> + 0 -1 115 6.0084648430347443e-02</internalNodes> + <leafValues> + -7.5537391006946564e-02 2.4068169295787811e-01</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 4 2 -1.</_> - <_> - 6 0 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.4602258391678333e-003</threshold> - <left_val>-0.4195708036422730</left_val> - <right_val>0.0590730011463165</right_val></_></_> + <internalNodes> + 0 -1 116 -7.4602258391678333e-03</internalNodes> + <leafValues> + -4.1957080364227295e-01 5.9073001146316528e-02</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 6 8 2 -1.</_> - <_> - 9 6 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0602592602372169</threshold> - <left_val>0.5444657206535339</left_val> - <right_val>-0.0262358300387859</right_val></_></_> + <internalNodes> + 0 -1 117 -6.0259260237216949e-02</internalNodes> + <leafValues> + 5.4446572065353394e-01 -2.6235830038785934e-02</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 2 3 -1.</_> - <_> - 6 4 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0221761204302311</threshold> - <left_val>0.3267804086208344</left_val> - <right_val>-0.0675928071141243</right_val></_></_> + <internalNodes> + 0 -1 118 -2.2176120430231094e-02</internalNodes> + <leafValues> + 3.2678040862083435e-01 -6.7592807114124298e-02</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 9 6 -1.</_> - <_> - 5 2 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0836906209588051</threshold> - <left_val>0.2933085858821869</left_val> - <right_val>-0.0674251765012741</right_val></_></_> + <internalNodes> + 0 -1 119 -8.3690620958805084e-02</internalNodes> + <leafValues> + 2.9330858588218689e-01 -6.7425176501274109e-02</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 11 4 -1.</_> - <_> - 2 2 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0174208097159863</threshold> - <left_val>-0.1296115964651108</left_val> - <right_val>0.1876410990953445</right_val></_></_> + <internalNodes> + 0 -1 120 1.7420809715986252e-02</internalNodes> + <leafValues> + -1.2961159646511078e-01 1.8764109909534454e-01</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 2 2 2 -1.</_> - <_> - 14 2 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0166604891419411</threshold> - <left_val>0.0475730597972870</left_val> - <right_val>-0.4158729910850525</right_val></_></_> + <internalNodes> + 0 -1 121 1.6660489141941071e-02</internalNodes> + <leafValues> + 4.7573059797286987e-02 -4.1587299108505249e-01</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 2 3 -1.</_> - <_> - 3 3 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0202436391264200</threshold> - <left_val>-0.4272713959217072</left_val> - <right_val>0.0521548502147198</right_val></_></_></trees> - <stage_threshold>-1.7742869853973389</stage_threshold> - <parent>2</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 122 -2.0243639126420021e-02</internalNodes> + <leafValues> + -4.2727139592170715e-01 5.2154850214719772e-02</leafValues></_></weakClassifiers></_> <_> - <!-- stage 4 --> - <trees> + <maxWeakCount>57</maxWeakCount> + <stageThreshold>-1.7197259664535522e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 6 9 -1.</_> - <_> - 8 4 2 3 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1886709928512573</threshold> - <left_val>0.5151798129081726</left_val> - <right_val>-0.4702348113059998</right_val></_></_> + <internalNodes> + 0 -1 123 -1.8867099285125732e-01</internalNodes> + <leafValues> + 5.1517981290817261e-01 -4.7023481130599976e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 5 4 4 -1.</_> - <_> - 14 5 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0164011605083942</threshold> - <left_val>0.3121385872364044</left_val> - <right_val>-0.2133460044860840</right_val></_></_> + <internalNodes> + 0 -1 124 -1.6401160508394241e-02</internalNodes> + <leafValues> + 3.1213858723640442e-01 -2.1334600448608398e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 6 10 6 -1.</_> - <_> - 1 9 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0968954414129257</threshold> - <left_val>-0.5320454239845276</left_val> - <right_val>0.2134394049644470</right_val></_></_> + <internalNodes> + 0 -1 125 9.6895441412925720e-02</internalNodes> + <leafValues> + -5.3204542398452759e-01 2.1343940496444702e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 5 4 5 -1.</_> - <_> - 14 5 2 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0168255604803562</threshold> - <left_val>-0.0173099897801876</left_val> - <right_val>0.2927081882953644</right_val></_></_> + <internalNodes> + 0 -1 126 1.6825560480356216e-02</internalNodes> + <leafValues> + -1.7309989780187607e-02 2.9270818829536438e-01</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 4 5 -1.</_> - <_> - 2 5 2 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0143764400854707</threshold> - <left_val>0.3259294927120209</left_val> - <right_val>-0.2953472137451172</right_val></_></_> + <internalNodes> + 0 -1 127 -1.4376440085470676e-02</internalNodes> + <leafValues> + 3.2592949271202087e-01 -2.9534721374511719e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 3 3 -1.</_> - <_> - 11 4 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0257499106228352</threshold> - <left_val>0.3006463050842285</left_val> - <right_val>-0.1285721063613892</right_val></_></_> + <internalNodes> + 0 -1 128 -2.5749910622835159e-02</internalNodes> + <leafValues> + 3.0064630508422852e-01 -1.2857210636138916e-01</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 2 3 -1.</_> - <_> - 7 5 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0197812691330910</threshold> - <left_val>0.4648532867431641</left_val> - <right_val>-0.1570322960615158</right_val></_></_> + <internalNodes> + 0 -1 129 -1.9781269133090973e-02</internalNodes> + <leafValues> + 4.6485328674316406e-01 -1.5703229606151581e-01</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 3 2 -1.</_> - <_> - 9 6 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0160089191049337</threshold> - <left_val>-0.0313608087599278</left_val> - <right_val>0.4034132957458496</right_val></_></_> + <internalNodes> + 0 -1 130 1.6008919104933739e-02</internalNodes> + <leafValues> + -3.1360808759927750e-02 4.0341329574584961e-01</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 2 2 -1.</_> - <_> - 6 6 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.0088648460805416e-003</threshold> - <left_val>-0.1566037982702255</left_val> - <right_val>0.4142864942550659</right_val></_></_> + <internalNodes> + 0 -1 131 6.0088648460805416e-03</internalNodes> + <leafValues> + -1.5660379827022552e-01 4.1428649425506592e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 2 8 4 -1.</_> - <_> - 6 3 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0295468494296074</threshold> - <left_val>0.3166061043739319</left_val> - <right_val>-0.1000310033559799</right_val></_></_> + <internalNodes> + 0 -1 132 -2.9546849429607391e-02</internalNodes> + <leafValues> + 3.1660610437393188e-01 -1.0003100335597992e-01</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 16 2 -1.</_> - <_> - 5 0 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0335419513285160</threshold> - <left_val>0.2785116136074066</left_val> - <right_val>-0.1905584931373596</right_val></_></_> + <internalNodes> + 0 -1 133 -3.3541951328516006e-02</internalNodes> + <leafValues> + 2.7851161360740662e-01 -1.9055849313735962e-01</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 2 6 -1.</_> - <_> - 7 5 2 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0565995387732983</threshold> - <left_val>0.3003756105899811</left_val> - <right_val>-0.0835469514131546</right_val></_></_> + <internalNodes> + 0 -1 134 -5.6599538773298264e-02</internalNodes> + <leafValues> + 3.0037561058998108e-01 -8.3546951413154602e-02</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 12 -1.</_> - <_> - 0 6 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0215592198073864</threshold> - <left_val>-0.5559839010238648</left_val> - <right_val>0.0888227075338364</right_val></_></_> + <internalNodes> + 0 -1 135 -2.1559219807386398e-02</internalNodes> + <leafValues> + -5.5598390102386475e-01 8.8822707533836365e-02</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 4 3 -1.</_> - <_> - 7 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0155608803033829</threshold> - <left_val>-0.1191003993153572</left_val> - <right_val>0.3958534002304077</right_val></_></_> + <internalNodes> + 0 -1 136 1.5560880303382874e-02</internalNodes> + <leafValues> + -1.1910039931535721e-01 3.9585340023040771e-01</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 8 2 2 -1.</_> - <_> - 2 8 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.7825528308749199e-003</threshold> - <left_val>0.0873457416892052</left_val> - <right_val>-0.4798257052898407</right_val></_></_> + <internalNodes> + 0 -1 137 4.7825528308749199e-03</internalNodes> + <leafValues> + 8.7345741689205170e-02 -4.7982570528984070e-01</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 3 2 -1.</_> - <_> - 10 5 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0204854290932417</threshold> - <left_val>-0.0353239402174950</left_val> - <right_val>0.3691422939300537</right_val></_></_> + <internalNodes> + 0 -1 138 2.0485429093241692e-02</internalNodes> + <leafValues> + -3.5323940217494965e-02 3.6914229393005371e-01</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 2 3 -1.</_> - <_> - 8 5 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0222924593836069</threshold> - <left_val>0.4030582010746002</left_val> - <right_val>-0.0905211418867111</right_val></_></_> + <internalNodes> + 0 -1 139 -2.2292459383606911e-02</internalNodes> + <leafValues> + 4.0305820107460022e-01 -9.0521141886711121e-02</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 8 4 -1.</_> - <_> - 5 1 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0367587395012379</threshold> - <left_val>0.4475831091403961</left_val> - <right_val>-0.0743735581636429</right_val></_></_> + <internalNodes> + 0 -1 140 -3.6758739501237869e-02</internalNodes> + <leafValues> + 4.4758310914039612e-01 -7.4373558163642883e-02</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 10 1 2 -1.</_> - <_> - 6 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.3364156782627106e-005</threshold> - <left_val>-0.2607545852661133</left_val> - <right_val>0.1413186043500900</right_val></_></_> + <internalNodes> + 0 -1 141 9.3364156782627106e-05</internalNodes> + <leafValues> + -2.6075458526611328e-01 1.4131860435009003e-01</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 8 4 -1.</_> - <_> - 7 1 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0252027306705713</threshold> - <left_val>-0.0929077118635178</left_val> - <right_val>0.2210991978645325</right_val></_></_> + <internalNodes> + 0 -1 142 2.5202730670571327e-02</internalNodes> + <leafValues> + -9.2907711863517761e-02 2.2109919786453247e-01</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 11 6 1 -1.</_> - <_> - 6 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8968331217765808e-003</threshold> - <left_val>0.0768434703350067</left_val> - <right_val>-0.5053529143333435</right_val></_></_> + <internalNodes> + 0 -1 143 7.8968331217765808e-03</internalNodes> + <leafValues> + 7.6843470335006714e-02 -5.0535291433334351e-01</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 11 6 1 -1.</_> - <_> - 8 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.2414859682321548e-003</threshold> - <left_val>0.0426194295287132</left_val> - <right_val>-0.5842121839523315</right_val></_></_> + <internalNodes> + 0 -1 144 9.2414859682321548e-03</internalNodes> + <leafValues> + 4.2619429528713226e-02 -5.8421218395233154e-01</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 18 10 -1.</_> - <_> - 0 2 9 5 2.</_> - <_> - 9 7 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2990294098854065</threshold> - <left_val>-0.6176159977912903</left_val> - <right_val>0.0389944799244404</right_val></_></_> + <internalNodes> + 0 -1 145 -2.9902940988540649e-01</internalNodes> + <leafValues> + -6.1761599779129028e-01 3.8994479924440384e-02</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 6 9 -1.</_> - <_> - 8 0 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0163955893367529</threshold> - <left_val>0.1609995961189270</left_val> - <right_val>-0.1729865074157715</right_val></_></_> + <internalNodes> + 0 -1 146 -1.6395589336752892e-02</internalNodes> + <leafValues> + 1.6099959611892700e-01 -1.7298650741577148e-01</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 11 6 1 -1.</_> - <_> - 7 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.5750846192240715e-003</threshold> - <left_val>-0.4721252918243408</left_val> - <right_val>0.0629377067089081</right_val></_></_> + <internalNodes> + 0 -1 147 -8.5750846192240715e-03</internalNodes> + <leafValues> + -4.7212529182434082e-01 6.2937706708908081e-02</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 6 4 -1.</_> - <_> - 8 0 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0295358095318079</threshold> - <left_val>-0.4923984110355377</left_val> - <right_val>0.0511771216988564</right_val></_></_> + <internalNodes> + 0 -1 148 -2.9535809531807899e-02</internalNodes> + <leafValues> + -4.9239841103553772e-01 5.1177121698856354e-02</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 1 7 4 -1.</_> - <_> - 5 2 7 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0323478803038597</threshold> - <left_val>0.4024465084075928</left_val> - <right_val>-0.0716922804713249</right_val></_></_> + <internalNodes> + 0 -1 149 -3.2347880303859711e-02</internalNodes> + <leafValues> + 4.0244650840759277e-01 -7.1692280471324921e-02</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 3 1 2 -1.</_> - <_> - 12 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.8570148111321032e-005</threshold> - <left_val>0.1123879998922348</left_val> - <right_val>-0.1184118017554283</right_val></_></_> + <internalNodes> + 0 -1 150 -9.8570148111321032e-05</internalNodes> + <leafValues> + 1.1238799989223480e-01 -1.1841180175542831e-01</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 3 3 -1.</_> - <_> - 5 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0801780782639980e-003</threshold> - <left_val>0.3099572956562042</left_val> - <right_val>-0.0805626735091209</right_val></_></_> + <internalNodes> + 0 -1 151 -6.0801780782639980e-03</internalNodes> + <leafValues> + 3.0995729565620422e-01 -8.0562673509120941e-02</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 6 2 -1.</_> - <_> - 11 0 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.9669457995332778e-005</threshold> - <left_val>0.1057943031191826</left_val> - <right_val>-0.1479294002056122</right_val></_></_> + <internalNodes> + 0 -1 152 -9.9669457995332778e-05</internalNodes> + <leafValues> + 1.0579430311918259e-01 -1.4792940020561218e-01</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 6 2 -1.</_> - <_> - 5 0 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0213832091540098</threshold> - <left_val>-0.5403249859809876</left_val> - <right_val>0.0465878099203110</right_val></_></_> + <internalNodes> + 0 -1 153 -2.1383209154009819e-02</internalNodes> + <leafValues> + -5.4032498598098755e-01 4.6587809920310974e-02</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 3 5 -1.</_> - <_> - 10 5 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.6912590730935335e-003</threshold> - <left_val>0.1631086021661758</left_val> - <right_val>-0.1049527972936630</right_val></_></_> + <internalNodes> + 0 -1 154 -3.6912590730935335e-03</internalNodes> + <leafValues> + 1.6310860216617584e-01 -1.0495279729366302e-01</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 3 5 -1.</_> - <_> - 7 5 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3881132043898106e-003</threshold> - <left_val>0.2398761957883835</left_val> - <right_val>-0.0998853370547295</right_val></_></_> + <internalNodes> + 0 -1 155 -5.3881132043898106e-03</internalNodes> + <leafValues> + 2.3987619578838348e-01 -9.9885337054729462e-02</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 4 1 6 -1.</_> - <_> - 17 6 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.0342441797256470e-003</threshold> - <left_val>0.0856977775692940</left_val> - <right_val>-0.4395585954189301</right_val></_></_> + <internalNodes> + 0 -1 156 8.0342441797256470e-03</internalNodes> + <leafValues> + 8.5697777569293976e-02 -4.3955859541893005e-01</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 1 9 -1.</_> - <_> - 0 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0138485804200172</threshold> - <left_val>0.0498559400439262</left_val> - <right_val>-0.4091011881828308</right_val></_></_> + <internalNodes> + 0 -1 157 1.3848580420017242e-02</internalNodes> + <leafValues> + 4.9855940043926239e-02 -4.0910118818283081e-01</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 9 2 2 -1.</_> - <_> - 16 9 1 1 2.</_> - <_> - 15 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.5337793279904872e-005</threshold> - <left_val>-0.1074950993061066</left_val> - <right_val>0.1125968992710114</right_val></_></_> + <internalNodes> + 0 -1 158 8.5337793279904872e-05</internalNodes> + <leafValues> + -1.0749509930610657e-01 1.1259689927101135e-01</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 2 2 -1.</_> - <_> - 1 9 1 1 2.</_> - <_> - 2 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9258137450087816e-005</threshold> - <left_val>-0.1544775962829590</left_val> - <right_val>0.1494859009981155</right_val></_></_> + <internalNodes> + 0 -1 159 8.9258137450087816e-05</internalNodes> + <leafValues> + -1.5447759628295898e-01 1.4948590099811554e-01</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 3 2 -1.</_> - <_> - 11 6 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.5984220448881388e-003</threshold> - <left_val>0.3277201056480408</left_val> - <right_val>-0.1066564023494721</right_val></_></_> + <internalNodes> + 0 -1 160 -3.5984220448881388e-03</internalNodes> + <leafValues> + 3.2772010564804077e-01 -1.0665640234947205e-01</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 4 3 -1.</_> - <_> - 4 3 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0447131991386414</threshold> - <left_val>0.3849036097526550</left_val> - <right_val>-0.0521562285721302</right_val></_></_> + <internalNodes> + 0 -1 161 -4.4713199138641357e-02</internalNodes> + <leafValues> + 3.8490360975265503e-01 -5.2156228572130203e-02</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 7 1 4 -1.</_> - <_> - 17 8 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.5462699122726917e-003</threshold> - <left_val>0.0937647894024849</left_val> - <right_val>-0.3173953890800476</right_val></_></_> + <internalNodes> + 0 -1 162 2.5462699122726917e-03</internalNodes> + <leafValues> + 9.3764789402484894e-02 -3.1739538908004761e-01</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 7 1 4 -1.</_> - <_> - 0 8 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.4153460077941418e-003</threshold> - <left_val>0.0447478294372559</left_val> - <right_val>-0.4544633030891419</right_val></_></_> + <internalNodes> + 0 -1 163 5.4153460077941418e-03</internalNodes> + <leafValues> + 4.4747829437255859e-02 -4.5446330308914185e-01</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 3 7 -1.</_> - <_> - 10 1 1 7 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0381362996995449</threshold> - <left_val>0.1196867004036903</left_val> - <right_val>-0.0286594107747078</right_val></_></_> + <internalNodes> + 0 -1 164 -3.8136299699544907e-02</internalNodes> + <leafValues> + 1.1968670040369034e-01 -2.8659410774707794e-02</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 7 3 -1.</_> - <_> - 8 1 7 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0390664413571358</threshold> - <left_val>-0.0590365193784237</left_val> - <right_val>0.3731229901313782</right_val></_></_> + <internalNodes> + 0 -1 165 3.9066441357135773e-02</internalNodes> + <leafValues> + -5.9036519378423691e-02 3.7312299013137817e-01</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 10 2 2 -1.</_> - <_> - 10 10 1 1 2.</_> - <_> - 9 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.3346862336620688e-005</threshold> - <left_val>0.1190418973565102</left_val> - <right_val>-0.0869843289256096</right_val></_></_> + <internalNodes> + 0 -1 166 -7.3346862336620688e-05</internalNodes> + <leafValues> + 1.1904189735651016e-01 -8.6984328925609589e-02</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 2 2 -1.</_> - <_> - 7 10 1 1 2.</_> - <_> - 8 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.6998203187249601e-005</threshold> - <left_val>-0.1281822025775909</left_val> - <right_val>0.1728205978870392</right_val></_></_> + <internalNodes> + 0 -1 167 8.6998203187249601e-05</internalNodes> + <leafValues> + -1.2818220257759094e-01 1.7282059788703918e-01</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 3 2 -1.</_> - <_> - 16 1 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>8.5675828158855438e-003</threshold> - <left_val>0.0846529230475426</left_val> - <right_val>-0.3198662102222443</right_val></_></_> + <internalNodes> + 0 -1 168 8.5675828158855438e-03</internalNodes> + <leafValues> + 8.4652923047542572e-02 -3.1986621022224426e-01</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 10 3 -1.</_> - <_> - 4 3 10 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0217857006937265</threshold> - <left_val>-0.0954384729266167</left_val> - <right_val>0.2606984972953796</right_val></_></_> + <internalNodes> + 0 -1 169 2.1785700693726540e-02</internalNodes> + <leafValues> + -9.5438472926616669e-02 2.6069849729537964e-01</leafValues></_> <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 2 2 2 -1.</_> - <_> - 16 2 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0138535499572754</threshold> - <left_val>-0.4217616915702820</left_val> - <right_val>0.0674627870321274</right_val></_></_> + <internalNodes> + 0 -1 170 -1.3853549957275391e-02</internalNodes> + <leafValues> + -4.2176169157028198e-01 6.7462787032127380e-02</leafValues></_> <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 2 2 2 -1.</_> - <_> - 2 2 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0138380201533437</threshold> - <left_val>0.0466855205595493</left_val> - <right_val>-0.4152165949344635</right_val></_></_> + <internalNodes> + 0 -1 171 1.3838020153343678e-02</internalNodes> + <leafValues> + 4.6685520559549332e-02 -4.1521659493446350e-01</leafValues></_> <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 18 1 -1.</_> - <_> - 0 11 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0646203309297562</threshold> - <left_val>0.0458183102309704</left_val> - <right_val>-0.4223445951938629</right_val></_></_> + <internalNodes> + 0 -1 172 6.4620330929756165e-02</internalNodes> + <leafValues> + 4.5818310230970383e-02 -4.2234459519386292e-01</leafValues></_> <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 1 16 10 -1.</_> - <_> - 5 1 8 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0779213532805443</threshold> - <left_val>0.1324124932289124</left_val> - <right_val>-0.1706327944993973</right_val></_></_> + <internalNodes> + 0 -1 173 -7.7921353280544281e-02</internalNodes> + <leafValues> + 1.3241249322891235e-01 -1.7063279449939728e-01</leafValues></_> <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 10 2 2 -1.</_> - <_> - 10 10 1 1 2.</_> - <_> - 9 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3160440139472485e-003</threshold> - <left_val>-0.2494515925645828</left_val> - <right_val>0.0586964599788189</right_val></_></_> + <internalNodes> + 0 -1 174 -1.3160440139472485e-03</internalNodes> + <leafValues> + -2.4945159256458282e-01 5.8696459978818893e-02</leafValues></_> <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 2 2 -1.</_> - <_> - 7 10 1 1 2.</_> - <_> - 8 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.0401099694427103e-005</threshold> - <left_val>0.1628863960504532</left_val> - <right_val>-0.1387708038091660</right_val></_></_> + <internalNodes> + 0 -1 175 -8.0401099694427103e-05</internalNodes> + <leafValues> + 1.6288639605045319e-01 -1.3877080380916595e-01</leafValues></_> <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 16 10 -1.</_> - <_> - 6 0 8 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1532817035913467</threshold> - <left_val>0.0842742100358009</left_val> - <right_val>-0.0637950301170349</right_val></_></_> + <internalNodes> + 0 -1 176 -1.5328170359134674e-01</internalNodes> + <leafValues> + 8.4274210035800934e-02 -6.3795030117034912e-02</leafValues></_> <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 16 10 -1.</_> - <_> - 4 0 8 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3753429055213928</threshold> - <left_val>-0.4794279038906097</left_val> - <right_val>0.0500348284840584</right_val></_></_> + <internalNodes> + 0 -1 177 -3.7534290552139282e-01</internalNodes> + <leafValues> + -4.7942790389060974e-01 5.0034828484058380e-02</leafValues></_> <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 2 2 -1.</_> - <_> - 14 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.5958919003605843e-003</threshold> - <left_val>-0.5460941195487976</left_val> - <right_val>0.0212609600275755</right_val></_></_> + <internalNodes> + 0 -1 178 -6.5958919003605843e-03</internalNodes> + <leafValues> + -5.4609411954879761e-01 2.1260960027575493e-02</leafValues></_> <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 3 2 -1.</_> - <_> - 6 6 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6368419639766216e-003</threshold> - <left_val>0.2074088007211685</left_val> - <right_val>-0.0908637866377831</right_val></_></_></trees> - <stage_threshold>-1.7197259664535522</stage_threshold> - <parent>3</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 179 -2.6368419639766216e-03</internalNodes> + <leafValues> + 2.0740880072116852e-01 -9.0863786637783051e-02</leafValues></_></weakClassifiers></_> <_> - <!-- stage 5 --> - <trees> + <maxWeakCount>87</maxWeakCount> + <stageThreshold>-1.5970319509506226e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 11 8 -1.</_> - <_> - 0 4 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1392325013875961</threshold> - <left_val>0.3977850973606110</left_val> - <right_val>-0.4214068949222565</right_val></_></_> + <internalNodes> + 0 -1 180 -1.3923250138759613e-01</internalNodes> + <leafValues> + 3.9778509736061096e-01 -4.2140689492225647e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 6 3 -1.</_> - <_> - 8 5 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0216973796486855</threshold> - <left_val>0.3507454991340637</left_val> - <right_val>-0.2721070945262909</right_val></_></_> + <internalNodes> + 0 -1 181 -2.1697379648685455e-02</internalNodes> + <leafValues> + 3.5074549913406372e-01 -2.7210709452629089e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 4 3 -1.</_> - <_> - 2 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0169219598174095</threshold> - <left_val>0.3007246851921082</left_val> - <right_val>-0.2090560048818588</right_val></_></_> + <internalNodes> + 0 -1 182 -1.6921959817409515e-02</internalNodes> + <leafValues> + 3.0072468519210815e-01 -2.0905600488185883e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 12 6 -1.</_> - <_> - 3 4 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1263809055089951</threshold> - <left_val>0.2769337892532349</left_val> - <right_val>-0.1591036021709442</right_val></_></_> + <internalNodes> + 0 -1 183 -1.2638090550899506e-01</internalNodes> + <leafValues> + 2.7693378925323486e-01 -1.5910360217094421e-01</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 3 3 -1.</_> - <_> - 0 10 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0799179822206497</threshold> - <left_val>1.9333909731358290e-003</left_val> - <right_val>-4.4651162109375000e+003</right_val></_></_> + <internalNodes> + 0 -1 184 7.9917982220649719e-02</internalNodes> + <leafValues> + 1.9333909731358290e-03 -4.4651162109375000e+03</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 7 3 -1.</_> - <_> - 6 4 7 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0238300692290068</threshold> - <left_val>-0.0826329365372658</left_val> - <right_val>0.4638459980487824</right_val></_></_> + <internalNodes> + 0 -1 185 2.3830069229006767e-02</internalNodes> + <leafValues> + -8.2632936537265778e-02 4.6384599804878235e-01</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 10 10 2 -1.</_> - <_> - 4 11 10 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7771110180765390e-003</threshold> - <left_val>-0.3161875903606415</left_val> - <right_val>0.1360259950160980</right_val></_></_> + <internalNodes> + 0 -1 186 2.7771110180765390e-03</internalNodes> + <leafValues> + -3.1618759036064148e-01 1.3602599501609802e-01</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 10 2 -1.</_> - <_> - 5 5 10 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0207498706877232</threshold> - <left_val>-0.0798233970999718</left_val> - <right_val>0.4018065035343170</right_val></_></_> + <internalNodes> + 0 -1 187 2.0749870687723160e-02</internalNodes> + <leafValues> + -7.9823397099971771e-02 4.0180650353431702e-01</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 8 -1.</_> - <_> - 6 0 6 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1179452016949654</threshold> - <left_val>0.1356489956378937</left_val> - <right_val>-0.2530486881732941</right_val></_></_> + <internalNodes> + 0 -1 188 -1.1794520169496536e-01</internalNodes> + <leafValues> + 1.3564899563789368e-01 -2.5304868817329407e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 4 1 8 -1.</_> - <_> - 17 8 1 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0107332896441221</threshold> - <left_val>-0.4277982115745544</left_val> - <right_val>0.0747490301728249</right_val></_></_> + <internalNodes> + 0 -1 189 -1.0733289644122124e-02</internalNodes> + <leafValues> + -4.2779821157455444e-01 7.4749030172824860e-02</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 1 8 -1.</_> - <_> - 0 8 1 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.8003909178078175e-003</threshold> - <left_val>-0.4599295854568481</left_val> - <right_val>0.0848593562841415</right_val></_></_> + <internalNodes> + 0 -1 190 -4.8003909178078175e-03</internalNodes> + <leafValues> + -4.5992958545684814e-01 8.4859356284141541e-02</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 7 12 3 -1.</_> - <_> - 9 7 4 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2141191065311432</threshold> - <left_val>-0.0398279093205929</left_val> - <right_val>0.5408297181129456</right_val></_></_> + <internalNodes> + 0 -1 191 2.1411910653114319e-01</internalNodes> + <leafValues> + -3.9827909320592880e-02 5.4082971811294556e-01</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 4 2 -1.</_> - <_> - 4 3 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0180592592805624</threshold> - <left_val>-0.0625308677554131</left_val> - <right_val>0.4306229948997498</right_val></_></_> + <internalNodes> + 0 -1 192 1.8059259280562401e-02</internalNodes> + <leafValues> + -6.2530867755413055e-02 4.3062299489974976e-01</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 6 4 -1.</_> - <_> - 9 0 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0438989289104939</threshold> - <left_val>-0.6836798191070557</left_val> - <right_val>0.0454723685979843</right_val></_></_> + <internalNodes> + 0 -1 193 -4.3898928910493851e-02</internalNodes> + <leafValues> + -6.8367981910705566e-01 4.5472368597984314e-02</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 6 4 -1.</_> - <_> - 7 0 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0330465808510780</threshold> - <left_val>-0.6307194828987122</left_val> - <right_val>0.0551519207656384</right_val></_></_> + <internalNodes> + 0 -1 194 -3.3046580851078033e-02</internalNodes> + <leafValues> + -6.3071948289871216e-01 5.5151920765638351e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 10 3 2 -1.</_> - <_> - 15 11 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.1799539253115654e-003</threshold> - <left_val>-0.5795860886573792</left_val> - <right_val>0.0240577794611454</right_val></_></_> + <internalNodes> + 0 -1 195 -6.1799539253115654e-03</internalNodes> + <leafValues> + -5.7958608865737915e-01 2.4057779461145401e-02</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 3 1 -1.</_> - <_> - 7 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7160899955779314e-003</threshold> - <left_val>0.3491894006729126</left_val> - <right_val>-0.0901431962847710</right_val></_></_> + <internalNodes> + 0 -1 196 -3.7160899955779314e-03</internalNodes> + <leafValues> + 3.4918940067291260e-01 -9.0143196284770966e-02</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 3 1 -1.</_> - <_> - 10 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0229220390319824e-003</threshold> - <left_val>0.2506240904331207</left_val> - <right_val>-0.1107389032840729</right_val></_></_> + <internalNodes> + 0 -1 197 -2.0229220390319824e-03</internalNodes> + <leafValues> + 2.5062409043312073e-01 -1.1073890328407288e-01</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 3 2 -1.</_> - <_> - 0 11 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.9851049184799194e-003</threshold> - <left_val>-0.4928325116634369</left_val> - <right_val>0.0614206194877625</right_val></_></_> + <internalNodes> + 0 -1 198 -2.9851049184799194e-03</internalNodes> + <leafValues> + -4.9283251166343689e-01 6.1420619487762451e-02</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 10 6 2 -1.</_> - <_> - 8 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0219376701861620</threshold> - <left_val>-0.6427946090698242</left_val> - <right_val>0.0364411510527134</right_val></_></_> + <internalNodes> + 0 -1 199 -2.1937670186161995e-02</internalNodes> + <leafValues> + -6.4279460906982422e-01 3.6441151052713394e-02</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 7 4 -1.</_> - <_> - 4 1 7 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0294251106679440</threshold> - <left_val>0.3763540089130402</left_val> - <right_val>-0.0819373801350594</right_val></_></_> + <internalNodes> + 0 -1 200 -2.9425110667943954e-02</internalNodes> + <leafValues> + 3.7635400891304016e-01 -8.1937380135059357e-02</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 10 4 -1.</_> - <_> - 5 1 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0286131501197815</threshold> - <left_val>-0.1050776019692421</left_val> - <right_val>0.2636362910270691</right_val></_></_> + <internalNodes> + 0 -1 201 2.8613150119781494e-02</internalNodes> + <leafValues> + -1.0507760196924210e-01 2.6363629102706909e-01</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 6 0 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0311478506773710</threshold> - <left_val>0.2191483974456787</left_val> - <right_val>-0.1309666037559509</right_val></_></_> + <internalNodes> + 0 -1 202 -3.1147850677371025e-02</internalNodes> + <leafValues> + 2.1914839744567871e-01 -1.3096660375595093e-01</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 10 6 2 -1.</_> - <_> - 8 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0154854897409678</threshold> - <left_val>0.0463852994143963</left_val> - <right_val>-0.5342022180557251</right_val></_></_> + <internalNodes> + 0 -1 203 1.5485489740967751e-02</internalNodes> + <leafValues> + 4.6385299414396286e-02 -5.3420221805572510e-01</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 3 1 -1.</_> - <_> - 7 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.5835360176861286e-003</threshold> - <left_val>-0.0869321823120117</left_val> - <right_val>0.3421218991279602</right_val></_></_> + <internalNodes> + 0 -1 204 3.5835360176861286e-03</internalNodes> + <leafValues> + -8.6932182312011719e-02 3.4212189912796021e-01</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 6 3 -1.</_> - <_> - 11 1 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0425679981708527</threshold> - <left_val>-0.5558959841728210</left_val> - <right_val>0.0379418097436428</right_val></_></_> + <internalNodes> + 0 -1 205 -4.2567998170852661e-02</internalNodes> + <leafValues> + -5.5589598417282104e-01 3.7941809743642807e-02</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 1 6 3 -1.</_> - <_> - 5 1 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0270386599004269</threshold> - <left_val>-0.4642033874988556</left_val> - <right_val>0.0475543215870857</right_val></_></_> + <internalNodes> + 0 -1 206 -2.7038659900426865e-02</internalNodes> + <leafValues> + -4.6420338749885559e-01 4.7554321587085724e-02</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 1 5 4 -1.</_> - <_> - 8 2 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0244112703949213</threshold> - <left_val>0.2565074861049652</left_val> - <right_val>-0.0490117408335209</right_val></_></_> + <internalNodes> + 0 -1 207 -2.4411270394921303e-02</internalNodes> + <leafValues> + 2.5650748610496521e-01 -4.9011740833520889e-02</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 9 1 -1.</_> - <_> - 12 4 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0222300793975592</threshold> - <left_val>0.1479326039552689</left_val> - <right_val>-0.1822400987148285</right_val></_></_> + <internalNodes> + 0 -1 208 -2.2230079397559166e-02</internalNodes> + <leafValues> + 1.4793260395526886e-01 -1.8224009871482849e-01</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 1 3 -1.</_> - <_> - 16 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.2013750169426203e-003</threshold> - <left_val>-0.4244594871997833</left_val> - <right_val>0.0568032599985600</right_val></_></_> + <internalNodes> + 0 -1 209 -3.2013750169426203e-03</internalNodes> + <leafValues> + -4.2445948719978333e-01 5.6803259998559952e-02</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 2 6 3 -1.</_> - <_> - 6 3 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0192534904927015</threshold> - <left_val>-0.0915766581892967</left_val> - <right_val>0.2606999874114990</right_val></_></_> + <internalNodes> + 0 -1 210 1.9253490492701530e-02</internalNodes> + <leafValues> + -9.1576658189296722e-02 2.6069998741149902e-01</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 7 3 -1.</_> - <_> - 7 3 7 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0300069209188223</threshold> - <left_val>0.3186461031436920</left_val> - <right_val>-0.0459172911942005</right_val></_></_> + <internalNodes> + 0 -1 211 -3.0006920918822289e-02</internalNodes> + <leafValues> + 3.1864610314369202e-01 -4.5917291194200516e-02</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 4 2 -1.</_> - <_> - 2 0 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0330003611743450</threshold> - <left_val>0.0421625413000584</left_val> - <right_val>-0.5909662246704102</right_val></_></_> + <internalNodes> + 0 -1 212 3.3000361174345016e-02</internalNodes> + <leafValues> + 4.2162541300058365e-02 -5.9096622467041016e-01</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 1 4 4 -1.</_> - <_> - 16 1 2 2 2.</_> - <_> - 14 3 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0236426200717688</threshold> - <left_val>-0.2604036033153534</left_val> - <right_val>0.0110567901283503</right_val></_></_> + <internalNodes> + 0 -1 213 -2.3642620071768761e-02</internalNodes> + <leafValues> + -2.6040360331535339e-01 1.1056790128350258e-02</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 6 6 2 -1.</_> - <_> - 4 6 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0473989397287369</threshold> - <left_val>-0.0406485907733440</left_val> - <right_val>0.5274757742881775</right_val></_></_> + <internalNodes> + 0 -1 214 4.7398939728736877e-02</internalNodes> + <leafValues> + -4.0648590773344040e-02 5.2747577428817749e-01</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 1 3 -1.</_> - <_> - 16 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.8793718926608562e-003</threshold> - <left_val>0.0313959494233131</left_val> - <right_val>-0.5605685114860535</right_val></_></_> + <internalNodes> + 0 -1 215 5.8793718926608562e-03</internalNodes> + <leafValues> + 3.1395949423313141e-02 -5.6056851148605347e-01</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 4 4 -1.</_> - <_> - 0 1 2 2 2.</_> - <_> - 2 3 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.0995089113712311e-003</threshold> - <left_val>0.1604142040014267</left_val> - <right_val>-0.1282121986150742</right_val></_></_> + <internalNodes> + 0 -1 216 -5.0995089113712311e-03</internalNodes> + <leafValues> + 1.6041420400142670e-01 -1.2821219861507416e-01</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 3 1 4 -1.</_> - <_> - 17 5 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.3196107298135757e-003</threshold> - <left_val>0.0628527328372002</left_val> - <right_val>-0.3370667099952698</right_val></_></_> + <internalNodes> + 0 -1 217 8.3196107298135757e-03</internalNodes> + <leafValues> + 6.2852732837200165e-02 -3.3706670999526978e-01</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 1 4 -1.</_> - <_> - 0 5 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0101530402898788</threshold> - <left_val>-0.4061478972434998</left_val> - <right_val>0.0497814901173115</right_val></_></_> + <internalNodes> + 0 -1 218 -1.0153040289878845e-02</internalNodes> + <leafValues> + -4.0614789724349976e-01 4.9781490117311478e-02</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 7 1 4 -1.</_> - <_> - 17 7 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-1.4680469757877290e-004</threshold> - <left_val>0.0508837886154652</left_val> - <right_val>-0.1300995945930481</right_val></_></_> + <internalNodes> + 0 -1 219 -1.4680469757877290e-04</internalNodes> + <leafValues> + 5.0883788615465164e-02 -1.3009959459304810e-01</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 7 4 1 -1.</_> - <_> - 1 7 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-8.2523627497721463e-005</threshold> - <left_val>0.0926073119044304</left_val> - <right_val>-0.2492676973342896</right_val></_></_> + <internalNodes> + 0 -1 220 -8.2523627497721463e-05</internalNodes> + <leafValues> + 9.2607311904430389e-02 -2.4926769733428955e-01</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 2 16 10 -1.</_> - <_> - 10 2 8 5 2.</_> - <_> - 2 7 8 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3256660997867584</threshold> - <left_val>0.0175395794212818</left_val> - <right_val>-0.4345465004444122</right_val></_></_> + <internalNodes> + 0 -1 221 3.2566609978675842e-01</internalNodes> + <leafValues> + 1.7539579421281815e-02 -4.3454650044441223e-01</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 3 -1.</_> - <_> - 6 1 6 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1767358928918839</threshold> - <left_val>0.2508324086666107</left_val> - <right_val>-0.0765960067510605</right_val></_></_> + <internalNodes> + 0 -1 222 -1.7673589289188385e-01</internalNodes> + <leafValues> + 2.5083240866661072e-01 -7.6596006751060486e-02</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 1 8 -1.</_> - <_> - 9 0 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0232309494167566</threshold> - <left_val>-0.0871549472212791</left_val> - <right_val>0.0415849611163139</right_val></_></_> + <internalNodes> + 0 -1 223 -2.3230949416756630e-02</internalNodes> + <leafValues> + -8.7154947221279144e-02 4.1584961116313934e-02</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 9 6 3 -1.</_> - <_> - 6 9 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0341498702764511</threshold> - <left_val>-0.5313969850540161</left_val> - <right_val>0.0313693284988403</right_val></_></_> + <internalNodes> + 0 -1 224 -3.4149870276451111e-02</internalNodes> + <leafValues> + -5.3139698505401611e-01 3.1369328498840332e-02</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 9 2 3 -1.</_> - <_> - 8 9 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.6567879877984524e-003</threshold> - <left_val>0.0332163609564304</left_val> - <right_val>-0.4625506103038788</right_val></_></_> + <internalNodes> + 0 -1 225 7.6567879877984524e-03</internalNodes> + <leafValues> + 3.3216360956430435e-02 -4.6255061030387878e-01</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 7 2 2 -1.</_> - <_> - 5 7 1 1 2.</_> - <_> - 6 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.3248200304806232e-003</threshold> - <left_val>0.2828289866447449</left_val> - <right_val>-0.0649938210844994</right_val></_></_> + <internalNodes> + 0 -1 226 -2.3248200304806232e-03</internalNodes> + <leafValues> + 2.8282898664474487e-01 -6.4993821084499359e-02</leafValues></_> <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 7 2 2 -1.</_> - <_> - 12 7 1 1 2.</_> - <_> - 11 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.7129541635513306e-003</threshold> - <left_val>-0.0567604899406433</left_val> - <right_val>0.4795844852924347</right_val></_></_> + <internalNodes> + 0 -1 227 4.7129541635513306e-03</internalNodes> + <leafValues> + -5.6760489940643311e-02 4.7958448529243469e-01</leafValues></_> <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 7 2 2 -1.</_> - <_> - 5 7 1 1 2.</_> - <_> - 6 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2744029518216848e-003</threshold> - <left_val>-0.0912374034523964</left_val> - <right_val>0.2050213068723679</right_val></_></_> + <internalNodes> + 0 -1 228 1.2744029518216848e-03</internalNodes> + <leafValues> + -9.1237403452396393e-02 2.0502130687236786e-01</leafValues></_> <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 12 12 -1.</_> - <_> - 12 0 6 6 2.</_> - <_> - 6 6 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4674114882946014</threshold> - <left_val>-8.2844244316220284e-003</left_val> - <right_val>0.6470655202865601</right_val></_></_> + <internalNodes> + 0 -1 229 4.6741148829460144e-01</internalNodes> + <leafValues> + -8.2844244316220284e-03 6.4706552028656006e-01</leafValues></_> <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 12 12 -1.</_> - <_> - 0 0 6 6 2.</_> - <_> - 6 6 6 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2215567976236343</threshold> - <left_val>0.0473120510578156</left_val> - <right_val>-0.4319002032279968</right_val></_></_> + <internalNodes> + 0 -1 230 2.2155679762363434e-01</internalNodes> + <leafValues> + 4.7312051057815552e-02 -4.3190020322799683e-01</leafValues></_> <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 18 6 -1.</_> - <_> - 6 3 6 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.4178276956081390</threshold> - <left_val>0.2346280068159103</left_val> - <right_val>-0.0964038223028183</right_val></_></_> + <internalNodes> + 0 -1 231 -4.1782769560813904e-01</internalNodes> + <leafValues> + 2.3462800681591034e-01 -9.6403822302818298e-02</leafValues></_> <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 11 4 1 -1.</_> - <_> - 4 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.9181760773062706e-003</threshold> - <left_val>-0.6590331196784973</left_val> - <right_val>0.0278767105191946</right_val></_></_> + <internalNodes> + 0 -1 232 -6.9181760773062706e-03</internalNodes> + <leafValues> + -6.5903311967849731e-01 2.7876710519194603e-02</leafValues></_> <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 1 3 -1.</_> - <_> - 16 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3640871345996857e-003</threshold> - <left_val>-0.5387923717498779</left_val> - <right_val>7.2180288843810558e-003</right_val></_></_> + <internalNodes> + 0 -1 233 -9.3640871345996857e-03</internalNodes> + <leafValues> + -5.3879237174987793e-01 7.2180288843810558e-03</leafValues></_> <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 8 1 -1.</_> - <_> - 9 0 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0581224597990513</threshold> - <left_val>-0.3275103867053986</left_val> - <right_val>0.0484862402081490</right_val></_></_> + <internalNodes> + 0 -1 234 -5.8122459799051285e-02</internalNodes> + <leafValues> + -3.2751038670539856e-01 4.8486240208148956e-02</leafValues></_> <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 18 8 -1.</_> - <_> - 9 1 9 4 2.</_> - <_> - 0 5 9 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2133163958787918</threshold> - <left_val>0.0387687794864178</left_val> - <right_val>-0.4380297064781189</right_val></_></_> + <internalNodes> + 0 -1 235 2.1331639587879181e-01</internalNodes> + <leafValues> + 3.8768779486417770e-02 -4.3802970647811890e-01</leafValues></_> <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 11 8 -1.</_> - <_> - 0 4 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1396064013242722</threshold> - <left_val>-0.1555435061454773</left_val> - <right_val>0.1156146004796028</right_val></_></_> + <internalNodes> + 0 -1 236 -1.3960640132427216e-01</internalNodes> + <leafValues> + -1.5554350614547729e-01 1.1561460047960281e-01</leafValues></_> <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 1 3 -1.</_> - <_> - 16 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.5554853538051248e-005</threshold> - <left_val>-0.0653312280774117</left_val> - <right_val>0.0663648769259453</right_val></_></_> + <internalNodes> + 0 -1 237 7.5554853538051248e-05</internalNodes> + <leafValues> + -6.5331228077411652e-02 6.6364876925945282e-02</leafValues></_> <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 1 3 -1.</_> - <_> - 1 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7876798994839191e-003</threshold> - <left_val>-0.3400706946849823</left_val> - <right_val>0.0495472811162472</right_val></_></_> + <internalNodes> + 0 -1 238 -2.7876798994839191e-03</internalNodes> + <leafValues> + -3.4007069468498230e-01 4.9547281116247177e-02</leafValues></_> <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 4 3 -1.</_> - <_> - 8 8 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9983027428388596e-003</threshold> - <left_val>-0.0697251036763191</left_val> - <right_val>0.1476185023784638</right_val></_></_> + <internalNodes> + 0 -1 239 8.9983027428388596e-03</internalNodes> + <leafValues> + -6.9725103676319122e-02 1.4761850237846375e-01</leafValues></_> <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 4 2 -1.</_> - <_> - 4 0 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0119990902021527</threshold> - <left_val>-0.5604606270790100</left_val> - <right_val>0.0280650891363621</right_val></_></_> + <internalNodes> + 0 -1 240 -1.1999090202152729e-02</internalNodes> + <leafValues> + -5.6046062707901001e-01 2.8065089136362076e-02</leafValues></_> <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 9 2 2 -1.</_> - <_> - 16 9 1 1 2.</_> - <_> - 15 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.0021178796887398e-004</threshold> - <left_val>-0.1057208999991417</left_val> - <right_val>0.1577567011117935</right_val></_></_> + <internalNodes> + 0 -1 241 6.0021178796887398e-04</internalNodes> + <leafValues> + -1.0572089999914169e-01 1.5775670111179352e-01</leafValues></_> <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 2 4 -1.</_> - <_> - 0 5 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.2567745596170425e-003</threshold> - <left_val>0.0384136997163296</left_val> - <right_val>-0.3896898925304413</right_val></_></_> + <internalNodes> + 0 -1 242 9.2567745596170425e-03</internalNodes> + <leafValues> + 3.8413699716329575e-02 -3.8968989253044128e-01</leafValues></_> <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 8 9 3 -1.</_> - <_> - 5 9 9 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0341950617730618</threshold> - <left_val>-0.0432716198265553</left_val> - <right_val>0.3246180117130280</right_val></_></_> + <internalNodes> + 0 -1 243 3.4195061773061752e-02</internalNodes> + <leafValues> + -4.3271619826555252e-02 3.2461801171302795e-01</leafValues></_> <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 2 2 -1.</_> - <_> - 1 9 1 1 2.</_> - <_> - 2 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9471039245836437e-005</threshold> - <left_val>-0.1269730031490326</left_val> - <right_val>0.1121779009699822</right_val></_></_> + <internalNodes> + 0 -1 244 8.9471039245836437e-05</internalNodes> + <leafValues> + -1.2697300314903259e-01 1.1217790096998215e-01</leafValues></_> <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 11 6 1 -1.</_> - <_> - 9 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0145951500162482</threshold> - <left_val>-0.4633379876613617</left_val> - <right_val>0.0214063096791506</right_val></_></_> + <internalNodes> + 0 -1 245 -1.4595150016248226e-02</internalNodes> + <leafValues> + -4.6333798766136169e-01 2.1406309679150581e-02</leafValues></_> <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 11 6 1 -1.</_> - <_> - 7 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0175858400762081</threshold> - <left_val>-0.6947885751724243</left_val> - <right_val>0.0199106503278017</right_val></_></_> + <internalNodes> + 0 -1 246 -1.7585840076208115e-02</internalNodes> + <leafValues> + -6.9478857517242432e-01 1.9910650327801704e-02</leafValues></_> <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 18 3 -1.</_> - <_> - 6 9 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1067337021231651</threshold> - <left_val>0.2244039028882980</left_val> - <right_val>-0.0837399363517761</right_val></_></_> + <internalNodes> + 0 -1 247 -1.0673370212316513e-01</internalNodes> + <leafValues> + 2.2440390288829803e-01 -8.3739936351776123e-02</leafValues></_> <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 7 2 2 -1.</_> - <_> - 0 7 1 1 2.</_> - <_> - 1 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.5211959835141897e-003</threshold> - <left_val>-0.0707727074623108</left_val> - <right_val>0.2114125043153763</right_val></_></_> + <internalNodes> + 0 -1 248 1.5211959835141897e-03</internalNodes> + <leafValues> + -7.0772707462310791e-02 2.1141250431537628e-01</leafValues></_> <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 10 12 1 -1.</_> - <_> - 6 10 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.4221947900950909e-003</threshold> - <left_val>-0.0442800708115101</left_val> - <right_val>0.0698315203189850</right_val></_></_> + <internalNodes> + 0 -1 249 4.4221947900950909e-03</internalNodes> + <leafValues> + -4.4280070811510086e-02 6.9831520318984985e-02</leafValues></_> <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 12 1 -1.</_> - <_> - 6 10 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0142564903944731</threshold> - <left_val>-0.0749205797910690</left_val> - <right_val>0.1896851956844330</right_val></_></_> + <internalNodes> + 0 -1 250 1.4256490394473076e-02</internalNodes> + <leafValues> + -7.4920579791069031e-02 1.8968519568443298e-01</leafValues></_> <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 8 10 -1.</_> - <_> - 11 2 4 5 2.</_> - <_> - 7 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1846261024475098</threshold> - <left_val>0.4410085082054138</left_val> - <right_val>-0.0121491597965360</right_val></_></_> + <internalNodes> + 0 -1 251 -1.8462610244750977e-01</internalNodes> + <leafValues> + 4.4100850820541382e-01 -1.2149159796535969e-02</leafValues></_> <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 2 6 -1.</_> - <_> - 5 5 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0374477691948414</threshold> - <left_val>0.2052367031574249</left_val> - <right_val>-0.0658883228898048</right_val></_></_> + <internalNodes> + 0 -1 252 -3.7447769194841385e-02</internalNodes> + <leafValues> + 2.0523670315742493e-01 -6.5888322889804840e-02</leafValues></_> <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 6 6 -1.</_> - <_> - 8 2 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0401640012860298</threshold> - <left_val>0.1174004971981049</left_val> - <right_val>-0.0456725507974625</right_val></_></_> + <internalNodes> + 0 -1 253 -4.0164001286029816e-02</internalNodes> + <leafValues> + 1.1740049719810486e-01 -4.5672550797462463e-02</leafValues></_> <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 2 3 -1.</_> - <_> - 2 1 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0169077105820179</threshold> - <left_val>0.0369880311191082</left_val> - <right_val>-0.3836815953254700</right_val></_></_> + <internalNodes> + 0 -1 254 1.6907710582017899e-02</internalNodes> + <leafValues> + 3.6988031119108200e-02 -3.8368159532546997e-01</leafValues></_> <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 1 4 3 -1.</_> - <_> - 13 2 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0200215391814709</threshold> - <left_val>0.1787479072809219</left_val> - <right_val>-0.0615993514657021</right_val></_></_> + <internalNodes> + 0 -1 255 -2.0021539181470871e-02</internalNodes> + <leafValues> + 1.7874790728092194e-01 -6.1599351465702057e-02</leafValues></_> <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 18 7 -1.</_> - <_> - 6 4 6 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1628815978765488</threshold> - <left_val>0.1234195977449417</left_val> - <right_val>-0.1221318021416664</right_val></_></_> + <internalNodes> + 0 -1 256 -1.6288159787654877e-01</internalNodes> + <leafValues> + 1.2341959774494171e-01 -1.2213180214166641e-01</leafValues></_> <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 8 10 -1.</_> - <_> - 11 2 4 5 2.</_> - <_> - 7 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0349111296236515</threshold> - <left_val>-0.0496338717639446</left_val> - <right_val>0.0199042707681656</right_val></_></_> + <internalNodes> + 0 -1 257 -3.4911129623651505e-02</internalNodes> + <leafValues> + -4.9633871763944626e-02 1.9904270768165588e-02</leafValues></_> <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 8 10 -1.</_> - <_> - 3 2 4 5 2.</_> - <_> - 7 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1456352025270462</threshold> - <left_val>0.0305451508611441</left_val> - <right_val>-0.4873585104942322</right_val></_></_> + <internalNodes> + 0 -1 258 1.4563520252704620e-01</internalNodes> + <leafValues> + 3.0545150861144066e-02 -4.8735851049423218e-01</leafValues></_> <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 1 6 -1.</_> - <_> - 7 6 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0559622906148434</threshold> - <left_val>0.1913488060235977</left_val> - <right_val>-0.0152315897867084</right_val></_></_> + <internalNodes> + 0 -1 259 -5.5962290614843369e-02</internalNodes> + <leafValues> + 1.9134880602359772e-01 -1.5231589786708355e-02</leafValues></_> <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 6 1 -1.</_> - <_> - 11 6 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0457751899957657</threshold> - <left_val>-0.0396332293748856</left_val> - <right_val>0.3805176913738251</right_val></_></_> + <internalNodes> + 0 -1 260 4.5775189995765686e-02</internalNodes> + <leafValues> + -3.9633229374885559e-02 3.8051769137382507e-01</leafValues></_> <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 4 2 -1.</_> - <_> - 8 9 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.0509930849075317e-003</threshold> - <left_val>-0.4310261905193329</left_val> - <right_val>0.0363861918449402</right_val></_></_> + <internalNodes> + 0 -1 261 -8.0509930849075317e-03</internalNodes> + <leafValues> + -4.3102619051933289e-01 3.6386191844940186e-02</leafValues></_> <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 3 3 -1.</_> - <_> - 2 1 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0229253508150578</threshold> - <left_val>-0.3441787958145142</left_val> - <right_val>0.0384925901889801</right_val></_></_> + <internalNodes> + 0 -1 262 -2.2925350815057755e-02</internalNodes> + <leafValues> + -3.4417879581451416e-01 3.8492590188980103e-02</leafValues></_> <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 1 4 3 -1.</_> - <_> - 13 2 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0614982508122921</threshold> - <left_val>-0.0160337109118700</left_val> - <right_val>0.5083233714103699</right_val></_></_> + <internalNodes> + 0 -1 263 6.1498250812292099e-02</internalNodes> + <leafValues> + -1.6033710911870003e-02 5.0832337141036987e-01</leafValues></_> <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 3 4 -1.</_> - <_> - 5 2 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0368886701762676</threshold> - <left_val>0.3932189047336578</left_val> - <right_val>-0.0405200608074665</right_val></_></_> + <internalNodes> + 0 -1 264 -3.6888670176267624e-02</internalNodes> + <leafValues> + 3.9321890473365784e-01 -4.0520060807466507e-02</leafValues></_> <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 5 4 3 -1.</_> - <_> - 15 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3545171394944191e-003</threshold> - <left_val>0.2546369135379791</left_val> - <right_val>-0.1160487979650497</right_val></_></_> + <internalNodes> + 0 -1 265 -5.3545171394944191e-03</internalNodes> + <leafValues> + 2.5463691353797913e-01 -1.1604879796504974e-01</leafValues></_> <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 10 1 2 -1.</_> - <_> - 3 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.8639370575547218e-003</threshold> - <left_val>-0.4927360117435455</left_val> - <right_val>0.0291536897420883</right_val></_></_></trees> - <stage_threshold>-1.5970319509506226</stage_threshold> - <parent>4</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 266 -2.8639370575547218e-03</internalNodes> + <leafValues> + -4.9273601174354553e-01 2.9153689742088318e-02</leafValues></_></weakClassifiers></_> <_> - <!-- stage 6 --> - <trees> + <maxWeakCount>105</maxWeakCount> + <stageThreshold>-1.6688350439071655e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 9 2 -1.</_> - <_> - 9 3 3 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1426675021648407</threshold> - <left_val>0.4337263107299805</left_val> - <right_val>-0.3465844094753265</right_val></_></_> + <internalNodes> + 0 -1 267 -1.4266750216484070e-01</internalNodes> + <leafValues> + 4.3372631072998047e-01 -3.4658440947532654e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 11 8 -1.</_> - <_> - 7 8 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1283549964427948</threshold> - <left_val>-0.4654448926448822</left_val> - <right_val>0.1281660944223404</right_val></_></_> + <internalNodes> + 0 -1 268 1.2835499644279480e-01</internalNodes> + <leafValues> + -4.6544489264488220e-01 1.2816609442234039e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 4 3 -1.</_> - <_> - 5 4 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0360548011958599</threshold> - <left_val>0.4259442985057831</left_val> - <right_val>-0.1772060990333557</right_val></_></_> + <internalNodes> + 0 -1 269 -3.6054801195859909e-02</internalNodes> + <leafValues> + 4.2594429850578308e-01 -1.7720609903335571e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 3 4 -1.</_> - <_> - 11 4 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0203454308211803</threshold> - <left_val>0.1511936038732529</left_val> - <right_val>-0.1227532997727394</right_val></_></_> + <internalNodes> + 0 -1 270 -2.0345430821180344e-02</internalNodes> + <leafValues> + 1.5119360387325287e-01 -1.2275329977273941e-01</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 14 10 -1.</_> - <_> - 0 2 7 5 2.</_> - <_> - 7 7 7 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1766604930162430</threshold> - <left_val>0.1524135023355484</left_val> - <right_val>-0.4253894984722138</right_val></_></_> + <internalNodes> + 0 -1 271 1.7666049301624298e-01</internalNodes> + <leafValues> + 1.5241350233554840e-01 -4.2538949847221375e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 6 -1.</_> - <_> - 6 0 6 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1673794984817505</threshold> - <left_val>0.1912579983472824</left_val> - <right_val>-0.1875856071710587</right_val></_></_> + <internalNodes> + 0 -1 272 -1.6737949848175049e-01</internalNodes> + <leafValues> + 1.9125799834728241e-01 -1.8758560717105865e-01</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 1 12 4 -1.</_> - <_> - 1 2 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0292523000389338</threshold> - <left_val>-0.1795520931482315</left_val> - <right_val>0.2131651043891907</right_val></_></_> + <internalNodes> + 0 -1 273 2.9252300038933754e-02</internalNodes> + <leafValues> + -1.7955209314823151e-01 2.1316510438919067e-01</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 1 10 6 -1.</_> - <_> - 5 3 10 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1559309959411621</threshold> - <left_val>0.3909082114696503</left_val> - <right_val>-0.0665003508329391</right_val></_></_> + <internalNodes> + 0 -1 274 -1.5593099594116211e-01</internalNodes> + <leafValues> + 3.9090821146965027e-01 -6.6500350832939148e-02</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 5 3 -1.</_> - <_> - 6 4 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0163428895175457</threshold> - <left_val>-0.0851227790117264</left_val> - <right_val>0.4228065907955170</right_val></_></_> + <internalNodes> + 0 -1 275 1.6342889517545700e-02</internalNodes> + <leafValues> + -8.5122779011726379e-02 4.2280659079551697e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 8 4 2 -1.</_> - <_> - 14 9 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9803266746457666e-005</threshold> - <left_val>-0.2427843958139420</left_val> - <right_val>0.1072012037038803</right_val></_></_> + <internalNodes> + 0 -1 276 8.9803266746457666e-05</internalNodes> + <leafValues> + -2.4278439581394196e-01 1.0720120370388031e-01</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 4 2 -1.</_> - <_> - 9 6 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.1150313019752502</threshold> - <left_val>-2.8022350743412971e-003</left_val> - <right_val>-2.7832890625000000e+003</right_val></_></_> + <internalNodes> + 0 -1 277 1.1503130197525024e-01</internalNodes> + <leafValues> + -2.8022350743412971e-03 -2.7832890625000000e+03</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 9 1 2 -1.</_> - <_> - 14 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8660349926212803e-005</threshold> - <left_val>-0.1691206991672516</left_val> - <right_val>0.0890888124704361</right_val></_></_> + <internalNodes> + 0 -1 278 2.8660349926212803e-05</internalNodes> + <leafValues> + -1.6912069916725159e-01 8.9088812470436096e-02</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 9 1 2 -1.</_> - <_> - 3 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8660349926212803e-005</threshold> - <left_val>-0.2961890995502472</left_val> - <right_val>0.0993828997015953</right_val></_></_> + <internalNodes> + 0 -1 279 2.8660349926212803e-05</internalNodes> + <leafValues> + -2.9618909955024719e-01 9.9382899701595306e-02</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 9 1 2 -1.</_> - <_> - 15 9 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0102098500356078</threshold> - <left_val>-0.4839555025100708</left_val> - <right_val>0.0566251389682293</right_val></_></_> + <internalNodes> + 0 -1 280 -1.0209850035607815e-02</internalNodes> + <leafValues> + -4.8395550251007080e-01 5.6625138968229294e-02</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 12 -1.</_> - <_> - 0 6 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0140603696927428</threshold> - <left_val>-0.4141142070293427</left_val> - <right_val>0.0634278729557991</right_val></_></_> + <internalNodes> + 0 -1 281 -1.4060369692742825e-02</internalNodes> + <leafValues> + -4.1411420702934265e-01 6.3427872955799103e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 11 6 1 -1.</_> - <_> - 11 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0133488699793816</threshold> - <left_val>-0.4638743996620178</left_val> - <right_val>0.0283841900527477</right_val></_></_> + <internalNodes> + 0 -1 282 -1.3348869979381561e-02</internalNodes> + <leafValues> + -4.6387439966201782e-01 2.8384190052747726e-02</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 11 6 1 -1.</_> - <_> - 5 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0125552499666810</threshold> - <left_val>-0.6187946796417236</left_val> - <right_val>0.0427546687424183</right_val></_></_> + <internalNodes> + 0 -1 283 -1.2555249966681004e-02</internalNodes> + <leafValues> + -6.1879467964172363e-01 4.2754668742418289e-02</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 4 2 3 -1.</_> - <_> - 12 5 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0273813307285309</threshold> - <left_val>-0.0527048110961914</left_val> - <right_val>0.4197832942008972</right_val></_></_> + <internalNodes> + 0 -1 284 2.7381330728530884e-02</internalNodes> + <leafValues> + -5.2704811096191406e-02 4.1978329420089722e-01</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 4 4 -1.</_> - <_> - 5 2 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0461624711751938</threshold> - <left_val>0.3649766147136688</left_val> - <right_val>-0.0724262893199921</right_val></_></_> + <internalNodes> + 0 -1 285 -4.6162471175193787e-02</internalNodes> + <leafValues> + 3.6497661471366882e-01 -7.2426289319992065e-02</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 4 3 -1.</_> - <_> - 10 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0130978804081678</threshold> - <left_val>-0.5763328075408936</left_val> - <right_val>0.0478919297456741</right_val></_></_> + <internalNodes> + 0 -1 286 -1.3097880408167839e-02</internalNodes> + <leafValues> + -5.7633280754089355e-01 4.7891929745674133e-02</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 6 3 -1.</_> - <_> - 8 0 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0284155309200287</threshold> - <left_val>-0.6006519198417664</left_val> - <right_val>0.0444609299302101</right_val></_></_> + <internalNodes> + 0 -1 287 -2.8415530920028687e-02</internalNodes> + <leafValues> + -6.0065191984176636e-01 4.4460929930210114e-02</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 4 2 -1.</_> - <_> - 11 6 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.3479221425950527e-003</threshold> - <left_val>0.3481450974941254</left_val> - <right_val>-0.0890596136450768</right_val></_></_> + <internalNodes> + 0 -1 288 -6.3479221425950527e-03</internalNodes> + <leafValues> + 3.4814509749412537e-01 -8.9059613645076752e-02</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 4 3 -1.</_> - <_> - 6 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.7118411213159561e-003</threshold> - <left_val>-0.5178142786026001</left_val> - <right_val>0.0563164092600346</right_val></_></_> + <internalNodes> + 0 -1 289 -9.7118411213159561e-03</internalNodes> + <leafValues> + -5.1781427860260010e-01 5.6316409260034561e-02</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 6 4 -1.</_> - <_> - 6 1 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0216984208673239</threshold> - <left_val>0.3070451915264130</left_val> - <right_val>-0.0971638336777687</right_val></_></_> + <internalNodes> + 0 -1 290 -2.1698420867323875e-02</internalNodes> + <leafValues> + 3.0704519152641296e-01 -9.7163833677768707e-02</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 6 0 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0442762486636639</threshold> - <left_val>0.2582325935363770</left_val> - <right_val>-0.1037423983216286</right_val></_></_> + <internalNodes> + 0 -1 291 -4.4276248663663864e-02</internalNodes> + <leafValues> + 2.5823259353637695e-01 -1.0374239832162857e-01</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 9 4 -1.</_> - <_> - 6 1 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0158465802669525</threshold> - <left_val>-0.1110616028308868</left_val> - <right_val>0.1783924996852875</right_val></_></_> + <internalNodes> + 0 -1 292 1.5846580266952515e-02</internalNodes> + <leafValues> + -1.1106160283088684e-01 1.7839249968528748e-01</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 6 6 2 -1.</_> - <_> - 4 6 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0214986503124237</threshold> - <left_val>0.3492724001407623</left_val> - <right_val>-0.0743066370487213</right_val></_></_> + <internalNodes> + 0 -1 293 -2.1498650312423706e-02</internalNodes> + <leafValues> + 3.4927240014076233e-01 -7.4306637048721313e-02</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 10 3 2 -1.</_> - <_> - 15 11 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.9085460118949413e-003</threshold> - <left_val>-0.3690954148769379</left_val> - <right_val>0.0685168430209160</right_val></_></_> + <internalNodes> + 0 -1 294 -2.9085460118949413e-03</internalNodes> + <leafValues> + -3.6909541487693787e-01 6.8516843020915985e-02</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 3 4 -1.</_> - <_> - 8 4 3 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0317891091108322</threshold> - <left_val>0.2379990965127945</left_val> - <right_val>-0.1143317967653275</right_val></_></_> + <internalNodes> + 0 -1 295 -3.1789109110832214e-02</internalNodes> + <leafValues> + 2.3799909651279449e-01 -1.1433179676532745e-01</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 10 3 2 -1.</_> - <_> - 15 11 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0107693700119853</threshold> - <left_val>0.0371510311961174</left_val> - <right_val>-0.2569347918033600</right_val></_></_> + <internalNodes> + 0 -1 296 1.0769370011985302e-02</internalNodes> + <leafValues> + 3.7151031196117401e-02 -2.5693479180335999e-01</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 3 2 -1.</_> - <_> - 0 11 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.5090089552104473e-003</threshold> - <left_val>-0.5789695978164673</left_val> - <right_val>0.0442005991935730</right_val></_></_> + <internalNodes> + 0 -1 297 -4.5090089552104473e-03</internalNodes> + <leafValues> + -5.7896959781646729e-01 4.4200599193572998e-02</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 9 6 3 -1.</_> - <_> - 11 9 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3212768398225307e-003</threshold> - <left_val>0.0844352319836617</left_val> - <right_val>-0.0639492794871330</right_val></_></_> + <internalNodes> + 0 -1 298 -5.3212768398225307e-03</internalNodes> + <leafValues> + 8.4435231983661652e-02 -6.3949279487133026e-02</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 9 6 3 -1.</_> - <_> - 5 9 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0226739291101694</threshold> - <left_val>0.0515444092452526</left_val> - <right_val>-0.4209808111190796</right_val></_></_> + <internalNodes> + 0 -1 299 2.2673929110169411e-02</internalNodes> + <leafValues> + 5.1544409245252609e-02 -4.2098081111907959e-01</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 7 2 2 -1.</_> - <_> - 11 7 1 1 2.</_> - <_> - 10 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.8509699776768684e-003</threshold> - <left_val>-0.0374541282653809</left_val> - <right_val>0.4513193964958191</right_val></_></_> + <internalNodes> + 0 -1 300 6.8509699776768684e-03</internalNodes> + <leafValues> + -3.7454128265380859e-02 4.5131939649581909e-01</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 2 2 -1.</_> - <_> - 8 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.6230360213667154e-005</threshold> - <left_val>-0.2074491977691650</left_val> - <right_val>0.1046546027064323</right_val></_></_> + <internalNodes> + 0 -1 301 9.6230360213667154e-05</internalNodes> + <leafValues> + -2.0744919776916504e-01 1.0465460270643234e-01</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 3 2 -1.</_> - <_> - 11 6 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0210920590907335</threshold> - <left_val>0.2916091084480286</left_val> - <right_val>-0.0625983625650406</right_val></_></_> + <internalNodes> + 0 -1 302 -2.1092059090733528e-02</internalNodes> + <leafValues> + 2.9160910844802856e-01 -6.2598362565040588e-02</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 11 8 -1.</_> - <_> - 2 2 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1340344995260239</threshold> - <left_val>0.2196906954050064</left_val> - <right_val>-0.0887917131185532</right_val></_></_> + <internalNodes> + 0 -1 303 -1.3403449952602386e-01</internalNodes> + <leafValues> + 2.1969069540500641e-01 -8.8791713118553162e-02</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 4 2 2 -1.</_> - <_> - 12 4 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0254352893680334</threshold> - <left_val>0.4082430899143219</left_val> - <right_val>-0.0245454106479883</right_val></_></_> + <internalNodes> + 0 -1 304 -2.5435289368033409e-02</internalNodes> + <leafValues> + 4.0824308991432190e-01 -2.4545410647988319e-02</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 2 2 -1.</_> - <_> - 6 4 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0105433799326420</threshold> - <left_val>-0.0876422896981239</left_val> - <right_val>0.2717976868152618</right_val></_></_> + <internalNodes> + 0 -1 305 1.0543379932641983e-02</internalNodes> + <leafValues> + -8.7642289698123932e-02 2.7179768681526184e-01</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 8 1 2 -1.</_> - <_> - 15 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.4132553786039352e-003</threshold> - <left_val>0.0141789400950074</left_val> - <right_val>-0.4586589932441711</right_val></_></_> + <internalNodes> + 0 -1 306 9.4132553786039352e-03</internalNodes> + <leafValues> + 1.4178940095007420e-02 -4.5865899324417114e-01</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 8 1 2 -1.</_> - <_> - 2 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.5997307905927300e-005</threshold> - <left_val>-0.2391285002231598</left_val> - <right_val>0.0919472128152847</right_val></_></_> + <internalNodes> + 0 -1 307 8.5997307905927300e-05</internalNodes> + <leafValues> + -2.3912850022315979e-01 9.1947212815284729e-02</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 10 2 2 -1.</_> - <_> - 16 10 1 1 2.</_> - <_> - 15 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0819079761859030e-004</threshold> - <left_val>-0.1092889979481697</left_val> - <right_val>0.1150946021080017</right_val></_></_> + <internalNodes> + 0 -1 308 1.0819079761859030e-04</internalNodes> + <leafValues> + -1.0928899794816971e-01 1.1509460210800171e-01</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 14 12 -1.</_> - <_> - 7 0 7 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2424086928367615</threshold> - <left_val>-0.0671853721141815</left_val> - <right_val>0.2813679873943329</right_val></_></_> + <internalNodes> + 0 -1 309 2.4240869283676147e-01</internalNodes> + <leafValues> + -6.7185372114181519e-02 2.8136798739433289e-01</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 14 8 -1.</_> - <_> - 3 2 7 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.4403853118419647</threshold> - <left_val>-0.4357576966285706</left_val> - <right_val>0.0212147496640682</right_val></_></_> + <internalNodes> + 0 -1 310 -4.4038531184196472e-01</internalNodes> + <leafValues> + -4.3575769662857056e-01 2.1214749664068222e-02</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 18 6 -1.</_> - <_> - 6 4 6 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0874531492590904</threshold> - <left_val>0.1130812987685204</left_val> - <right_val>-0.1847808957099915</right_val></_></_> + <internalNodes> + 0 -1 311 -8.7453149259090424e-02</internalNodes> + <leafValues> + 1.1308129876852036e-01 -1.8478089570999146e-01</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 2 2 -1.</_> - <_> - 10 6 1 1 2.</_> - <_> - 9 7 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1170339100062847e-003</threshold> - <left_val>0.2507652938365936</left_val> - <right_val>-0.0328979194164276</right_val></_></_> + <internalNodes> + 0 -1 312 -4.1170339100062847e-03</internalNodes> + <leafValues> + 2.5076529383659363e-01 -3.2897919416427612e-02</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 3 2 -1.</_> - <_> - 9 4 3 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0263757798820734</threshold> - <left_val>0.3127822875976563</left_val> - <right_val>-0.0590652711689472</right_val></_></_> + <internalNodes> + 0 -1 313 -2.6375779882073402e-02</internalNodes> + <leafValues> + 3.1278228759765625e-01 -5.9065271168947220e-02</leafValues></_> <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 4 2 -1.</_> - <_> - 8 10 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.3441797867417336e-003</threshold> - <left_val>-0.4772517979145050</left_val> - <right_val>0.0371474586427212</right_val></_></_> + <internalNodes> + 0 -1 314 -7.3441797867417336e-03</internalNodes> + <leafValues> + -4.7725179791450500e-01 3.7147458642721176e-02</leafValues></_> <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 2 2 -1.</_> - <_> - 1 10 1 1 2.</_> - <_> - 2 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.6828289012191817e-005</threshold> - <left_val>-0.1335867047309876</left_val> - <right_val>0.1329413056373596</right_val></_></_> + <internalNodes> + 0 -1 315 3.6828289012191817e-05</internalNodes> + <leafValues> + -1.3358670473098755e-01 1.3294130563735962e-01</leafValues></_> <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 3 3 -1.</_> - <_> - 8 5 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0100506097078323</threshold> - <left_val>-0.0461779907345772</left_val> - <right_val>0.2838149964809418</right_val></_></_> + <internalNodes> + 0 -1 316 1.0050609707832336e-02</internalNodes> + <leafValues> + -4.6177990734577179e-02 2.8381499648094177e-01</leafValues></_> <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 9 4 3 -1.</_> - <_> - 6 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0107135400176048</threshold> - <left_val>-0.4329094886779785</left_val> - <right_val>0.0423329807817936</right_val></_></_> + <internalNodes> + 0 -1 317 -1.0713540017604828e-02</internalNodes> + <leafValues> + -4.3290948867797852e-01 4.2332980781793594e-02</leafValues></_> <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 5 1 6 -1.</_> - <_> - 17 7 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0105017302557826</threshold> - <left_val>-0.2163923978805542</left_val> - <right_val>0.0410590283572674</right_val></_></_> + <internalNodes> + 0 -1 318 -1.0501730255782604e-02</internalNodes> + <leafValues> + -2.1639239788055420e-01 4.1059028357267380e-02</leafValues></_> <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 2 -1.</_> - <_> - 0 0 9 1 2.</_> - <_> - 9 1 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7940669786185026e-003</threshold> - <left_val>0.1230494007468224</left_val> - <right_val>-0.1385052949190140</right_val></_></_> + <internalNodes> + 0 -1 319 -1.7940669786185026e-03</internalNodes> + <leafValues> + 1.2304940074682236e-01 -1.3850529491901398e-01</leafValues></_> <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 5 1 6 -1.</_> - <_> - 17 7 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0153230596333742</threshold> - <left_val>0.0280110202729702</left_val> - <right_val>-0.3744792938232422</right_val></_></_> + <internalNodes> + 0 -1 320 1.5323059633374214e-02</internalNodes> + <leafValues> + 2.8011020272970200e-02 -3.7447929382324219e-01</leafValues></_> <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 4 1 3 -1.</_> - <_> - 1 5 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.3098020404577255e-003</threshold> - <left_val>-0.5205225944519043</left_val> - <right_val>0.0283419508486986</right_val></_></_> + <internalNodes> + 0 -1 321 -8.3098020404577255e-03</internalNodes> + <leafValues> + -5.2052259445190430e-01 2.8341950848698616e-02</leafValues></_> <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 8 3 -1.</_> - <_> - 5 3 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0302317403256893</threshold> - <left_val>-0.0669029802083969</left_val> - <right_val>0.2579069137573242</right_val></_></_> + <internalNodes> + 0 -1 322 3.0231740325689316e-02</internalNodes> + <leafValues> + -6.6902980208396912e-02 2.5790691375732422e-01</leafValues></_> <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 9 6 3 -1.</_> - <_> - 7 9 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0108835697174072</threshold> - <left_val>0.0625715777277946</left_val> - <right_val>-0.2686088979244232</right_val></_></_> + <internalNodes> + 0 -1 323 1.0883569717407227e-02</internalNodes> + <leafValues> + 6.2571577727794647e-02 -2.6860889792442322e-01</leafValues></_> <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 2 3 -1.</_> - <_> - 8 0 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5374789088964462e-003</threshold> - <left_val>0.0291982591152191</left_val> - <right_val>-0.4799821972846985</right_val></_></_> + <internalNodes> + 0 -1 324 9.5374789088964462e-03</internalNodes> + <leafValues> + 2.9198259115219116e-02 -4.7998219728469849e-01</leafValues></_> <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 6 3 1 -1.</_> - <_> - 8 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.9999200962483883e-003</threshold> - <left_val>0.2494937032461166</left_val> - <right_val>-0.0655446499586105</right_val></_></_> + <internalNodes> + 0 -1 325 -3.9999200962483883e-03</internalNodes> + <leafValues> + 2.4949370324611664e-01 -6.5544649958610535e-02</leafValues></_> <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 4 3 -1.</_> - <_> - 9 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.2205414548516273e-003</threshold> - <left_val>0.0399686507880688</left_val> - <right_val>-0.3752444982528687</right_val></_></_> + <internalNodes> + 0 -1 326 9.2205414548516273e-03</internalNodes> + <leafValues> + 3.9968650788068771e-02 -3.7524449825286865e-01</leafValues></_> <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 10 2 -1.</_> - <_> - 3 1 10 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0327487401664257</threshold> - <left_val>0.2654593884944916</left_val> - <right_val>-0.0630164816975594</right_val></_></_> + <internalNodes> + 0 -1 327 -3.2748740166425705e-02</internalNodes> + <leafValues> + 2.6545938849449158e-01 -6.3016481697559357e-02</leafValues></_> <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 2 2 -1.</_> - <_> - 10 5 1 1 2.</_> - <_> - 9 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.3801359347999096e-003</threshold> - <left_val>0.1230892986059189</left_val> - <right_val>-0.0274798907339573</right_val></_></_> + <internalNodes> + 0 -1 328 -2.3801359347999096e-03</internalNodes> + <leafValues> + 1.2308929860591888e-01 -2.7479890733957291e-02</leafValues></_> <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 2 -1.</_> - <_> - 7 5 1 1 2.</_> - <_> - 8 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.6849349485710263e-003</threshold> - <left_val>-0.0761665031313896</left_val> - <right_val>0.2275072038173676</right_val></_></_> + <internalNodes> + 0 -1 329 1.6849349485710263e-03</internalNodes> + <leafValues> + -7.6166503131389618e-02 2.2750720381736755e-01</leafValues></_> <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 4 2 -1.</_> - <_> - 9 10 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.1630808524787426e-003</threshold> - <left_val>0.0394775792956352</left_val> - <right_val>-0.4435499012470245</right_val></_></_> + <internalNodes> + 0 -1 330 7.1630808524787426e-03</internalNodes> + <leafValues> + 3.9477579295635223e-02 -4.4354990124702454e-01</leafValues></_> <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 2 3 -1.</_> - <_> - 3 2 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0168136693537235</threshold> - <left_val>0.0335885100066662</left_val> - <right_val>-0.3995356857776642</right_val></_></_> + <internalNodes> + 0 -1 331 1.6813669353723526e-02</internalNodes> + <leafValues> + 3.3588510006666183e-02 -3.9953568577766418e-01</leafValues></_> <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 10 1 2 -1.</_> - <_> - 16 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.2795818697195500e-005</threshold> - <left_val>-0.1543599069118500</left_val> - <right_val>0.0959625765681267</right_val></_></_> + <internalNodes> + 0 -1 332 3.2795818697195500e-05</internalNodes> + <leafValues> + -1.5435990691184998e-01 9.5962576568126678e-02</leafValues></_> <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 7 2 2 -1.</_> - <_> - 3 7 1 1 2.</_> - <_> - 4 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.9717039540410042e-003</threshold> - <left_val>0.2336520999670029</left_val> - <right_val>-0.0599571987986565</right_val></_></_> + <internalNodes> + 0 -1 333 -1.9717039540410042e-03</internalNodes> + <leafValues> + 2.3365209996700287e-01 -5.9957198798656464e-02</leafValues></_> <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 3 3 -1.</_> - <_> - 15 1 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0269936900585890</threshold> - <left_val>-0.4137428998947144</left_val> - <right_val>0.0420086905360222</right_val></_></_> + <internalNodes> + 0 -1 334 -2.6993690058588982e-02</internalNodes> + <leafValues> + -4.1374289989471436e-01 4.2008690536022186e-02</leafValues></_> <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 10 8 -1.</_> - <_> - 0 4 10 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1417710930109024</threshold> - <left_val>0.0395201481878757</left_val> - <right_val>-0.3402980864048004</right_val></_></_> + <internalNodes> + 0 -1 335 1.4177109301090240e-01</internalNodes> + <leafValues> + 3.9520148187875748e-02 -3.4029808640480042e-01</leafValues></_> <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 2 4 -1.</_> - <_> - 14 0 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0136792603880167</threshold> - <left_val>-0.1605730950832367</left_val> - <right_val>0.0348637402057648</right_val></_></_> + <internalNodes> + 0 -1 336 -1.3679260388016701e-02</internalNodes> + <leafValues> + -1.6057309508323669e-01 3.4863740205764771e-02</leafValues></_> <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 4 2 -1.</_> - <_> - 4 0 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0291845295578241</threshold> - <left_val>0.0433709509670734</left_val> - <right_val>-0.4003028869628906</right_val></_></_> + <internalNodes> + 0 -1 337 2.9184529557824135e-02</internalNodes> + <leafValues> + 4.3370950967073441e-02 -4.0030288696289062e-01</leafValues></_> <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 11 16 1 -1.</_> - <_> - 5 11 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0111293997615576</threshold> - <left_val>-0.0785342901945114</left_val> - <right_val>0.1796029061079025</right_val></_></_> + <internalNodes> + 0 -1 338 1.1129399761557579e-02</internalNodes> + <leafValues> + -7.8534290194511414e-02 1.7960290610790253e-01</leafValues></_> <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 9 2 1 -1.</_> - <_> - 3 9 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0109355002641678</threshold> - <left_val>-0.3602505028247833</left_val> - <right_val>0.0429950989782810</right_val></_></_> + <internalNodes> + 0 -1 339 -1.0935500264167786e-02</internalNodes> + <leafValues> + -3.6025050282478333e-01 4.2995098978281021e-02</leafValues></_> <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 10 1 2 -1.</_> - <_> - 16 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.0513479941873811e-005</threshold> - <left_val>0.0893702134490013</left_val> - <right_val>-0.0418892800807953</right_val></_></_> + <internalNodes> + 0 -1 340 -3.0513479941873811e-05</internalNodes> + <leafValues> + 8.9370213449001312e-02 -4.1889280080795288e-02</leafValues></_> <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 1 2 -1.</_> - <_> - 1 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.2795818697195500e-005</threshold> - <left_val>-0.1807544976472855</left_val> - <right_val>0.0959093868732452</right_val></_></_> + <internalNodes> + 0 -1 341 3.2795818697195500e-05</internalNodes> + <leafValues> + -1.8075449764728546e-01 9.5909386873245239e-02</leafValues></_> <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 5 1 6 -1.</_> - <_> - 17 7 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0231177601963282</threshold> - <left_val>-0.2679679989814758</left_val> - <right_val>0.0100175701081753</right_val></_></_> + <internalNodes> + 0 -1 342 -2.3117760196328163e-02</internalNodes> + <leafValues> + -2.6796799898147583e-01 1.0017570108175278e-02</leafValues></_> <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 1 6 -1.</_> - <_> - 0 7 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0138039300218225</threshold> - <left_val>0.0302478093653917</left_val> - <right_val>-0.4157716035842896</right_val></_></_> + <internalNodes> + 0 -1 343 1.3803930021822453e-02</internalNodes> + <leafValues> + 3.0247809365391731e-02 -4.1577160358428955e-01</leafValues></_> <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 7 3 -1.</_> - <_> - 6 1 7 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0147905796766281</threshold> - <left_val>-0.0626284331083298</left_val> - <right_val>0.1789302974939346</right_val></_></_> + <internalNodes> + 0 -1 344 1.4790579676628113e-02</internalNodes> + <leafValues> + -6.2628433108329773e-02 1.7893029749393463e-01</leafValues></_> <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 9 2 -1.</_> - <_> - 9 3 3 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1430779993534088</threshold> - <left_val>-0.1611566990613937</left_val> - <right_val>0.0892316624522209</right_val></_></_> + <internalNodes> + 0 -1 345 -1.4307799935340881e-01</internalNodes> + <leafValues> + -1.6115669906139374e-01 8.9231662452220917e-02</leafValues></_> <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 7 3 -1.</_> - <_> - 7 2 7 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0199875291436911</threshold> - <left_val>-0.0470620095729828</left_val> - <right_val>0.1610918939113617</right_val></_></_> + <internalNodes> + 0 -1 346 1.9987529143691063e-02</internalNodes> + <leafValues> + -4.7062009572982788e-02 1.6109189391136169e-01</leafValues></_> <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 2 4 -1.</_> - <_> - 0 5 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0142059000208974</threshold> - <left_val>0.0230433791875839</left_val> - <right_val>-0.5475704073905945</right_val></_></_> + <internalNodes> + 0 -1 347 1.4205900020897388e-02</internalNodes> + <leafValues> + 2.3043379187583923e-02 -5.4757040739059448e-01</leafValues></_> <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 3 1 -1.</_> - <_> - 10 5 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7248879885300994e-003</threshold> - <left_val>0.0944827869534492</left_val> - <right_val>-0.0484853498637676</right_val></_></_> + <internalNodes> + 0 -1 348 -1.7248879885300994e-03</internalNodes> + <leafValues> + 9.4482786953449249e-02 -4.8485349863767624e-02</leafValues></_> <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 10 2 -1.</_> - <_> - 9 1 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0135483797639608</threshold> - <left_val>0.1278838962316513</left_val> - <right_val>-0.0996569767594337</right_val></_></_> + <internalNodes> + 0 -1 349 -1.3548379763960838e-02</internalNodes> + <leafValues> + 1.2788389623165131e-01 -9.9656976759433746e-02</leafValues></_> <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 18 1 -1.</_> - <_> - 0 11 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0628712028264999</threshold> - <left_val>0.0416908711194992</left_val> - <right_val>-0.3675113022327423</right_val></_></_> + <internalNodes> + 0 -1 350 6.2871202826499939e-02</internalNodes> + <leafValues> + 4.1690871119499207e-02 -3.6751130223274231e-01</leafValues></_> <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 12 2 -1.</_> - <_> - 7 9 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0691538527607918</threshold> - <left_val>0.2737857103347778</left_val> - <right_val>-0.0629636123776436</right_val></_></_> + <internalNodes> + 0 -1 351 -6.9153852760791779e-02</internalNodes> + <leafValues> + 2.7378571033477783e-01 -6.2963612377643585e-02</leafValues></_> <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 12 -1.</_> - <_> - 0 0 9 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2173445969820023</threshold> - <left_val>0.1830458939075470</left_val> - <right_val>-0.0992570072412491</right_val></_></_> + <internalNodes> + 0 -1 352 -2.1734459698200226e-01</internalNodes> + <leafValues> + 1.8304589390754700e-01 -9.9257007241249084e-02</leafValues></_> <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 5 6 -1.</_> - <_> - 5 7 5 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0274697802960873</threshold> - <left_val>-0.1928683072328568</left_val> - <right_val>0.0759875699877739</right_val></_></_> + <internalNodes> + 0 -1 353 2.7469780296087265e-02</internalNodes> + <leafValues> + -1.9286830723285675e-01 7.5987569987773895e-02</leafValues></_> <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 3 3 3 -1.</_> - <_> - 13 4 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0469573400914669</threshold> - <left_val>-0.0187752507627010</left_val> - <right_val>0.4631434977054596</right_val></_></_> + <internalNodes> + 0 -1 354 4.6957340091466904e-02</internalNodes> + <leafValues> + -1.8775250762701035e-02 4.6314349770545959e-01</leafValues></_> <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 3 3 -1.</_> - <_> - 5 4 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0180867202579975</threshold> - <left_val>-0.0523284710943699</left_val> - <right_val>0.2886429131031036</right_val></_></_> + <internalNodes> + 0 -1 355 1.8086720257997513e-02</internalNodes> + <leafValues> + -5.2328471094369888e-02 2.8864291310310364e-01</leafValues></_> <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 4 6 5 -1.</_> - <_> - 14 4 2 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0139272697269917</threshold> - <left_val>0.2508543133735657</left_val> - <right_val>-0.1965104043483734</right_val></_></_> + <internalNodes> + 0 -1 356 -1.3927269726991653e-02</internalNodes> + <leafValues> + 2.5085431337356567e-01 -1.9651040434837341e-01</leafValues></_> <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 3 12 6 -1.</_> - <_> - 3 5 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1252620965242386</threshold> - <left_val>0.1471713930368424</left_val> - <right_val>-0.0911462828516960</right_val></_></_> + <internalNodes> + 0 -1 357 -1.2526209652423859e-01</internalNodes> + <leafValues> + 1.4717139303684235e-01 -9.1146282851696014e-02</leafValues></_> <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 4 2 2 -1.</_> - <_> - 12 5 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0108911301940680</threshold> - <left_val>-0.1266559958457947</left_val> - <right_val>0.0103994300588965</right_val></_></_> + <internalNodes> + 0 -1 358 -1.0891130194067955e-02</internalNodes> + <leafValues> + -1.2665599584579468e-01 1.0399430058896542e-02</leafValues></_> <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 4 2 2 -1.</_> - <_> - 4 5 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0109249595552683</threshold> - <left_val>-0.0350030586123466</left_val> - <right_val>0.4460895061492920</right_val></_></_> + <internalNodes> + 0 -1 359 1.0924959555268288e-02</internalNodes> + <leafValues> + -3.5003058612346649e-02 4.4608950614929199e-01</leafValues></_> <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 1 3 2 -1.</_> - <_> - 13 2 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0325395502150059</threshold> - <left_val>0.0184976197779179</left_val> - <right_val>-0.5916779041290283</right_val></_></_> + <internalNodes> + 0 -1 360 3.2539550215005875e-02</internalNodes> + <leafValues> + 1.8497619777917862e-02 -5.9167790412902832e-01</leafValues></_> <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 2 3 -1.</_> - <_> - 5 2 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0208457596600056</threshold> - <left_val>-0.3908233940601349</left_val> - <right_val>0.0347038805484772</right_val></_></_> + <internalNodes> + 0 -1 361 -2.0845759660005569e-02</internalNodes> + <leafValues> + -3.9082339406013489e-01 3.4703880548477173e-02</leafValues></_> <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 12 6 -1.</_> - <_> - 3 2 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2364127039909363</threshold> - <left_val>0.4882872104644775</left_val> - <right_val>-0.0300297793000937</right_val></_></_> + <internalNodes> + 0 -1 362 -2.3641270399093628e-01</internalNodes> + <leafValues> + 4.8828721046447754e-01 -3.0029779300093651e-02</leafValues></_> <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 6 3 -1.</_> - <_> - 4 3 3 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1563484072685242</threshold> - <left_val>-0.3345063924789429</left_val> - <right_val>0.0401343591511250</right_val></_></_> + <internalNodes> + 0 -1 363 -1.5634840726852417e-01</internalNodes> + <leafValues> + -3.3450639247894287e-01 4.0134359151124954e-02</leafValues></_> <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 4 6 5 -1.</_> - <_> - 14 4 2 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0420015417039394</threshold> - <left_val>0.0861422270536423</left_val> - <right_val>-0.0249420404434204</right_val></_></_> + <internalNodes> + 0 -1 364 -4.2001541703939438e-02</internalNodes> + <leafValues> + 8.6142227053642273e-02 -2.4942040443420410e-02</leafValues></_> <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 2 2 -1.</_> - <_> - 7 4 1 1 2.</_> - <_> - 8 5 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.5715960655361414e-003</threshold> - <left_val>-0.0484610311686993</left_val> - <right_val>0.2389481961727142</right_val></_></_> + <internalNodes> + 0 -1 365 2.5715960655361414e-03</internalNodes> + <leafValues> + -4.8461031168699265e-02 2.3894819617271423e-01</leafValues></_> <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 2 3 2 -1.</_> - <_> - 16 3 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0171307008713484</threshold> - <left_val>-0.3288700878620148</left_val> - <right_val>0.0482601895928383</right_val></_></_> + <internalNodes> + 0 -1 366 -1.7130700871348381e-02</internalNodes> + <leafValues> + -3.2887008786201477e-01 4.8260189592838287e-02</leafValues></_> <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 2 3 -1.</_> - <_> - 2 3 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0119911301881075</threshold> - <left_val>0.0370003096759319</left_val> - <right_val>-0.3008561134338379</right_val></_></_> + <internalNodes> + 0 -1 367 1.1991130188107491e-02</internalNodes> + <leafValues> + 3.7000309675931931e-02 -3.0085611343383789e-01</leafValues></_> <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 2 2 10 -1.</_> - <_> - 16 2 1 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0101651102304459</threshold> - <left_val>0.2115923017263413</left_val> - <right_val>-0.1345638930797577</right_val></_></_> + <internalNodes> + 0 -1 368 -1.0165110230445862e-02</internalNodes> + <leafValues> + 2.1159230172634125e-01 -1.3456389307975769e-01</leafValues></_> <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 2 10 -1.</_> - <_> - 1 2 1 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0317529402673244</threshold> - <left_val>-0.0258559100329876</left_val> - <right_val>0.5619407892227173</right_val></_></_> + <internalNodes> + 0 -1 369 3.1752940267324448e-02</internalNodes> + <leafValues> + -2.5855910032987595e-02 5.6194078922271729e-01</leafValues></_> <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 1 2 1 -1.</_> - <_> - 16 1 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>3.5542049445211887e-003</threshold> - <left_val>0.0773537829518318</left_val> - <right_val>-0.2356971055269241</right_val></_></_> + <internalNodes> + 0 -1 370 3.5542049445211887e-03</internalNodes> + <leafValues> + 7.7353782951831818e-02 -2.3569710552692413e-01</leafValues></_> <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 2 3 -1.</_> - <_> - 4 1 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0159854404628277</threshold> - <left_val>0.0373679809272289</left_val> - <right_val>-0.3239515125751495</right_val></_></_></trees> - <stage_threshold>-1.6688350439071655</stage_threshold> - <parent>5</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 371 1.5985440462827682e-02</internalNodes> + <leafValues> + 3.7367980927228928e-02 -3.2395151257514954e-01</leafValues></_></weakClassifiers></_> <_> - <!-- stage 7 --> - <trees> + <maxWeakCount>126</maxWeakCount> + <stageThreshold>-1.6429220438003540e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 6 3 -1.</_> - <_> - 11 3 2 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0836946368217468</threshold> - <left_val>0.3410044014453888</left_val> - <right_val>-0.3755393922328949</right_val></_></_> + <internalNodes> + 0 -1 372 -8.3694636821746826e-02</internalNodes> + <leafValues> + 3.4100440144538879e-01 -3.7553939223289490e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 5 4 3 -1.</_> - <_> - 14 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0136596104130149</threshold> - <left_val>0.2740989923477173</left_val> - <right_val>-0.2138371020555496</right_val></_></_> + <internalNodes> + 0 -1 373 -1.3659610413014889e-02</internalNodes> + <leafValues> + 2.7409899234771729e-01 -2.1383710205554962e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 4 3 -1.</_> - <_> - 2 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0129716601222754</threshold> - <left_val>0.2814351022243500</left_val> - <right_val>-0.2692151069641113</right_val></_></_> + <internalNodes> + 0 -1 374 -1.2971660122275352e-02</internalNodes> + <leafValues> + 2.8143510222434998e-01 -2.6921510696411133e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 3 4 -1.</_> - <_> - 11 4 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0249797105789185</threshold> - <left_val>0.1779302060604096</left_val> - <right_val>-0.1171007007360458</right_val></_></_> + <internalNodes> + 0 -1 375 -2.4979710578918457e-02</internalNodes> + <leafValues> + 1.7793020606040955e-01 -1.1710070073604584e-01</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 3 6 -1.</_> - <_> - 5 4 3 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0401367507874966</threshold> - <left_val>0.2885540127754211</left_val> - <right_val>-0.1942718029022217</right_val></_></_> + <internalNodes> + 0 -1 376 -4.0136750787496567e-02</internalNodes> + <leafValues> + 2.8855401277542114e-01 -1.9427180290222168e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 4 1 -1.</_> - <_> - 13 7 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0740387998521328e-003</threshold> - <left_val>0.1590372025966644</left_val> - <right_val>-0.0149317402392626</right_val></_></_> + <internalNodes> + 0 -1 377 -6.0740387998521328e-03</internalNodes> + <leafValues> + 1.5903720259666443e-01 -1.4931740239262581e-02</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 6 6 -1.</_> - <_> - 0 9 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0284710805863142</threshold> - <left_val>-0.4433281123638153</left_val> - <right_val>0.0747999772429466</right_val></_></_> + <internalNodes> + 0 -1 378 2.8471080586314201e-02</internalNodes> + <leafValues> + -4.4332811236381531e-01 7.4799977242946625e-02</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 4 3 -1.</_> - <_> - 10 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0167666599154472</threshold> - <left_val>-0.0604997687041759</left_val> - <right_val>0.4210987091064453</right_val></_></_> + <internalNodes> + 0 -1 379 1.6766659915447235e-02</internalNodes> + <leafValues> + -6.0499768704175949e-02 4.2109870910644531e-01</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 3 -1.</_> - <_> - 6 0 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0729147270321846</threshold> - <left_val>0.2074908018112183</left_val> - <right_val>-0.1472733020782471</right_val></_></_> + <internalNodes> + 0 -1 380 -7.2914727032184601e-02</internalNodes> + <leafValues> + 2.0749080181121826e-01 -1.4727330207824707e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 1 3 6 -1.</_> - <_> - 11 2 1 6 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0177430007606745</threshold> - <left_val>-0.0485890507698059</left_val> - <right_val>0.1159655004739761</right_val></_></_> + <internalNodes> + 0 -1 381 1.7743000760674477e-02</internalNodes> + <leafValues> + -4.8589050769805908e-02 1.1596550047397614e-01</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 1 6 3 -1.</_> - <_> - 7 2 6 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0295015294104815</threshold> - <left_val>0.2943966984748840</left_val> - <right_val>-0.0966272130608559</right_val></_></_> + <internalNodes> + 0 -1 382 -2.9501529410481453e-02</internalNodes> + <leafValues> + 2.9439669847488403e-01 -9.6627213060855865e-02</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 4 3 3 -1.</_> - <_> - 11 5 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0406251214444637</threshold> - <left_val>-0.0262391008436680</left_val> - <right_val>0.4683097004890442</right_val></_></_> + <internalNodes> + 0 -1 383 4.0625121444463730e-02</internalNodes> + <leafValues> + -2.6239100843667984e-02 4.6830970048904419e-01</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 3 3 -1.</_> - <_> - 7 5 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0217793490737677</threshold> - <left_val>0.3112086057662964</left_val> - <right_val>-0.1022349968552589</right_val></_></_> + <internalNodes> + 0 -1 384 -2.1779349073767662e-02</internalNodes> + <leafValues> + 3.1120860576629639e-01 -1.0223499685525894e-01</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 1 3 -1.</_> - <_> - 16 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.4435780253261328e-003</threshold> - <left_val>0.0561119206249714</left_val> - <right_val>-0.4116103053092957</right_val></_></_> + <internalNodes> + 0 -1 385 3.4435780253261328e-03</internalNodes> + <leafValues> + 5.6111920624971390e-02 -4.1161030530929565e-01</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 6 4 2 -1.</_> - <_> - 5 6 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.5878269486129284e-003</threshold> - <left_val>0.2929837107658386</left_val> - <right_val>-0.0961229130625725</right_val></_></_> + <internalNodes> + 0 -1 386 -5.5878269486129284e-03</internalNodes> + <leafValues> + 2.9298371076583862e-01 -9.6122913062572479e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 8 1 4 -1.</_> - <_> - 16 9 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.7618029639124870e-003</threshold> - <left_val>-0.4650284945964813</left_val> - <right_val>0.0591933205723763</right_val></_></_> + <internalNodes> + 0 -1 387 -4.7618029639124870e-03</internalNodes> + <leafValues> + -4.6502849459648132e-01 5.9193320572376251e-02</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 5 6 -1.</_> - <_> - 5 2 5 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0597818605601788</threshold> - <left_val>0.3553282916545868</left_val> - <right_val>-0.0803771466016769</right_val></_></_> + <internalNodes> + 0 -1 388 -5.9781860560178757e-02</internalNodes> + <leafValues> + 3.5532829165458679e-01 -8.0377146601676941e-02</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 2 3 -1.</_> - <_> - 10 5 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>6.0978909023106098e-003</threshold> - <left_val>-0.0166924502700567</left_val> - <right_val>0.1646998971700668</right_val></_></_> + <internalNodes> + 0 -1 389 6.0978909023106098e-03</internalNodes> + <leafValues> + -1.6692450270056725e-02 1.6469989717006683e-01</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 3 2 -1.</_> - <_> - 8 5 3 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0273686293512583</threshold> - <left_val>0.2656433880329132</left_val> - <right_val>-0.1000477001070976</right_val></_></_> + <internalNodes> + 0 -1 390 -2.7368629351258278e-02</internalNodes> + <leafValues> + 2.6564338803291321e-01 -1.0004770010709763e-01</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 8 1 4 -1.</_> - <_> - 16 9 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.0997692421078682e-003</threshold> - <left_val>0.0187604799866676</left_val> - <right_val>-0.4752368927001953</right_val></_></_> + <internalNodes> + 0 -1 391 8.0997692421078682e-03</internalNodes> + <leafValues> + 1.8760479986667633e-02 -4.7523689270019531e-01</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 8 1 4 -1.</_> - <_> - 1 9 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.5963999796658754e-003</threshold> - <left_val>-0.3597832024097443</left_val> - <right_val>0.0645452216267586</right_val></_></_> + <internalNodes> + 0 -1 392 -2.5963999796658754e-03</internalNodes> + <leafValues> + -3.5978320240974426e-01 6.4545221626758575e-02</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 1 4 4 -1.</_> - <_> - 13 2 4 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0315931998193264</threshold> - <left_val>-0.0377982594072819</left_val> - <right_val>0.2307599037885666</right_val></_></_> + <internalNodes> + 0 -1 393 3.1593199819326401e-02</internalNodes> + <leafValues> + -3.7798259407281876e-02 2.3075990378856659e-01</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 7 2 -1.</_> - <_> - 0 11 7 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0456099698785692e-004</threshold> - <left_val>-0.2868582010269165</left_val> - <right_val>0.0870969593524933</right_val></_></_> + <internalNodes> + 0 -1 394 1.0456099698785692e-04</internalNodes> + <leafValues> + -2.8685820102691650e-01 8.7096959352493286e-02</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 1 4 4 -1.</_> - <_> - 13 2 4 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0519061982631683</threshold> - <left_val>0.0839637964963913</left_val> - <right_val>-0.0205326303839684</right_val></_></_> + <internalNodes> + 0 -1 395 -5.1906198263168335e-02</internalNodes> + <leafValues> + 8.3963796496391296e-02 -2.0532630383968353e-02</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 4 4 -1.</_> - <_> - 5 2 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0244984999299049</threshold> - <left_val>-0.0828146189451218</left_val> - <right_val>0.2847521007061005</right_val></_></_> + <internalNodes> + 0 -1 396 2.4498499929904938e-02</internalNodes> + <leafValues> + -8.2814618945121765e-02 2.8475210070610046e-01</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 5 2 -1.</_> - <_> - 8 5 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0125663802027702</threshold> - <left_val>-0.0452791601419449</left_val> - <right_val>0.2167464941740036</right_val></_></_> + <internalNodes> + 0 -1 397 1.2566380202770233e-02</internalNodes> + <leafValues> + -4.5279160141944885e-02 2.1674649417400360e-01</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 8 10 -1.</_> - <_> - 5 2 4 5 2.</_> - <_> - 9 7 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0913186222314835</threshold> - <left_val>-0.4423049986362457</left_val> - <right_val>0.0471048802137375</right_val></_></_> + <internalNodes> + 0 -1 398 -9.1318622231483459e-02</internalNodes> + <leafValues> + -4.4230499863624573e-01 4.7104880213737488e-02</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 5 1 4 -1.</_> - <_> - 17 6 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.6391900181770325e-003</threshold> - <left_val>0.0290595795959234</left_val> - <right_val>-0.5225294828414917</right_val></_></_> + <internalNodes> + 0 -1 399 6.6391900181770325e-03</internalNodes> + <leafValues> + 2.9059579595923424e-02 -5.2252948284149170e-01</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 4 4 -1.</_> - <_> - 5 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0171277001500130</threshold> - <left_val>0.0279338192194700</left_val> - <right_val>-0.5795859098434448</right_val></_></_> + <internalNodes> + 0 -1 400 1.7127700150012970e-02</internalNodes> + <leafValues> + 2.7933819219470024e-02 -5.7958590984344482e-01</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 11 2 1 -1.</_> - <_> - 16 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0757698520319536e-005</threshold> - <left_val>0.1010269001126289</left_val> - <right_val>-0.0938784703612328</right_val></_></_> + <internalNodes> + 0 -1 401 -6.0757698520319536e-05</internalNodes> + <leafValues> + 1.0102690011262894e-01 -9.3878470361232758e-02</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 2 1 -1.</_> - <_> - 1 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.7282187703531235e-005</threshold> - <left_val>-0.1399565935134888</left_val> - <right_val>0.1423524022102356</right_val></_></_> + <internalNodes> + 0 -1 402 7.7282187703531235e-05</internalNodes> + <leafValues> + -1.3995659351348877e-01 1.4235240221023560e-01</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 0 1 12 -1.</_> - <_> - 17 6 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0452667213976383</threshold> - <left_val>-0.1595887988805771</left_val> - <right_val>0.0130199203267694</right_val></_></_> + <internalNodes> + 0 -1 403 -4.5266721397638321e-02</internalNodes> + <leafValues> + -1.5958879888057709e-01 1.3019920326769352e-02</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 1 10 -1.</_> - <_> - 0 7 1 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0127395903691649</threshold> - <left_val>-0.4183672964572907</left_val> - <right_val>0.0463712587952614</right_val></_></_> + <internalNodes> + 0 -1 404 -1.2739590369164944e-02</internalNodes> + <leafValues> + -4.1836729645729065e-01 4.6371258795261383e-02</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 6 3 -1.</_> - <_> - 6 0 3 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.7306739725172520e-003</threshold> - <left_val>-0.1471915990114212</left_val> - <right_val>0.1254952996969223</right_val></_></_> + <internalNodes> + 0 -1 405 4.7306739725172520e-03</internalNodes> + <leafValues> + -1.4719159901142120e-01 1.2549529969692230e-01</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 2 4 -1.</_> - <_> - 0 3 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.8478072062134743e-003</threshold> - <left_val>-0.2865520119667053</left_val> - <right_val>0.0649360194802284</right_val></_></_> + <internalNodes> + 0 -1 406 -6.8478072062134743e-03</internalNodes> + <leafValues> + -2.8655201196670532e-01 6.4936019480228424e-02</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 4 4 -1.</_> - <_> - 9 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0144783398136497</threshold> - <left_val>-0.5574644207954407</left_val> - <right_val>0.0319023206830025</right_val></_></_> + <internalNodes> + 0 -1 407 -1.4478339813649654e-02</internalNodes> + <leafValues> + -5.5746442079544067e-01 3.1902320683002472e-02</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 3 3 -1.</_> - <_> - 6 5 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0253218505531549</threshold> - <left_val>-0.0519697181880474</left_val> - <right_val>0.4031704068183899</right_val></_></_> + <internalNodes> + 0 -1 408 2.5321850553154945e-02</internalNodes> + <leafValues> + -5.1969718188047409e-02 4.0317040681838989e-01</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 8 2 2 -1.</_> - <_> - 16 8 1 1 2.</_> - <_> - 15 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.4498929958790541e-003</threshold> - <left_val>-0.0712788626551628</left_val> - <right_val>0.2044527977705002</right_val></_></_> + <internalNodes> + 0 -1 409 1.4498929958790541e-03</internalNodes> + <leafValues> + -7.1278862655162811e-02 2.0445279777050018e-01</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 8 2 2 -1.</_> - <_> - 1 8 1 1 2.</_> - <_> - 2 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.1836787760257721e-005</threshold> - <left_val>-0.1383661925792694</left_val> - <right_val>0.1337634027004242</right_val></_></_> + <internalNodes> + 0 -1 410 9.1836787760257721e-05</internalNodes> + <leafValues> + -1.3836619257926941e-01 1.3376340270042419e-01</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 11 2 1 -1.</_> - <_> - 16 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9083143393509090e-005</threshold> - <left_val>-0.0757812634110451</left_val> - <right_val>0.1030441001057625</right_val></_></_> + <internalNodes> + 0 -1 411 8.9083143393509090e-05</internalNodes> + <leafValues> + -7.5781263411045074e-02 1.0304410010576248e-01</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 2 1 -1.</_> - <_> - 1 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.0758632975630462e-005</threshold> - <left_val>0.1644583940505981</left_val> - <right_val>-0.1120261028409004</right_val></_></_> + <internalNodes> + 0 -1 412 -8.0758632975630462e-05</internalNodes> + <leafValues> + 1.6445839405059814e-01 -1.1202610284090042e-01</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 18 1 -1.</_> - <_> - 0 11 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0892854332923889</threshold> - <left_val>0.0309306494891644</left_val> - <right_val>-0.5743001103401184</right_val></_></_> + <internalNodes> + 0 -1 413 8.9285433292388916e-02</internalNodes> + <leafValues> + 3.0930649489164352e-02 -5.7430011034011841e-01</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 6 8 -1.</_> - <_> - 5 8 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0158832296729088</threshold> - <left_val>-0.4322473108768463</left_val> - <right_val>0.0340753011405468</right_val></_></_> + <internalNodes> + 0 -1 414 1.5883229672908783e-02</internalNodes> + <leafValues> + -4.3224731087684631e-01 3.4075301140546799e-02</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 8 3 -1.</_> - <_> - 6 1 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0141719095408916</threshold> - <left_val>0.2027620971202850</left_val> - <right_val>-0.0791848972439766</right_val></_></_> + <internalNodes> + 0 -1 415 -1.4171909540891647e-02</internalNodes> + <leafValues> + 2.0276209712028503e-01 -7.9184897243976593e-02</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 12 4 -1.</_> - <_> - 3 1 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0357209406793118</threshold> - <left_val>-0.0903915017843246</left_val> - <right_val>0.2199959009885788</right_val></_></_> + <internalNodes> + 0 -1 416 3.5720940679311752e-02</internalNodes> + <leafValues> + -9.0391501784324646e-02 2.1999590098857880e-01</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 11 4 1 -1.</_> - <_> - 9 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.3087039850652218e-003</threshold> - <left_val>0.0212820693850517</left_val> - <right_val>-0.5309743881225586</right_val></_></_> + <internalNodes> + 0 -1 417 5.3087039850652218e-03</internalNodes> + <leafValues> + 2.1282069385051727e-02 -5.3097438812255859e-01</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 1 2 -1.</_> - <_> - 5 3 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0109678097069263</threshold> - <left_val>0.0347930788993835</left_val> - <right_val>-0.4312751889228821</right_val></_></_> + <internalNodes> + 0 -1 418 1.0967809706926346e-02</internalNodes> + <leafValues> + 3.4793078899383545e-02 -4.3127518892288208e-01</leafValues></_> <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 10 4 -1.</_> - <_> - 5 3 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0336300097405910</threshold> - <left_val>-0.0643780007958412</left_val> - <right_val>0.2256986945867539</right_val></_></_> + <internalNodes> + 0 -1 419 3.3630009740591049e-02</internalNodes> + <leafValues> + -6.4378000795841217e-02 2.2569869458675385e-01</leafValues></_> <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 8 2 3 -1.</_> - <_> - 1 9 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0117506701499224</threshold> - <left_val>0.0333640091121197</left_val> - <right_val>-0.4999623000621796</right_val></_></_> + <internalNodes> + 0 -1 420 1.1750670149922371e-02</internalNodes> + <leafValues> + 3.3364009112119675e-02 -4.9996230006217957e-01</leafValues></_> <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 7 2 2 -1.</_> - <_> - 13 7 1 1 2.</_> - <_> - 12 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4994719531387091e-003</threshold> - <left_val>0.2113948017358780</left_val> - <right_val>-0.0783023312687874</right_val></_></_> + <internalNodes> + 0 -1 421 -1.4994719531387091e-03</internalNodes> + <leafValues> + 2.1139480173587799e-01 -7.8302331268787384e-02</leafValues></_> <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 2 8 -1.</_> - <_> - 9 2 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1838434934616089</threshold> - <left_val>0.2969577014446259</left_val> - <right_val>-0.0530624799430370</right_val></_></_> + <internalNodes> + 0 -1 422 -1.8384349346160889e-01</internalNodes> + <leafValues> + 2.9695770144462585e-01 -5.3062479943037033e-02</leafValues></_> <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 9 -1.</_> - <_> - 0 0 9 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2637495994567871</threshold> - <left_val>0.2099512964487076</left_val> - <right_val>-0.0765045136213303</right_val></_></_> + <internalNodes> + 0 -1 423 -2.6374959945678711e-01</internalNodes> + <leafValues> + 2.0995129644870758e-01 -7.6504513621330261e-02</leafValues></_> <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 15 8 -1.</_> - <_> - 5 4 5 8 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.4722968041896820</threshold> - <left_val>-0.6000798940658569</left_val> - <right_val>0.0251975990831852</right_val></_></_> + <internalNodes> + 0 -1 424 -4.7229680418968201e-01</internalNodes> + <leafValues> + -6.0007989406585693e-01 2.5197599083185196e-02</leafValues></_> <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 5 3 3 -1.</_> - <_> - 13 6 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0484925508499146</threshold> - <left_val>-0.0313359387218952</left_val> - <right_val>0.2785519063472748</right_val></_></_> + <internalNodes> + 0 -1 425 4.8492550849914551e-02</internalNodes> + <leafValues> + -3.1335938721895218e-02 2.7855190634727478e-01</leafValues></_> <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 14 10 -1.</_> - <_> - 7 2 7 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3400250971317291</threshold> - <left_val>0.2385111004114151</left_val> - <right_val>-0.0664357095956802</right_val></_></_> + <internalNodes> + 0 -1 426 -3.4002509713172913e-01</internalNodes> + <leafValues> + 2.3851110041141510e-01 -6.6435709595680237e-02</leafValues></_> <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 2 4 -1.</_> - <_> - 14 0 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0114147998392582</threshold> - <left_val>-0.2547709941864014</left_val> - <right_val>0.0686119124293327</right_val></_></_> + <internalNodes> + 0 -1 427 -1.1414799839258194e-02</internalNodes> + <leafValues> + -2.5477099418640137e-01 6.8611912429332733e-02</leafValues></_> <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 8 2 -1.</_> - <_> - 5 4 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0210570096969604</threshold> - <left_val>-0.0447892397642136</left_val> - <right_val>0.3582226932048798</right_val></_></_> + <internalNodes> + 0 -1 428 2.1057009696960449e-02</internalNodes> + <leafValues> + -4.4789239764213562e-02 3.5822269320487976e-01</leafValues></_> <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 3 6 2 -1.</_> - <_> - 12 4 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3073880109004676e-004</threshold> - <left_val>0.1079995036125183</left_val> - <right_val>-0.1429215967655182</right_val></_></_> + <internalNodes> + 0 -1 429 -1.3073880109004676e-04</internalNodes> + <leafValues> + 1.0799950361251831e-01 -1.4292159676551819e-01</leafValues></_> <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 1 4 -1.</_> - <_> - 4 1 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0161463692784309</threshold> - <left_val>-0.4497553110122681</left_val> - <right_val>0.0319031886756420</right_val></_></_> + <internalNodes> + 0 -1 430 -1.6146369278430939e-02</internalNodes> + <leafValues> + -4.4975531101226807e-01 3.1903188675642014e-02</leafValues></_> <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 2 4 -1.</_> - <_> - 14 0 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0264048594981432</threshold> - <left_val>0.0307808890938759</left_val> - <right_val>-0.2380720973014832</right_val></_></_> + <internalNodes> + 0 -1 431 2.6404859498143196e-02</internalNodes> + <leafValues> + 3.0780889093875885e-02 -2.3807209730148315e-01</leafValues></_> <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 4 2 -1.</_> - <_> - 4 0 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0149836800992489</threshold> - <left_val>-0.3162455856800079</left_val> - <right_val>0.0529575012624264</right_val></_></_> + <internalNodes> + 0 -1 432 -1.4983680099248886e-02</internalNodes> + <leafValues> + -3.1624558568000793e-01 5.2957501262426376e-02</leafValues></_> <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 4 3 2 -1.</_> - <_> - 10 5 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6260308958590031e-003</threshold> - <left_val>0.0947839617729187</left_val> - <right_val>-0.0379470288753510</right_val></_></_> + <internalNodes> + 0 -1 433 -6.6260308958590031e-03</internalNodes> + <leafValues> + 9.4783961772918701e-02 -3.7947028875350952e-02</leafValues></_> <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 4 2 -1.</_> - <_> - 5 5 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.4577856361865997e-003</threshold> - <left_val>-0.0632357597351074</left_val> - <right_val>0.2781418859958649</right_val></_></_> + <internalNodes> + 0 -1 434 9.4577856361865997e-03</internalNodes> + <leafValues> + -6.3235759735107422e-02 2.7814188599586487e-01</leafValues></_> <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 2 4 3 -1.</_> - <_> - 12 3 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0284659191966057</threshold> - <left_val>-0.0402093790471554</left_val> - <right_val>0.2937918901443481</right_val></_></_> + <internalNodes> + 0 -1 435 2.8465919196605682e-02</internalNodes> + <leafValues> + -4.0209379047155380e-02 2.9379189014434814e-01</leafValues></_> <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 3 4 -1.</_> - <_> - 6 3 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0328826084733009</threshold> - <left_val>-0.0413506403565407</left_val> - <right_val>0.3313314020633698</right_val></_></_> + <internalNodes> + 0 -1 436 3.2882608473300934e-02</internalNodes> + <leafValues> + -4.1350640356540680e-02 3.3133140206336975e-01</leafValues></_> <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 5 1 4 -1.</_> - <_> - 17 6 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.3604697138071060e-003</threshold> - <left_val>-0.4081225991249085</left_val> - <right_val>0.0330698117613792</right_val></_></_> + <internalNodes> + 0 -1 437 -8.3604697138071060e-03</internalNodes> + <leafValues> + -4.0812259912490845e-01 3.3069811761379242e-02</leafValues></_> <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 12 2 -1.</_> - <_> - 3 1 12 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0304503999650478</threshold> - <left_val>0.2182721048593521</left_val> - <right_val>-0.0717217996716499</right_val></_></_> + <internalNodes> + 0 -1 438 -3.0450399965047836e-02</internalNodes> + <leafValues> + 2.1827210485935211e-01 -7.1721799671649933e-02</leafValues></_> <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 9 2 3 -1.</_> - <_> - 15 10 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.8005149476230145e-003</threshold> - <left_val>-0.2956233024597168</left_val> - <right_val>0.0370872505009174</right_val></_></_> + <internalNodes> + 0 -1 439 -5.8005149476230145e-03</internalNodes> + <leafValues> + -2.9562330245971680e-01 3.7087250500917435e-02</leafValues></_> <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 1 3 -1.</_> - <_> - 1 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.8168208450078964e-003</threshold> - <left_val>0.0327774696052074</left_val> - <right_val>-0.4208317101001740</right_val></_></_> + <internalNodes> + 0 -1 440 4.8168208450078964e-03</internalNodes> + <leafValues> + 3.2777469605207443e-02 -4.2083171010017395e-01</leafValues></_> <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 7 2 2 -1.</_> - <_> - 13 7 1 1 2.</_> - <_> - 12 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.5842430293560028e-003</threshold> - <left_val>-0.0697162598371506</left_val> - <right_val>0.1936556994915009</right_val></_></_> + <internalNodes> + 0 -1 441 1.5842430293560028e-03</internalNodes> + <leafValues> + -6.9716259837150574e-02 1.9365569949150085e-01</leafValues></_> <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 4 2 -1.</_> - <_> - 8 9 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.4104435518383980e-003</threshold> - <left_val>0.0296925306320190</left_val> - <right_val>-0.5031313896179199</right_val></_></_> + <internalNodes> + 0 -1 442 8.4104435518383980e-03</internalNodes> + <leafValues> + 2.9692530632019043e-02 -5.0313138961791992e-01</leafValues></_> <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 7 2 2 -1.</_> - <_> - 13 7 1 1 2.</_> - <_> - 12 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0347180068492889e-004</threshold> - <left_val>0.0983636900782585</left_val> - <right_val>-0.0869070068001747</right_val></_></_> + <internalNodes> + 0 -1 443 -1.0347180068492889e-04</internalNodes> + <leafValues> + 9.8363690078258514e-02 -8.6907006800174713e-02</leafValues></_> <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 9 4 3 -1.</_> - <_> - 6 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.2377959042787552e-003</threshold> - <left_val>0.0369995497167110</left_val> - <right_val>-0.3852713108062744</right_val></_></_> + <internalNodes> + 0 -1 444 8.2377959042787552e-03</internalNodes> + <leafValues> + 3.6999549716711044e-02 -3.8527131080627441e-01</leafValues></_> <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 2 2 -1.</_> - <_> - 10 8 1 1 2.</_> - <_> - 9 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1734689906006679e-004</threshold> - <left_val>-0.0654924064874649</left_val> - <right_val>0.0622663982212543</right_val></_></_> + <internalNodes> + 0 -1 445 1.1734689906006679e-04</internalNodes> + <leafValues> + -6.5492406487464905e-02 6.2266398221254349e-02</leafValues></_> <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 2 2 -1.</_> - <_> - 7 8 1 1 2.</_> - <_> - 8 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.8627153784036636e-004</threshold> - <left_val>0.1891711950302124</left_val> - <right_val>-0.0804252699017525</right_val></_></_> + <internalNodes> + 0 -1 446 -9.8627153784036636e-04</internalNodes> + <leafValues> + 1.8917119503021240e-01 -8.0425269901752472e-02</leafValues></_> <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 5 1 4 -1.</_> - <_> - 17 6 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.6078172898851335e-005</threshold> - <left_val>0.0824472829699516</left_val> - <right_val>-0.0953762009739876</right_val></_></_> + <internalNodes> + 0 -1 447 -8.6078172898851335e-05</internalNodes> + <leafValues> + 8.2447282969951630e-02 -9.5376200973987579e-02</leafValues></_> <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 1 4 -1.</_> - <_> - 0 6 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.6891320273280144e-003</threshold> - <left_val>0.0333465300500393</left_val> - <right_val>-0.4020530879497528</right_val></_></_> + <internalNodes> + 0 -1 448 5.6891320273280144e-03</internalNodes> + <leafValues> + 3.3346530050039291e-02 -4.0205308794975281e-01</leafValues></_> <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 7 2 2 -1.</_> - <_> - 13 7 1 1 2.</_> - <_> - 12 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0112339805345982e-004</threshold> - <left_val>-0.1028463989496231</left_val> - <right_val>0.1131741032004356</right_val></_></_> + <internalNodes> + 0 -1 449 1.0112339805345982e-04</internalNodes> + <leafValues> + -1.0284639894962311e-01 1.1317410320043564e-01</leafValues></_> <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 6 3 -1.</_> - <_> - 8 4 6 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0159188602119684</threshold> - <left_val>0.1396463960409164</left_val> - <right_val>-0.1053752005100250</right_val></_></_> + <internalNodes> + 0 -1 450 -1.5918860211968422e-02</internalNodes> + <leafValues> + 1.3964639604091644e-01 -1.0537520051002502e-01</leafValues></_> <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 6 2 1 -1.</_> - <_> - 16 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0231309715891257e-004</threshold> - <left_val>0.1199019998311997</left_val> - <right_val>-0.2075942009687424</right_val></_></_> + <internalNodes> + 0 -1 451 -1.0231309715891257e-04</internalNodes> + <leafValues> + 1.1990199983119965e-01 -2.0759420096874237e-01</leafValues></_> <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 7 2 2 -1.</_> - <_> - 4 7 1 1 2.</_> - <_> - 5 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.1397319920361042e-004</threshold> - <left_val>0.1617929935455322</left_val> - <right_val>-0.0755802765488625</right_val></_></_> + <internalNodes> + 0 -1 452 -9.1397319920361042e-04</internalNodes> + <leafValues> + 1.6179299354553223e-01 -7.5580276548862457e-02</leafValues></_> <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 7 2 3 -1.</_> - <_> - 16 8 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.6993040964007378e-003</threshold> - <left_val>0.0250010807067156</left_val> - <right_val>-0.1641622930765152</right_val></_></_> + <internalNodes> + 0 -1 453 6.6993040964007378e-03</internalNodes> + <leafValues> + 2.5001080706715584e-02 -1.6416229307651520e-01</leafValues></_> <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 7 2 3 -1.</_> - <_> - 0 8 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0126993004232645</threshold> - <left_val>0.0226950403302908</left_val> - <right_val>-0.5273951292037964</right_val></_></_> + <internalNodes> + 0 -1 454 1.2699300423264503e-02</internalNodes> + <leafValues> + 2.2695040330290794e-02 -5.2739512920379639e-01</leafValues></_> <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 4 -1.</_> - <_> - 8 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0132831698283553</threshold> - <left_val>-0.4116092920303345</left_val> - <right_val>0.0270539298653603</right_val></_></_> + <internalNodes> + 0 -1 455 -1.3283169828355312e-02</internalNodes> + <leafValues> + -4.1160929203033447e-01 2.7053929865360260e-02</leafValues></_> <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 2 -1.</_> - <_> - 7 5 1 1 2.</_> - <_> - 8 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0245139710605145e-003</threshold> - <left_val>-0.0809253379702568</left_val> - <right_val>0.1609123051166534</right_val></_></_> + <internalNodes> + 0 -1 456 1.0245139710605145e-03</internalNodes> + <leafValues> + -8.0925337970256805e-02 1.6091230511665344e-01</leafValues></_> <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 2 2 -1.</_> - <_> - 10 5 1 1 2.</_> - <_> - 9 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.1607067841105163e-005</threshold> - <left_val>-0.0653921067714691</left_val> - <right_val>0.0949816927313805</right_val></_></_> + <internalNodes> + 0 -1 457 8.1607067841105163e-05</internalNodes> + <leafValues> + -6.5392106771469116e-02 9.4981692731380463e-02</leafValues></_> <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 2 -1.</_> - <_> - 7 5 1 1 2.</_> - <_> - 8 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.1534129045903683e-003</threshold> - <left_val>0.2399435937404633</left_val> - <right_val>-0.0698399990797043</right_val></_></_> + <internalNodes> + 0 -1 458 -2.1534129045903683e-03</internalNodes> + <leafValues> + 2.3994359374046326e-01 -6.9839999079704285e-02</leafValues></_> <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 6 2 -1.</_> - <_> - 9 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0297515094280243</threshold> - <left_val>-0.6112301945686340</left_val> - <right_val>0.0174789894372225</right_val></_></_> + <internalNodes> + 0 -1 459 -2.9751509428024292e-02</internalNodes> + <leafValues> + -6.1123019456863403e-01 1.7478989437222481e-02</leafValues></_> <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 18 8 -1.</_> - <_> - 0 2 9 4 2.</_> - <_> - 9 6 9 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1303281933069229</threshold> - <left_val>-0.2529667913913727</left_val> - <right_val>0.0458865389227867</right_val></_></_> + <internalNodes> + 0 -1 460 -1.3032819330692291e-01</internalNodes> + <leafValues> + -2.5296679139137268e-01 4.5886538922786713e-02</leafValues></_> <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 6 0 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0383929312229156</threshold> - <left_val>0.1502663940191269</left_val> - <right_val>-0.0833002030849457</right_val></_></_> + <internalNodes> + 0 -1 461 -3.8392931222915649e-02</internalNodes> + <leafValues> + 1.5026639401912689e-01 -8.3300203084945679e-02</leafValues></_> <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 10 6 2 -1.</_> - <_> - 7 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0206376705318689</threshold> - <left_val>-0.4774976968765259</left_val> - <right_val>0.0273166391998529</right_val></_></_> + <internalNodes> + 0 -1 462 -2.0637670531868935e-02</internalNodes> + <leafValues> + -4.7749769687652588e-01 2.7316639199852943e-02</leafValues></_> <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 8 4 4 -1.</_> - <_> - 8 9 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.2679895460605621e-003</threshold> - <left_val>0.1495240926742554</left_val> - <right_val>-0.0530842617154121</right_val></_></_> + <internalNodes> + 0 -1 463 -9.2679895460605621e-03</internalNodes> + <leafValues> + 1.4952409267425537e-01 -5.3084261715412140e-02</leafValues></_> <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 6 3 -1.</_> - <_> - 5 1 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0120761198922992</threshold> - <left_val>-0.0738780125975609</left_val> - <right_val>0.1731128990650177</right_val></_></_> + <internalNodes> + 0 -1 464 1.2076119892299175e-02</internalNodes> + <leafValues> + -7.3878012597560883e-02 1.7311289906501770e-01</leafValues></_> <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 1 4 2 -1.</_> - <_> - 9 1 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0142523003742099</threshold> - <left_val>0.0107008703052998</left_val> - <right_val>-0.4848352968692780</right_val></_></_> + <internalNodes> + 0 -1 465 1.4252300374209881e-02</internalNodes> + <leafValues> + 1.0700870305299759e-02 -4.8483529686927795e-01</leafValues></_> <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 4 2 -1.</_> - <_> - 7 1 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.9848906025290489e-003</threshold> - <left_val>0.0315579287707806</left_val> - <right_val>-0.3982397913932800</right_val></_></_> + <internalNodes> + 0 -1 466 7.9848906025290489e-03</internalNodes> + <leafValues> + 3.1557928770780563e-02 -3.9823979139328003e-01</leafValues></_> <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 2 2 -1.</_> - <_> - 10 8 1 1 2.</_> - <_> - 9 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.6416457886807621e-005</threshold> - <left_val>0.0951977819204330</left_val> - <right_val>-0.0660961717367172</right_val></_></_> + <internalNodes> + 0 -1 467 -7.6416457886807621e-05</internalNodes> + <leafValues> + 9.5197781920433044e-02 -6.6096171736717224e-02</leafValues></_> <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 2 2 -1.</_> - <_> - 7 8 1 1 2.</_> - <_> - 8 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.6317751740571111e-005</threshold> - <left_val>-0.1066462993621826</left_val> - <right_val>0.1268212944269180</right_val></_></_> + <internalNodes> + 0 -1 468 9.6317751740571111e-05</internalNodes> + <leafValues> + -1.0664629936218262e-01 1.2682129442691803e-01</leafValues></_> <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 7 2 2 -1.</_> - <_> - 11 8 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.1491980189457536e-004</threshold> - <left_val>-0.0525143183767796</left_val> - <right_val>0.0245233792811632</right_val></_></_> + <internalNodes> + 0 -1 469 3.1491980189457536e-04</internalNodes> + <leafValues> + -5.2514318376779556e-02 2.4523379281163216e-02</leafValues></_> <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 7 2 2 -1.</_> - <_> - 5 8 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.1320712082087994e-003</threshold> - <left_val>-0.0943100601434708</left_val> - <right_val>0.1192641034722328</right_val></_></_> + <internalNodes> + 0 -1 470 5.1320712082087994e-03</internalNodes> + <leafValues> + -9.4310060143470764e-02 1.1926410347223282e-01</leafValues></_> <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 18 2 -1.</_> - <_> - 6 10 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0789068862795830</threshold> - <left_val>0.1896478980779648</left_val> - <right_val>-0.0616648010909557</right_val></_></_> + <internalNodes> + 0 -1 471 -7.8906886279582977e-02</internalNodes> + <leafValues> + 1.8964789807796478e-01 -6.1664801090955734e-02</leafValues></_> <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 3 1 -1.</_> - <_> - 7 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4321829658001661e-003</threshold> - <left_val>0.1456758975982666</left_val> - <right_val>-0.0755130872130394</right_val></_></_> + <internalNodes> + 0 -1 472 -1.4321829658001661e-03</internalNodes> + <leafValues> + 1.4567589759826660e-01 -7.5513087213039398e-02</leafValues></_> <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 1 4 3 -1.</_> - <_> - 10 1 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0451036281883717</threshold> - <left_val>-0.4848248958587647</left_val> - <right_val>8.3793140947818756e-003</right_val></_></_> + <internalNodes> + 0 -1 473 -4.5103628188371658e-02</internalNodes> + <leafValues> + -4.8482489585876465e-01 8.3793140947818756e-03</leafValues></_> <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 2 1 -1.</_> - <_> - 4 0 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.9267681131605059e-005</threshold> - <left_val>-0.0983941331505775</left_val> - <right_val>0.1126554980874062</right_val></_></_> + <internalNodes> + 0 -1 474 3.9267681131605059e-05</internalNodes> + <leafValues> + -9.8394133150577545e-02 1.1265549808740616e-01</leafValues></_> <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 3 -1.</_> - <_> - 16 0 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0175016503781080</threshold> - <left_val>-0.4466168880462647</left_val> - <right_val>0.0564428903162479</right_val></_></_> + <internalNodes> + 0 -1 475 -1.7501650378108025e-02</internalNodes> + <leafValues> + -4.4661688804626465e-01 5.6442890316247940e-02</leafValues></_> <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 3 2 -1.</_> - <_> - 2 0 3 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0258498694747686</threshold> - <left_val>0.0229466296732426</left_val> - <right_val>-0.4196321964263916</right_val></_></_> + <internalNodes> + 0 -1 476 2.5849869474768639e-02</internalNodes> + <leafValues> + 2.2946629673242569e-02 -4.1963219642639160e-01</leafValues></_> <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 10 4 -1.</_> - <_> - 7 4 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.6344410404562950e-003</threshold> - <left_val>0.0370229296386242</left_val> - <right_val>-0.0914343297481537</right_val></_></_> + <internalNodes> + 0 -1 477 -5.6344410404562950e-03</internalNodes> + <leafValues> + 3.7022929638624191e-02 -9.1434329748153687e-02</leafValues></_> <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 4 10 4 -1.</_> - <_> - 6 4 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1652574986219406</threshold> - <left_val>-0.3212014138698578</left_val> - <right_val>0.0334465689957142</right_val></_></_> + <internalNodes> + 0 -1 478 -1.6525749862194061e-01</internalNodes> + <leafValues> + -3.2120141386985779e-01 3.3446568995714188e-02</leafValues></_> <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 0 2 1 -1.</_> - <_> - 13 0 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.4969837442040443e-005</threshold> - <left_val>0.1024757027626038</left_val> - <right_val>-0.1333374977111816</right_val></_></_> + <internalNodes> + 0 -1 479 -7.4969837442040443e-05</internalNodes> + <leafValues> + 1.0247570276260376e-01 -1.3333749771118164e-01</leafValues></_> <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 1 6 -1.</_> - <_> - 0 5 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0160514302551746</threshold> - <left_val>-0.2687157988548279</left_val> - <right_val>0.0388328209519386</right_val></_></_> + <internalNodes> + 0 -1 480 -1.6051430255174637e-02</internalNodes> + <leafValues> + -2.6871579885482788e-01 3.8832820951938629e-02</leafValues></_> <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 4 3 -1.</_> - <_> - 13 1 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0484956614673138</threshold> - <left_val>-0.0176114197820425</left_val> - <right_val>0.4321045875549316</right_val></_></_> + <internalNodes> + 0 -1 481 4.8495661467313766e-02</internalNodes> + <leafValues> + -1.7611419782042503e-02 4.3210458755493164e-01</leafValues></_> <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 3 4 -1.</_> - <_> - 5 1 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0580279901623726</threshold> - <left_val>0.5674945712089539</left_val> - <right_val>-0.0189294908195734</right_val></_></_> + <internalNodes> + 0 -1 482 -5.8027990162372589e-02</internalNodes> + <leafValues> + 5.6749457120895386e-01 -1.8929490819573402e-02</leafValues></_> <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 10 1 -1.</_> - <_> - 4 2 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.3509042635560036e-003</threshold> - <left_val>-0.0819991603493690</left_val> - <right_val>0.1264501959085465</right_val></_></_> + <internalNodes> + 0 -1 483 9.3509042635560036e-03</internalNodes> + <leafValues> + -8.1999160349369049e-02 1.2645019590854645e-01</leafValues></_> <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 4 2 -1.</_> - <_> - 4 0 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.2834091261029243e-003</threshold> - <left_val>0.0360804013907909</left_val> - <right_val>-0.3069862127304077</right_val></_></_> + <internalNodes> + 0 -1 484 7.2834091261029243e-03</internalNodes> + <leafValues> + 3.6080401390790939e-02 -3.0698621273040771e-01</leafValues></_> <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 5 8 -1.</_> - <_> - 9 2 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0365255512297153</threshold> - <left_val>0.0594477802515030</left_val> - <right_val>-0.0655446425080299</right_val></_></_> + <internalNodes> + 0 -1 485 -3.6525551229715347e-02</internalNodes> + <leafValues> + 5.9447780251502991e-02 -6.5544642508029938e-02</leafValues></_> <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 3 2 2 -1.</_> - <_> - 7 3 1 1 2.</_> - <_> - 8 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.2749549243599176e-003</threshold> - <left_val>0.2053637057542801</left_val> - <right_val>-0.0503664687275887</right_val></_></_> + <internalNodes> + 0 -1 486 -2.2749549243599176e-03</internalNodes> + <leafValues> + 2.0536370575428009e-01 -5.0366468727588654e-02</leafValues></_> <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 18 2 -1.</_> - <_> - 9 5 9 1 2.</_> - <_> - 0 6 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0455716587603092</threshold> - <left_val>-0.3678281903266907</left_val> - <right_val>0.0298570506274700</right_val></_></_> + <internalNodes> + 0 -1 487 -4.5571658760309219e-02</internalNodes> + <leafValues> + -3.6782819032669067e-01 2.9857050627470016e-02</leafValues></_> <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 3 1 -1.</_> - <_> - 1 9 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8613593359477818e-005</threshold> - <left_val>-0.1012998968362808</left_val> - <right_val>0.0988395810127258</right_val></_></_> + <internalNodes> + 0 -1 488 7.8613593359477818e-05</internalNodes> + <leafValues> + -1.0129989683628082e-01 9.8839581012725830e-02</leafValues></_> <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 2 2 -1.</_> - <_> - 17 9 1 1 2.</_> - <_> - 16 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.4493337888270617e-004</threshold> - <left_val>0.1042293980717659</left_val> - <right_val>-0.2824330031871796</right_val></_></_> + <internalNodes> + 0 -1 489 7.4493337888270617e-04</internalNodes> + <leafValues> + 1.0422939807176590e-01 -2.8243300318717957e-01</leafValues></_> <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 2 2 -1.</_> - <_> - 0 10 1 1 2.</_> - <_> - 1 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7769076849799603e-005</threshold> - <left_val>-0.1019401997327805</left_val> - <right_val>0.1068416014313698</right_val></_></_> + <internalNodes> + 0 -1 490 6.7769076849799603e-05</internalNodes> + <leafValues> + -1.0194019973278046e-01 1.0684160143136978e-01</leafValues></_> <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 12 3 -1.</_> - <_> - 5 3 12 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0149764297530055</threshold> - <left_val>-0.0548286102712154</left_val> - <right_val>0.1124159991741180</right_val></_></_> + <internalNodes> + 0 -1 491 1.4976429753005505e-02</internalNodes> + <leafValues> + -5.4828610271215439e-02 1.1241599917411804e-01</leafValues></_> <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 2 2 -1.</_> - <_> - 0 9 1 1 2.</_> - <_> - 1 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6552510205656290e-003</threshold> - <left_val>-0.2591753900051117</left_val> - <right_val>0.0402210690081120</right_val></_></_> + <internalNodes> + 0 -1 492 -1.6552510205656290e-03</internalNodes> + <leafValues> + -2.5917539000511169e-01 4.0221069008111954e-02</leafValues></_> <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 9 4 3 -1.</_> - <_> - 11 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0142556801438332</threshold> - <left_val>-0.3670678138732910</left_val> - <right_val>0.0161724705249071</right_val></_></_> + <internalNodes> + 0 -1 493 -1.4255680143833160e-02</internalNodes> + <leafValues> + -3.6706781387329102e-01 1.6172470524907112e-02</leafValues></_> <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 2 2 -1.</_> - <_> - 7 2 1 1 2.</_> - <_> - 8 3 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0518230739980936e-003</threshold> - <left_val>0.1926907002925873</left_val> - <right_val>-0.0478732287883759</right_val></_></_> + <internalNodes> + 0 -1 494 -2.0518230739980936e-03</internalNodes> + <leafValues> + 1.9269070029258728e-01 -4.7873228788375854e-02</leafValues></_> <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 3 6 -1.</_> - <_> - 7 3 3 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.1305371969938278</threshold> - <left_val>6.2902332283556461e-003</left_val> - <right_val>-0.3756305873394013</right_val></_></_> + <internalNodes> + 0 -1 495 1.3053719699382782e-01</internalNodes> + <leafValues> + 6.2902332283556461e-03 -3.7563058733940125e-01</leafValues></_> <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 6 3 -1.</_> - <_> - 11 3 2 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0833243280649185</threshold> - <left_val>-0.1189247965812683</left_val> - <right_val>0.0930244028568268</right_val></_></_> + <internalNodes> + 0 -1 496 -8.3324328064918518e-02</internalNodes> + <leafValues> + -1.1892479658126831e-01 9.3024402856826782e-02</leafValues></_> <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 4 10 -1.</_> - <_> - 14 5 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2492212951183319</threshold> - <left_val>7.7079031616449356e-003</left_val> - <right_val>-0.7705643773078919</right_val></_></_></trees> - <stage_threshold>-1.6429220438003540</stage_threshold> - <parent>6</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 497 2.4922129511833191e-01</internalNodes> + <leafValues> + 7.7079031616449356e-03 -7.7056437730789185e-01</leafValues></_></weakClassifiers></_> <_> - <!-- stage 8 --> - <trees> + <maxWeakCount>133</maxWeakCount> + <stageThreshold>-1.5156250000000000e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 6 2 -1.</_> - <_> - 8 6 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0144048901274800</threshold> - <left_val>0.3417874872684479</left_val> - <right_val>-0.3029088079929352</right_val></_></_> + <internalNodes> + 0 -1 498 -1.4404890127480030e-02</internalNodes> + <leafValues> + 3.4178748726844788e-01 -3.0290880799293518e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 11 8 -1.</_> - <_> - 6 8 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2266740947961807</threshold> - <left_val>-0.3307273983955383</left_val> - <right_val>0.1636023074388504</right_val></_></_> + <internalNodes> + 0 -1 499 2.2667409479618073e-01</internalNodes> + <leafValues> + -3.3072739839553833e-01 1.6360230743885040e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 2 9 -1.</_> - <_> - 3 5 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0469341501593590</threshold> - <left_val>0.2708880901336670</left_val> - <right_val>-0.2528345882892609</right_val></_></_> + <internalNodes> + 0 -1 500 -4.6934150159358978e-02</internalNodes> + <leafValues> + 2.7088809013366699e-01 -2.5283458828926086e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 3 3 -1.</_> - <_> - 11 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.4530718848109245e-003</threshold> - <left_val>0.4481373131275177</left_val> - <right_val>-0.0606677196919918</right_val></_></_> + <internalNodes> + 0 -1 501 -7.4530718848109245e-03</internalNodes> + <leafValues> + 4.4813731312751770e-01 -6.0667719691991806e-02</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 4 7 -1.</_> - <_> - 2 4 2 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0214920900762081</threshold> - <left_val>0.1897142976522446</left_val> - <right_val>-0.2200036048889160</right_val></_></_> + <internalNodes> + 0 -1 502 -2.1492090076208115e-02</internalNodes> + <leafValues> + 1.8971429765224457e-01 -2.2000360488891602e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 7 3 3 -1.</_> - <_> - 16 8 1 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7815029285848141e-003</threshold> - <left_val>0.0884260982275009</left_val> - <right_val>-0.0306275300681591</right_val></_></_> + <internalNodes> + 0 -1 503 -5.7815029285848141e-03</internalNodes> + <leafValues> + 8.8426098227500916e-02 -3.0627530068159103e-02</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 3 1 -1.</_> - <_> - 1 3 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0396744310855865</threshold> - <left_val>-5.4195029661059380e-003</left_val> - <right_val>-1.4207619628906250e+003</right_val></_></_> + <internalNodes> + 0 -1 504 3.9674431085586548e-02</internalNodes> + <leafValues> + -5.4195029661059380e-03 -1.4207619628906250e+03</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 3 3 -1.</_> - <_> - 11 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0136275896802545</threshold> - <left_val>-0.0911957770586014</left_val> - <right_val>0.4834488034248352</right_val></_></_> + <internalNodes> + 0 -1 505 1.3627589680254459e-02</internalNodes> + <leafValues> + -9.1195777058601379e-02 4.8344880342483521e-01</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 5 3 3 -1.</_> - <_> - 6 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.5549151040613651e-003</threshold> - <left_val>0.3402729034423828</left_val> - <right_val>-0.1148158013820648</right_val></_></_> + <internalNodes> + 0 -1 506 -6.5549151040613651e-03</internalNodes> + <leafValues> + 3.4027290344238281e-01 -1.1481580138206482e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 10 12 2 -1.</_> - <_> - 3 11 12 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.1418822258710861e-003</threshold> - <left_val>-0.2146569043397903</left_val> - <right_val>0.1563148051500320</right_val></_></_> + <internalNodes> + 0 -1 507 5.1418822258710861e-03</internalNodes> + <leafValues> + -2.1465690433979034e-01 1.5631480515003204e-01</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 3 3 -1.</_> - <_> - 5 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.1714469231665134e-003</threshold> - <left_val>0.2890853881835938</left_val> - <right_val>-0.1148502975702286</right_val></_></_> + <internalNodes> + 0 -1 508 -7.1714469231665134e-03</internalNodes> + <leafValues> + 2.8908538818359375e-01 -1.1485029757022858e-01</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 3 3 -1.</_> - <_> - 10 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.5360728874802589e-003</threshold> - <left_val>0.2166815996170044</left_val> - <right_val>-0.0838172510266304</right_val></_></_> + <internalNodes> + 0 -1 509 -5.5360728874802589e-03</internalNodes> + <leafValues> + 2.1668159961700439e-01 -8.3817251026630402e-02</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 10 3 -1.</_> - <_> - 0 5 10 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2224552929401398</threshold> - <left_val>-6.5196859650313854e-003</left_val> - <right_val>-4.8679741210937500e+003</right_val></_></_> + <internalNodes> + 0 -1 510 2.2245529294013977e-01</internalNodes> + <leafValues> + -6.5196859650313854e-03 -4.8679741210937500e+03</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 3 3 -1.</_> - <_> - 10 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0115570798516274</threshold> - <left_val>-0.0454592406749725</left_val> - <right_val>0.3039467930793762</right_val></_></_> + <internalNodes> + 0 -1 511 1.1557079851627350e-02</internalNodes> + <leafValues> + -4.5459240674972534e-02 3.0394679307937622e-01</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 12 11 -1.</_> - <_> - 4 0 4 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2463150024414063</threshold> - <left_val>-0.5188724994659424</left_val> - <right_val>0.0511754192411900</right_val></_></_> + <internalNodes> + 0 -1 512 -2.4631500244140625e-01</internalNodes> + <leafValues> + -5.1887249946594238e-01 5.1175419241189957e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 3 3 -1.</_> - <_> - 10 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7819709610193968e-003</threshold> - <left_val>0.0344860590994358</left_val> - <right_val>-0.0391638614237309</right_val></_></_> + <internalNodes> + 0 -1 513 -1.7819709610193968e-03</internalNodes> + <leafValues> + 3.4486059099435806e-02 -3.9163861423730850e-02</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 3 3 -1.</_> - <_> - 7 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.7224133312702179e-003</threshold> - <left_val>0.3254309892654419</left_val> - <right_val>-0.0765746533870697</right_val></_></_> + <internalNodes> + 0 -1 514 -8.7224133312702179e-03</internalNodes> + <leafValues> + 3.2543098926544189e-01 -7.6574653387069702e-02</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 6 3 -1.</_> - <_> - 9 0 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0356582701206207</threshold> - <left_val>-0.5983566045761108</left_val> - <right_val>0.0383163392543793</right_val></_></_> + <internalNodes> + 0 -1 515 -3.5658270120620728e-02</internalNodes> + <leafValues> + -5.9835660457611084e-01 3.8316339254379272e-02</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 6 3 -1.</_> - <_> - 7 0 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0289036799222231</threshold> - <left_val>-0.6353018283843994</left_val> - <right_val>0.0247306898236275</right_val></_></_> + <internalNodes> + 0 -1 516 -2.8903679922223091e-02</internalNodes> + <leafValues> + -6.3530182838439941e-01 2.4730689823627472e-02</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 5 -1.</_> - <_> - 6 0 6 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1164717003703117</threshold> - <left_val>0.1807568073272705</left_val> - <right_val>-0.1635234057903290</right_val></_></_> + <internalNodes> + 0 -1 517 -1.1647170037031174e-01</internalNodes> + <leafValues> + 1.8075680732727051e-01 -1.6352340579032898e-01</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 7 4 -1.</_> - <_> - 4 1 7 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0258101299405098</threshold> - <left_val>-0.1088633984327316</left_val> - <right_val>0.2379308044910431</right_val></_></_> + <internalNodes> + 0 -1 518 2.5810129940509796e-02</internalNodes> + <leafValues> + -1.0886339843273163e-01 2.3793080449104309e-01</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 0 3 2 -1.</_> - <_> - 10 1 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.3603908531367779e-003</threshold> - <left_val>0.1904835999011993</left_val> - <right_val>-0.0800136178731918</right_val></_></_> + <internalNodes> + 0 -1 519 -7.3603908531367779e-03</internalNodes> + <leafValues> + 1.9048359990119934e-01 -8.0013617873191833e-02</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 12 -1.</_> - <_> - 0 6 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0619719978421926e-004</threshold> - <left_val>-0.2455690950155258</left_val> - <right_val>0.0952197685837746</right_val></_></_> + <internalNodes> + 0 -1 520 1.0619719978421926e-04</internalNodes> + <leafValues> + -2.4556909501552582e-01 9.5219768583774567e-02</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 8 2 2 -1.</_> - <_> - 16 8 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0197194200009108</threshold> - <left_val>-0.4757296144962311</left_val> - <right_val>0.0373679287731647</right_val></_></_> + <internalNodes> + 0 -1 521 -1.9719420000910759e-02</internalNodes> + <leafValues> + -4.7572961449623108e-01 3.7367928773164749e-02</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 7 4 1 -1.</_> - <_> - 1 7 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-7.4374658288434148e-004</threshold> - <left_val>0.0915851518511772</left_val> - <right_val>-0.2566849887371063</right_val></_></_> + <internalNodes> + 0 -1 522 -7.4374658288434148e-04</internalNodes> + <leafValues> + 9.1585151851177216e-02 -2.5668498873710632e-01</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 6 6 -1.</_> - <_> - 6 3 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0982190221548080</threshold> - <left_val>-0.0702288299798965</left_val> - <right_val>0.3357439935207367</right_val></_></_> + <internalNodes> + 0 -1 523 9.8219022154808044e-02</internalNodes> + <leafValues> + -7.0228829979896545e-02 3.3574399352073669e-01</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 11 4 1 -1.</_> - <_> - 8 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.3615029901266098e-003</threshold> - <left_val>0.0312140900641680</left_val> - <right_val>-0.6775388121604919</right_val></_></_> + <internalNodes> + 0 -1 524 5.3615029901266098e-03</internalNodes> + <leafValues> + 3.1214090064167976e-02 -6.7753881216049194e-01</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 3 2 4 -1.</_> - <_> - 16 4 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0148687595501542</threshold> - <left_val>-0.5809695720672607</left_val> - <right_val>0.0428148284554482</right_val></_></_> + <internalNodes> + 0 -1 525 -1.4868759550154209e-02</internalNodes> + <leafValues> + -5.8096957206726074e-01 4.2814828455448151e-02</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 11 6 -1.</_> - <_> - 3 4 11 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0964128524065018</threshold> - <left_val>0.1300428956747055</left_val> - <right_val>-0.1267888993024826</right_val></_></_> + <internalNodes> + 0 -1 526 -9.6412852406501770e-02</internalNodes> + <leafValues> + 1.3004289567470551e-01 -1.2678889930248260e-01</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 0 3 2 -1.</_> - <_> - 10 1 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.7894989363849163e-003</threshold> - <left_val>-0.0655986294150352</left_val> - <right_val>0.1557977050542831</right_val></_></_> + <internalNodes> + 0 -1 527 3.7894989363849163e-03</internalNodes> + <leafValues> + -6.5598629415035248e-02 1.5579770505428314e-01</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 3 2 -1.</_> - <_> - 5 1 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.4858610015362501e-003</threshold> - <left_val>0.2183402925729752</left_val> - <right_val>-0.1222129985690117</right_val></_></_> + <internalNodes> + 0 -1 528 -3.4858610015362501e-03</internalNodes> + <leafValues> + 2.1834029257297516e-01 -1.2221299856901169e-01</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 16 11 -1.</_> - <_> - 2 0 8 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3349829912185669</threshold> - <left_val>-0.0245881509035826</left_val> - <right_val>0.1763146072626114</right_val></_></_> + <internalNodes> + 0 -1 529 3.3498299121856689e-01</internalNodes> + <leafValues> + -2.4588150903582573e-02 1.7631460726261139e-01</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 6 0 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0257387291640043</threshold> - <left_val>0.1433213949203491</left_val> - <right_val>-0.1117798015475273</right_val></_></_> + <internalNodes> + 0 -1 530 -2.5738729164004326e-02</internalNodes> + <leafValues> + 1.4332139492034912e-01 -1.1177980154752731e-01</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 14 12 -1.</_> - <_> - 4 0 7 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3850714862346649</threshold> - <left_val>0.0145256398245692</left_val> - <right_val>-0.3629615008831024</right_val></_></_> + <internalNodes> + 0 -1 531 3.8507148623466492e-01</internalNodes> + <leafValues> + 1.4525639824569225e-02 -3.6296150088310242e-01</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 6 5 -1.</_> - <_> - 6 0 2 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0281054191291332</threshold> - <left_val>-0.3428766131401062</left_val> - <right_val>0.0493064001202583</right_val></_></_> + <internalNodes> + 0 -1 532 -2.8105419129133224e-02</internalNodes> + <leafValues> + -3.4287661314010620e-01 4.9306400120258331e-02</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 5 2 4 -1.</_> - <_> - 16 6 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0184734091162682</threshold> - <left_val>-0.5893219113349915</left_val> - <right_val>0.0238633304834366</right_val></_></_> + <internalNodes> + 0 -1 533 -1.8473409116268158e-02</internalNodes> + <leafValues> + -5.8932191133499146e-01 2.3863330483436584e-02</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 2 4 -1.</_> - <_> - 0 2 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0135366898030043</threshold> - <left_val>-0.4291228055953980</left_val> - <right_val>0.0319439098238945</right_val></_></_> + <internalNodes> + 0 -1 534 -1.3536689803004265e-02</internalNodes> + <leafValues> + -4.2912280559539795e-01 3.1943909823894501e-02</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 6 4 -1.</_> - <_> - 7 2 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0231229495257139</threshold> - <left_val>0.2014220952987671</left_val> - <right_val>-0.0503530390560627</right_val></_></_> + <internalNodes> + 0 -1 535 -2.3122949525713921e-02</internalNodes> + <leafValues> + 2.0142209529876709e-01 -5.0353039056062698e-02</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 4 3 -1.</_> - <_> - 4 3 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0211394093930721</threshold> - <left_val>-0.0638992562890053</left_val> - <right_val>0.2652564942836762</right_val></_></_> + <internalNodes> + 0 -1 536 2.1139409393072128e-02</internalNodes> + <leafValues> + -6.3899256289005280e-02 2.6525649428367615e-01</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 8 8 -1.</_> - <_> - 11 2 4 4 2.</_> - <_> - 7 6 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0900675207376480</threshold> - <left_val>0.0112279001623392</left_val> - <right_val>-0.1031911969184876</right_val></_></_> + <internalNodes> + 0 -1 537 9.0067520737648010e-02</internalNodes> + <leafValues> + 1.1227900162339211e-02 -1.0319119691848755e-01</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 2 4 -1.</_> - <_> - 0 6 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0103827295824885</threshold> - <left_val>0.0357205010950565</left_val> - <right_val>-0.4954187870025635</right_val></_></_> + <internalNodes> + 0 -1 538 1.0382729582488537e-02</internalNodes> + <leafValues> + 3.5720501095056534e-02 -4.9541878700256348e-01</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 8 8 -1.</_> - <_> - 11 2 4 4 2.</_> - <_> - 7 6 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.4825740363448858e-003</threshold> - <left_val>-0.0248882602900267</left_val> - <right_val>0.0237133391201496</right_val></_></_> + <internalNodes> + 0 -1 539 1.4825740363448858e-03</internalNodes> + <leafValues> + -2.4888260290026665e-02 2.3713339120149612e-02</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 8 8 -1.</_> - <_> - 3 2 4 4 2.</_> - <_> - 7 6 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1237843036651611</threshold> - <left_val>0.0322882011532784</left_val> - <right_val>-0.5373219251632690</right_val></_></_> + <internalNodes> + 0 -1 540 1.2378430366516113e-01</internalNodes> + <leafValues> + 3.2288201153278351e-02 -5.3732192516326904e-01</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 6 1 6 -1.</_> - <_> - 17 8 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0161164700984955</threshold> - <left_val>-0.4857034087181091</left_val> - <right_val>0.0274617001414299</right_val></_></_> + <internalNodes> + 0 -1 541 -1.6116470098495483e-02</internalNodes> + <leafValues> + -4.8570340871810913e-01 2.7461700141429901e-02</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 1 6 -1.</_> - <_> - 0 8 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0159066393971443</threshold> - <left_val>0.0292402002960444</left_val> - <right_val>-0.4542374014854431</right_val></_></_> + <internalNodes> + 0 -1 542 1.5906639397144318e-02</internalNodes> + <leafValues> + 2.9240200296044350e-02 -4.5423740148544312e-01</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 3 3 -1.</_> - <_> - 9 5 1 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.1634020209312439e-003</threshold> - <left_val>0.1062512025237083</left_val> - <right_val>-0.1008044034242630</right_val></_></_> + <internalNodes> + 0 -1 543 -9.1634020209312439e-03</internalNodes> + <leafValues> + 1.0625120252370834e-01 -1.0080440342426300e-01</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 5 3 -1.</_> - <_> - 6 4 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0193473491817713</threshold> - <left_val>0.2173905968666077</left_val> - <right_val>-0.0690005123615265</right_val></_></_> + <internalNodes> + 0 -1 544 -1.9347349181771278e-02</internalNodes> + <leafValues> + 2.1739059686660767e-01 -6.9000512361526489e-02</leafValues></_> <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 9 4 3 -1.</_> - <_> - 9 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0103256097063422</threshold> - <left_val>-0.4061712920665741</left_val> - <right_val>0.0283007193356752</right_val></_></_> + <internalNodes> + 0 -1 545 -1.0325609706342220e-02</internalNodes> + <leafValues> + -4.0617129206657410e-01 2.8300719335675240e-02</leafValues></_> <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 4 4 5 -1.</_> - <_> - 3 4 2 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.4596269726753235e-003</threshold> - <left_val>0.1388134956359863</left_val> - <right_val>-0.1016713976860046</right_val></_></_> + <internalNodes> + 0 -1 546 -4.4596269726753235e-03</internalNodes> + <leafValues> + 1.3881349563598633e-01 -1.0167139768600464e-01</leafValues></_> <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 3 3 3 -1.</_> - <_> - 12 4 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0133312400430441</threshold> - <left_val>0.1116838976740837</left_val> - <right_val>-0.0570181608200073</right_val></_></_> + <internalNodes> + 0 -1 547 -1.3331240043044090e-02</internalNodes> + <leafValues> + 1.1168389767408371e-01 -5.7018160820007324e-02</leafValues></_> <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 3 3 -1.</_> - <_> - 6 4 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0140380896627903</threshold> - <left_val>-0.0658330321311951</left_val> - <right_val>0.2812659144401550</right_val></_></_> + <internalNodes> + 0 -1 548 1.4038089662790298e-02</internalNodes> + <leafValues> + -6.5833032131195068e-02 2.8126591444015503e-01</leafValues></_> <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 6 1 -1.</_> - <_> - 9 10 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.6190225556492805e-003</threshold> - <left_val>0.0315866805613041</left_val> - <right_val>-0.2893286943435669</right_val></_></_> + <internalNodes> + 0 -1 549 8.6190225556492805e-03</internalNodes> + <leafValues> + 3.1586680561304092e-02 -2.8932869434356689e-01</leafValues></_> <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 14 12 -1.</_> - <_> - 7 0 7 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2938677072525024</threshold> - <left_val>-0.0468905903398991</left_val> - <right_val>0.3061471879482269</right_val></_></_> + <internalNodes> + 0 -1 550 2.9386770725250244e-01</internalNodes> + <leafValues> + -4.6890590339899063e-02 3.0614718794822693e-01</leafValues></_> <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 4 1 2 -1.</_> - <_> - 14 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0148689402267337</threshold> - <left_val>0.1750212013721466</left_val> - <right_val>-0.0100259101018310</right_val></_></_> + <internalNodes> + 0 -1 551 -1.4868940226733685e-02</internalNodes> + <leafValues> + 1.7502120137214661e-01 -1.0025910101830959e-02</leafValues></_> <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 9 1 -1.</_> - <_> - 12 5 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0432849898934364</threshold> - <left_val>0.1716116070747376</left_val> - <right_val>-0.0967921093106270</right_val></_></_> + <internalNodes> + 0 -1 552 -4.3284989893436432e-02</internalNodes> + <leafValues> + 1.7161160707473755e-01 -9.6792109310626984e-02</leafValues></_> <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 3 4 -1.</_> - <_> - 9 4 1 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0128885097801685</threshold> - <left_val>-0.0229285508394241</left_val> - <right_val>0.2418552041053772</right_val></_></_> + <internalNodes> + 0 -1 553 1.2888509780168533e-02</internalNodes> + <leafValues> + -2.2928550839424133e-02 2.4185520410537720e-01</leafValues></_> <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 2 3 -1.</_> - <_> - 1 5 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.4358419943600893e-003</threshold> - <left_val>0.1351819932460785</left_val> - <right_val>-0.1038846969604492</right_val></_></_> + <internalNodes> + 0 -1 554 -3.4358419943600893e-03</internalNodes> + <leafValues> + 1.3518199324607849e-01 -1.0388469696044922e-01</leafValues></_> <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 11 3 -1.</_> - <_> - 4 3 11 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0340359583497047</threshold> - <left_val>0.2567476034164429</left_val> - <right_val>-0.0520287007093430</right_val></_></_> + <internalNodes> + 0 -1 555 -3.4035958349704742e-02</internalNodes> + <leafValues> + 2.5674760341644287e-01 -5.2028700709342957e-02</leafValues></_> <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 4 2 1 -1.</_> - <_> - 4 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>5.0311200320720673e-003</threshold> - <left_val>-0.0844775512814522</left_val> - <right_val>0.1623740941286087</right_val></_></_> + <internalNodes> + 0 -1 556 5.0311200320720673e-03</internalNodes> + <leafValues> + -8.4477551281452179e-02 1.6237409412860870e-01</leafValues></_> <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 1 1 8 -1.</_> - <_> - 17 3 1 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.2706579582300037e-004</threshold> - <left_val>0.1055900976061821</left_val> - <right_val>-0.2125353068113327</right_val></_></_> + <internalNodes> + 0 -1 557 -1.2706579582300037e-04</internalNodes> + <leafValues> + 1.0559009760618210e-01 -2.1253530681133270e-01</leafValues></_> <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 2 3 -1.</_> - <_> - 0 5 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0111655602231622</threshold> - <left_val>0.0263089109212160</left_val> - <right_val>-0.4865539073944092</right_val></_></_> + <internalNodes> + 0 -1 558 1.1165560223162174e-02</internalNodes> + <leafValues> + 2.6308910921216011e-02 -4.8655390739440918e-01</leafValues></_> <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 9 10 -1.</_> - <_> - 8 2 3 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0525597408413887</threshold> - <left_val>0.1085146963596344</left_val> - <right_val>-0.1139608025550842</right_val></_></_> + <internalNodes> + 0 -1 559 -5.2559740841388702e-02</internalNodes> + <leafValues> + 1.0851469635963440e-01 -1.1396080255508423e-01</leafValues></_> <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 4 3 -1.</_> - <_> - 8 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.1416407376527786e-003</threshold> - <left_val>-0.4066394865512848</left_val> - <right_val>0.0349575690925121</right_val></_></_> + <internalNodes> + 0 -1 560 -9.1416407376527786e-03</internalNodes> + <leafValues> + -4.0663948655128479e-01 3.4957569092512131e-02</leafValues></_> <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 6 8 -1.</_> - <_> - 6 1 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1108352020382881</threshold> - <left_val>0.4129435122013092</left_val> - <right_val>-0.0339391008019447</right_val></_></_> + <internalNodes> + 0 -1 561 -1.1083520203828812e-01</internalNodes> + <leafValues> + 4.1294351220130920e-01 -3.3939100801944733e-02</leafValues></_> <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 10 2 -1.</_> - <_> - 8 0 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7494291104376316e-003</threshold> - <left_val>0.1046520993113518</left_val> - <right_val>-0.1108004972338677</right_val></_></_> + <internalNodes> + 0 -1 562 -5.7494291104376316e-03</internalNodes> + <leafValues> + 1.0465209931135178e-01 -1.1080049723386765e-01</leafValues></_> <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 10 -1.</_> - <_> - 9 0 9 5 2.</_> - <_> - 0 5 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3383356034755707</threshold> - <left_val>-0.4255520105361939</left_val> - <right_val>0.0292493905872107</right_val></_></_> + <internalNodes> + 0 -1 563 -3.3833560347557068e-01</internalNodes> + <leafValues> + -4.2555201053619385e-01 2.9249390587210655e-02</leafValues></_> <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 4 2 -1.</_> - <_> - 8 1 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.9934339523315430e-003</threshold> - <left_val>-0.5376632213592529</left_val> - <right_val>0.0194288194179535</right_val></_></_> + <internalNodes> + 0 -1 564 -9.9934339523315430e-03</internalNodes> + <leafValues> + -5.3766322135925293e-01 1.9428819417953491e-02</leafValues></_> <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 1 3 -1.</_> - <_> - 9 7 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.4573689810931683e-003</threshold> - <left_val>0.1814071983098984</left_val> - <right_val>-0.0610980615019798</right_val></_></_> + <internalNodes> + 0 -1 565 -4.4573689810931683e-03</internalNodes> + <leafValues> + 1.8140719830989838e-01 -6.1098061501979828e-02</leafValues></_> <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 3 -1.</_> - <_> - 8 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0117391804233193</threshold> - <left_val>0.0276917908340693</left_val> - <right_val>-0.4160597026348114</right_val></_></_> + <internalNodes> + 0 -1 566 1.1739180423319340e-02</internalNodes> + <leafValues> + 2.7691790834069252e-02 -4.1605970263481140e-01</leafValues></_> <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 7 2 2 -1.</_> - <_> - 11 7 1 1 2.</_> - <_> - 10 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0730029791593552e-003</threshold> - <left_val>0.2151183038949966</left_val> - <right_val>-0.0445881113409996</right_val></_></_> + <internalNodes> + 0 -1 567 -2.0730029791593552e-03</internalNodes> + <leafValues> + 2.1511830389499664e-01 -4.4588111340999603e-02</leafValues></_> <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 9 4 1 -1.</_> - <_> - 7 9 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.3844608590006828e-003</threshold> - <left_val>0.0303817205131054</left_val> - <right_val>-0.3906125128269196</right_val></_></_> + <internalNodes> + 0 -1 568 4.3844608590006828e-03</internalNodes> + <leafValues> + 3.0381720513105392e-02 -3.9061251282691956e-01</leafValues></_> <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 1 2 3 -1.</_> - <_> - 16 2 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9646214619278908e-003</threshold> - <left_val>0.0320708602666855</left_val> - <right_val>-0.3713954985141754</right_val></_></_> + <internalNodes> + 0 -1 569 8.9646214619278908e-03</internalNodes> + <leafValues> + 3.2070860266685486e-02 -3.7139549851417542e-01</leafValues></_> <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 1 3 -1.</_> - <_> - 7 3 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.3689231388270855e-003</threshold> - <left_val>-0.0626119375228882</left_val> - <right_val>0.1863033026456833</right_val></_></_> + <internalNodes> + 0 -1 570 4.3689231388270855e-03</internalNodes> + <leafValues> + -6.2611937522888184e-02 1.8630330264568329e-01</leafValues></_> <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 3 4 1 -1.</_> - <_> - 13 4 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0222061108797789</threshold> - <left_val>-0.2521347105503082</left_val> - <right_val>0.0173849798738956</right_val></_></_> + <internalNodes> + 0 -1 571 -2.2206110879778862e-02</internalNodes> + <leafValues> + -2.5213471055030823e-01 1.7384979873895645e-02</leafValues></_> <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 2 2 -1.</_> - <_> - 5 2 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0268171206116676</threshold> - <left_val>0.0187781006097794</left_val> - <right_val>-0.6334772706031799</right_val></_></_> + <internalNodes> + 0 -1 572 2.6817120611667633e-02</internalNodes> + <leafValues> + 1.8778100609779358e-02 -6.3347727060317993e-01</leafValues></_> <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 2 2 -1.</_> - <_> - 15 10 1 1 2.</_> - <_> - 14 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0099010250996798e-004</threshold> - <left_val>-0.0898824036121368</left_val> - <right_val>0.0929719433188438</right_val></_></_> + <internalNodes> + 0 -1 573 1.0099010250996798e-04</internalNodes> + <leafValues> + -8.9882403612136841e-02 9.2971943318843842e-02</leafValues></_> <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 10 2 2 -1.</_> - <_> - 2 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7158210761845112e-003</threshold> - <left_val>-0.4498794078826904</left_val> - <right_val>0.0250294599682093</right_val></_></_> + <internalNodes> + 0 -1 574 -3.7158210761845112e-03</internalNodes> + <leafValues> + -4.4987940788269043e-01 2.5029459968209267e-02</leafValues></_> <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 4 1 -1.</_> - <_> - 15 10 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7535969857126474e-003</threshold> - <left_val>0.2607046961784363</left_val> - <right_val>-0.0709694176912308</right_val></_></_> + <internalNodes> + 0 -1 575 -2.7535969857126474e-03</internalNodes> + <leafValues> + 2.6070469617843628e-01 -7.0969417691230774e-02</leafValues></_> <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 10 6 2 -1.</_> - <_> - 7 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0219228994101286</threshold> - <left_val>-0.5077775120735169</left_val> - <right_val>0.0251804199069738</right_val></_></_> + <internalNodes> + 0 -1 576 -2.1922899410128593e-02</internalNodes> + <leafValues> + -5.0777751207351685e-01 2.5180419906973839e-02</leafValues></_> <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 2 2 -1.</_> - <_> - 17 9 1 1 2.</_> - <_> - 16 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0883962325751781e-004</threshold> - <left_val>-0.3427650034427643</left_val> - <right_val>0.0822411626577377</right_val></_></_> + <internalNodes> + 0 -1 577 -7.0883962325751781e-04</internalNodes> + <leafValues> + -3.4276500344276428e-01 8.2241162657737732e-02</leafValues></_> <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 7 2 2 -1.</_> - <_> - 3 7 1 1 2.</_> - <_> - 4 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6273240325972438e-003</threshold> - <left_val>0.1968282014131546</left_val> - <right_val>-0.0624031312763691</right_val></_></_> + <internalNodes> + 0 -1 578 -1.6273240325972438e-03</internalNodes> + <leafValues> + 1.9682820141315460e-01 -6.2403131276369095e-02</leafValues></_> <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 2 2 -1.</_> - <_> - 17 9 1 1 2.</_> - <_> - 16 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.4539799885824323e-003</threshold> - <left_val>0.0522507987916470</left_val> - <right_val>-0.2910020053386688</right_val></_></_> + <internalNodes> + 0 -1 579 1.4539799885824323e-03</internalNodes> + <leafValues> + 5.2250798791646957e-02 -2.9100200533866882e-01</leafValues></_> <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 2 2 -1.</_> - <_> - 0 9 1 1 2.</_> - <_> - 1 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2582080671563745e-004</threshold> - <left_val>-0.1165435984730721</left_val> - <right_val>0.1104675978422165</right_val></_></_> + <internalNodes> + 0 -1 580 1.2582080671563745e-04</internalNodes> + <leafValues> + -1.1654359847307205e-01 1.1046759784221649e-01</leafValues></_> <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 2 2 -1.</_> - <_> - 17 9 1 1 2.</_> - <_> - 16 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.3695871580857784e-005</threshold> - <left_val>-0.0522894710302353</left_val> - <right_val>0.0618703514337540</right_val></_></_> + <internalNodes> + 0 -1 581 8.3695871580857784e-05</internalNodes> + <leafValues> + -5.2289471030235291e-02 6.1870351433753967e-02</leafValues></_> <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 2 2 -1.</_> - <_> - 0 9 1 1 2.</_> - <_> - 1 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1398050264688209e-004</threshold> - <left_val>0.1539689004421234</left_val> - <right_val>-0.0892020091414452</right_val></_></_> + <internalNodes> + 0 -1 582 -1.1398050264688209e-04</internalNodes> + <leafValues> + 1.5396890044212341e-01 -8.9202009141445160e-02</leafValues></_> <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 7 2 2 -1.</_> - <_> - 11 7 1 1 2.</_> - <_> - 10 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.5188050456345081e-003</threshold> - <left_val>-0.0612073205411434</left_val> - <right_val>0.1290733963251114</right_val></_></_> + <internalNodes> + 0 -1 583 1.5188050456345081e-03</internalNodes> + <leafValues> + -6.1207320541143417e-02 1.2907339632511139e-01</leafValues></_> <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 2 4 -1.</_> - <_> - 0 3 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0154057601466775</threshold> - <left_val>0.0250001102685928</left_val> - <right_val>-0.4407764077186585</right_val></_></_> + <internalNodes> + 0 -1 584 1.5405760146677494e-02</internalNodes> + <leafValues> + 2.5000110268592834e-02 -4.4077640771865845e-01</leafValues></_> <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 7 2 2 -1.</_> - <_> - 11 7 1 1 2.</_> - <_> - 10 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1019539670087397e-004</threshold> - <left_val>0.1011219993233681</left_val> - <right_val>-0.0672010704874992</right_val></_></_> + <internalNodes> + 0 -1 585 -1.1019539670087397e-04</internalNodes> + <leafValues> + 1.0112199932336807e-01 -6.7201070487499237e-02</leafValues></_> <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 11 6 1 -1.</_> - <_> - 4 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0196758303791285</threshold> - <left_val>-0.6548616290092468</left_val> - <right_val>0.0169960092753172</right_val></_></_> + <internalNodes> + 0 -1 586 -1.9675830379128456e-02</internalNodes> + <leafValues> + -6.5486162900924683e-01 1.6996009275317192e-02</leafValues></_> <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 4 1 -1.</_> - <_> - 15 10 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.9909037817269564e-004</threshold> - <left_val>0.1025518998503685</left_val> - <right_val>-0.0592892207205296</right_val></_></_> + <internalNodes> + 0 -1 587 -9.9909037817269564e-04</internalNodes> + <leafValues> + 1.0255189985036850e-01 -5.9289220720529556e-02</leafValues></_> <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 4 1 -1.</_> - <_> - 1 10 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2456219701562077e-004</threshold> - <left_val>-0.1107892990112305</left_val> - <right_val>0.1034844964742661</right_val></_></_> + <internalNodes> + 0 -1 588 1.2456219701562077e-04</internalNodes> + <leafValues> + -1.1078929901123047e-01 1.0348449647426605e-01</leafValues></_> <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 7 2 2 -1.</_> - <_> - 11 7 1 1 2.</_> - <_> - 10 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2445759784895927e-004</threshold> - <left_val>-0.0957439094781876</left_val> - <right_val>0.0830029025673866</right_val></_></_> + <internalNodes> + 0 -1 589 1.2445759784895927e-04</internalNodes> + <leafValues> + -9.5743909478187561e-02 8.3002902567386627e-02</leafValues></_> <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 7 2 2 -1.</_> - <_> - 6 7 1 1 2.</_> - <_> - 7 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.9823738839477301e-003</threshold> - <left_val>0.2143152058124542</left_val> - <right_val>-0.0553987398743629</right_val></_></_> + <internalNodes> + 0 -1 590 -1.9823738839477301e-03</internalNodes> + <leafValues> + 2.1431520581245422e-01 -5.5398739874362946e-02</leafValues></_> <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 4 16 8 -1.</_> - <_> - 10 4 8 4 2.</_> - <_> - 2 8 8 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1965426951646805</threshold> - <left_val>0.0318264998495579</left_val> - <right_val>-0.2168519943952560</right_val></_></_> + <internalNodes> + 0 -1 591 1.9654269516468048e-01</internalNodes> + <leafValues> + 3.1826499849557877e-02 -2.1685199439525604e-01</leafValues></_> <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 1 4 -1.</_> - <_> - 6 1 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.5871278960257769e-003</threshold> - <left_val>-0.0743222087621689</left_val> - <right_val>0.1497495025396347</right_val></_></_> + <internalNodes> + 0 -1 592 3.5871278960257769e-03</internalNodes> + <leafValues> + -7.4322208762168884e-02 1.4974950253963470e-01</leafValues></_> <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 2 3 -1.</_> - <_> - 16 10 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0106685003265738</threshold> - <left_val>0.0130248302593827</left_val> - <right_val>-0.3163357973098755</right_val></_></_> + <internalNodes> + 0 -1 593 1.0668500326573849e-02</internalNodes> + <leafValues> + 1.3024830259382725e-02 -3.1633579730987549e-01</leafValues></_> <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 9 3 -1.</_> - <_> - 3 1 9 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0156929697841406</threshold> - <left_val>0.1812382042407990</left_val> - <right_val>-0.0616139508783817</right_val></_></_> + <internalNodes> + 0 -1 594 -1.5692969784140587e-02</internalNodes> + <leafValues> + 1.8123820424079895e-01 -6.1613950878381729e-02</leafValues></_> <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 3 3 -1.</_> - <_> - 15 1 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0201006196439266</threshold> - <left_val>0.0449748486280441</left_val> - <right_val>-0.4333986043930054</right_val></_></_> + <internalNodes> + 0 -1 595 2.0100619643926620e-02</internalNodes> + <leafValues> + 4.4974848628044128e-02 -4.3339860439300537e-01</leafValues></_> <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 2 2 -1.</_> - <_> - 8 7 1 1 2.</_> - <_> - 9 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3011429999023676e-004</threshold> - <left_val>0.1415798962116242</left_val> - <right_val>-0.0726230517029762</right_val></_></_> + <internalNodes> + 0 -1 596 -9.3011429999023676e-04</internalNodes> + <leafValues> + 1.4157989621162415e-01 -7.2623051702976227e-02</leafValues></_> <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 2 3 -1.</_> - <_> - 16 10 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2854380474891514e-004</threshold> - <left_val>-0.0516217090189457</left_val> - <right_val>0.0481922402977943</right_val></_></_> + <internalNodes> + 0 -1 597 1.2854380474891514e-04</internalNodes> + <leafValues> + -5.1621709018945694e-02 4.8192240297794342e-02</leafValues></_> <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 2 3 -1.</_> - <_> - 0 10 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0105983903631568</threshold> - <left_val>-0.5159295201301575</left_val> - <right_val>0.0199946500360966</right_val></_></_> + <internalNodes> + 0 -1 598 -1.0598390363156796e-02</internalNodes> + <leafValues> + -5.1592952013015747e-01 1.9994650036096573e-02</leafValues></_> <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 3 3 -1.</_> - <_> - 15 1 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0338730812072754</threshold> - <left_val>-0.3170802891254425</left_val> - <right_val>0.0146650699898601</right_val></_></_> + <internalNodes> + 0 -1 599 -3.3873081207275391e-02</internalNodes> + <leafValues> + -3.1708028912544250e-01 1.4665069989860058e-02</leafValues></_> <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 3 3 -1.</_> - <_> - 3 1 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0216640792787075</threshold> - <left_val>0.0280665308237076</left_val> - <right_val>-0.3488689959049225</right_val></_></_> + <internalNodes> + 0 -1 600 2.1664079278707504e-02</internalNodes> + <leafValues> + 2.8066530823707581e-02 -3.4886899590492249e-01</leafValues></_> <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 4 1 4 -1.</_> - <_> - 9 5 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0162978190928698</threshold> - <left_val>0.0930405929684639</left_val> - <right_val>-0.0304907094687223</right_val></_></_> + <internalNodes> + 0 -1 601 -1.6297819092869759e-02</internalNodes> + <leafValues> + 9.3040592968463898e-02 -3.0490709468722343e-02</leafValues></_> <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 6 8 -1.</_> - <_> - 5 4 3 4 2.</_> - <_> - 8 8 3 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0726411193609238</threshold> - <left_val>-0.4798538982868195</left_val> - <right_val>0.0219257604330778</right_val></_></_> + <internalNodes> + 0 -1 602 -7.2641119360923767e-02</internalNodes> + <leafValues> + -4.7985389828681946e-01 2.1925760433077812e-02</leafValues></_> <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 2 3 -1.</_> - <_> - 8 1 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.9341657906770706e-003</threshold> - <left_val>-0.0635952726006508</left_val> - <right_val>0.1606857925653458</right_val></_></_> + <internalNodes> + 0 -1 603 5.9341657906770706e-03</internalNodes> + <leafValues> + -6.3595272600650787e-02 1.6068579256534576e-01</leafValues></_> <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 4 1 -1.</_> - <_> - 8 0 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0124482000246644</threshold> - <left_val>-0.4358262121677399</left_val> - <right_val>0.0229794196784496</right_val></_></_> + <internalNodes> + 0 -1 604 -1.2448200024664402e-02</internalNodes> + <leafValues> + -4.3582621216773987e-01 2.2979419678449631e-02</leafValues></_> <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 2 2 -1.</_> - <_> - 10 1 1 1 2.</_> - <_> - 9 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4221160381566733e-004</threshold> - <left_val>0.0630765333771706</left_val> - <right_val>-0.0500784888863564</right_val></_></_> + <internalNodes> + 0 -1 605 -1.4221160381566733e-04</internalNodes> + <leafValues> + 6.3076533377170563e-02 -5.0078488886356354e-02</leafValues></_> <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 2 2 -1.</_> - <_> - 7 1 1 1 2.</_> - <_> - 8 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.4810540014877915e-003</threshold> - <left_val>-0.0576672181487083</left_val> - <right_val>0.1828493028879166</right_val></_></_> + <internalNodes> + 0 -1 606 1.4810540014877915e-03</internalNodes> + <leafValues> + -5.7667218148708344e-02 1.8284930288791656e-01</leafValues></_> <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 3 1 -1.</_> - <_> - 10 1 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1081660341005772e-004</threshold> - <left_val>-0.0478888303041458</left_val> - <right_val>0.0669924765825272</right_val></_></_> + <internalNodes> + 0 -1 607 1.1081660341005772e-04</internalNodes> + <leafValues> + -4.7888830304145813e-02 6.6992476582527161e-02</leafValues></_> <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 2 3 -1.</_> - <_> - 0 2 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0154914399608970</threshold> - <left_val>0.0203014891594648</left_val> - <right_val>-0.4858367145061493</right_val></_></_> + <internalNodes> + 0 -1 608 1.5491439960896969e-02</internalNodes> + <leafValues> + 2.0301489159464836e-02 -4.8583671450614929e-01</leafValues></_> <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 2 2 -1.</_> - <_> - 10 1 1 1 2.</_> - <_> - 9 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7960972450673580e-005</threshold> - <left_val>-0.0770990327000618</left_val> - <right_val>0.0829952508211136</right_val></_></_> + <internalNodes> + 0 -1 609 8.7960972450673580e-05</internalNodes> + <leafValues> + -7.7099032700061798e-02 8.2995250821113586e-02</leafValues></_> <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 2 2 -1.</_> - <_> - 7 1 1 1 2.</_> - <_> - 8 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.1268692156299949e-004</threshold> - <left_val>0.1440639048814774</left_val> - <right_val>-0.0732753574848175</right_val></_></_> + <internalNodes> + 0 -1 610 -8.1268692156299949e-04</internalNodes> + <leafValues> + 1.4406390488147736e-01 -7.3275357484817505e-02</leafValues></_> <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 4 4 -1.</_> - <_> - 10 0 2 2 2.</_> - <_> - 8 2 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0245019607245922</threshold> - <left_val>0.0192935392260551</left_val> - <right_val>-0.2704134881496429</right_val></_></_> + <internalNodes> + 0 -1 611 2.4501960724592209e-02</internalNodes> + <leafValues> + 1.9293539226055145e-02 -2.7041348814964294e-01</leafValues></_> <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 4 8 -1.</_> - <_> - 9 0 2 8 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.1567315012216568</threshold> - <left_val>0.0258482508361340</left_val> - <right_val>-0.4057519137859345</right_val></_></_> + <internalNodes> + 0 -1 612 1.5673150122165680e-01</internalNodes> + <leafValues> + 2.5848250836133957e-02 -4.0575191378593445e-01</leafValues></_> <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 4 2 6 -1.</_> - <_> - 14 4 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1001951992511749</threshold> - <left_val>-0.1728045046329498</left_val> - <right_val>0.0289713405072689</right_val></_></_> + <internalNodes> + 0 -1 613 -1.0019519925117493e-01</internalNodes> + <leafValues> + -1.7280450463294983e-01 2.8971340507268906e-02</leafValues></_> <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 6 8 -1.</_> - <_> - 0 4 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1618010997772217</threshold> - <left_val>0.0196809191256762</left_val> - <right_val>-0.5053933262825012</right_val></_></_> + <internalNodes> + 0 -1 614 1.6180109977722168e-01</internalNodes> + <leafValues> + 1.9680919125676155e-02 -5.0539332628250122e-01</leafValues></_> <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 4 4 -1.</_> - <_> - 10 0 2 2 2.</_> - <_> - 8 2 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0375295206904411</threshold> - <left_val>-0.3085973858833313</left_val> - <right_val>2.8489660471677780e-003</right_val></_></_> + <internalNodes> + 0 -1 615 -3.7529520690441132e-02</internalNodes> + <leafValues> + -3.0859738588333130e-01 2.8489660471677780e-03</leafValues></_> <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 4 6 2 -1.</_> - <_> - 4 4 3 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1201431974768639</threshold> - <left_val>-0.3218207955360413</left_val> - <right_val>0.0288419798016548</right_val></_></_> + <internalNodes> + 0 -1 616 -1.2014319747686386e-01</internalNodes> + <leafValues> + -3.2182079553604126e-01 2.8841979801654816e-02</leafValues></_> <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 1 3 2 -1.</_> - <_> - 13 2 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0136901503428817</threshold> - <left_val>-0.1231554001569748</left_val> - <right_val>0.0334449894726276</right_val></_></_> + <internalNodes> + 0 -1 617 -1.3690150342881680e-02</internalNodes> + <leafValues> + -1.2315540015697479e-01 3.3444989472627640e-02</leafValues></_> <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 8 6 -1.</_> - <_> - 5 3 4 3 2.</_> - <_> - 9 6 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0923237875103951</threshold> - <left_val>-0.4961450099945068</left_val> - <right_val>0.0185438599437475</right_val></_></_> + <internalNodes> + 0 -1 618 -9.2323787510395050e-02</internalNodes> + <leafValues> + -4.9614500999450684e-01 1.8543859943747520e-02</leafValues></_> <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 2 3 -1.</_> - <_> - 16 10 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.1788990385830402e-003</threshold> - <left_val>0.0203749798238277</left_val> - <right_val>-0.1478628963232040</right_val></_></_> + <internalNodes> + 0 -1 619 5.1788990385830402e-03</internalNodes> + <leafValues> + 2.0374979823827744e-02 -1.4786289632320404e-01</leafValues></_> <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 3 2 -1.</_> - <_> - 3 2 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>6.2319580465555191e-003</threshold> - <left_val>-0.0742628872394562</left_val> - <right_val>0.1218551024794579</right_val></_></_> + <internalNodes> + 0 -1 620 6.2319580465555191e-03</internalNodes> + <leafValues> + -7.4262887239456177e-02 1.2185510247945786e-01</leafValues></_> <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 2 1 3 -1.</_> - <_> - 16 3 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-7.8213810920715332e-003</threshold> - <left_val>0.1775953024625778</left_val> - <right_val>-0.0513866990804672</right_val></_></_> + <internalNodes> + 0 -1 621 -7.8213810920715332e-03</internalNodes> + <leafValues> + 1.7759530246257782e-01 -5.1386699080467224e-02</leafValues></_> <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 4 4 -1.</_> - <_> - 6 0 2 2 2.</_> - <_> - 8 2 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0295739807188511</threshold> - <left_val>-0.5075635910034180</left_val> - <right_val>0.0193991009145975</right_val></_></_> + <internalNodes> + 0 -1 622 -2.9573980718851089e-02</internalNodes> + <leafValues> + -5.0756359100341797e-01 1.9399100914597511e-02</leafValues></_> <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 3 4 -1.</_> - <_> - 14 1 3 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0203246790915728</threshold> - <left_val>0.1261377930641174</left_val> - <right_val>-0.0535940900444984</right_val></_></_> + <internalNodes> + 0 -1 623 -2.0324679091572762e-02</internalNodes> + <leafValues> + 1.2613779306411743e-01 -5.3594090044498444e-02</leafValues></_> <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 3 12 6 -1.</_> - <_> - 3 5 12 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1235036998987198</threshold> - <left_val>0.1163941994309425</left_val> - <right_val>-0.0879058167338371</right_val></_></_> + <internalNodes> + 0 -1 624 -1.2350369989871979e-01</internalNodes> + <leafValues> + 1.1639419943094254e-01 -8.7905816733837128e-02</leafValues></_> <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 3 4 -1.</_> - <_> - 14 1 3 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.1008990034461021</threshold> - <left_val>-3.7132319994270802e-003</left_val> - <right_val>0.6706827878952026</right_val></_></_> + <internalNodes> + 0 -1 625 1.0089900344610214e-01</internalNodes> + <leafValues> + -3.7132319994270802e-03 6.7068278789520264e-01</leafValues></_> <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 4 3 -1.</_> - <_> - 4 1 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0330128185451031</threshold> - <left_val>0.3056246936321259</left_val> - <right_val>-0.0384504310786724</right_val></_></_> + <internalNodes> + 0 -1 626 -3.3012818545103073e-02</internalNodes> + <leafValues> + 3.0562469363212585e-01 -3.8450431078672409e-02</leafValues></_> <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 18 3 -1.</_> - <_> - 6 3 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0963183492422104</threshold> - <left_val>0.0983915999531746</left_val> - <right_val>-0.1082156971096993</right_val></_></_> + <internalNodes> + 0 -1 627 -9.6318349242210388e-02</internalNodes> + <leafValues> + 9.8391599953174591e-02 -1.0821569710969925e-01</leafValues></_> <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 10 8 -1.</_> - <_> - 4 2 10 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2521410882472992</threshold> - <left_val>-0.0211549103260040</left_val> - <right_val>0.4793064892292023</right_val></_></_> + <internalNodes> + 0 -1 628 2.5214108824729919e-01</internalNodes> + <leafValues> + -2.1154910326004028e-02 4.7930648922920227e-01</leafValues></_> <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 10 2 -1.</_> - <_> - 8 10 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0188986994326115</threshold> - <left_val>0.0969856232404709</left_val> - <right_val>-0.0507769100368023</right_val></_></_> + <internalNodes> + 0 -1 629 -1.8898699432611465e-02</internalNodes> + <leafValues> + 9.6985623240470886e-02 -5.0776910036802292e-02</leafValues></_> <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 10 2 -1.</_> - <_> - 5 10 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0194709096103907</threshold> - <left_val>-0.0669843405485153</left_val> - <right_val>0.1859807074069977</right_val></_></_></trees> - <stage_threshold>-1.5156250000000000</stage_threshold> - <parent>7</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 630 1.9470909610390663e-02</internalNodes> + <leafValues> + -6.6984340548515320e-02 1.8598070740699768e-01</leafValues></_></weakClassifiers></_> <_> - <!-- stage 9 --> - <trees> + <maxWeakCount>129</maxWeakCount> + <stageThreshold>-1.5292299985885620e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 18 6 -1.</_> - <_> - 6 4 6 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.5130128860473633</threshold> - <left_val>0.3376303911209106</left_val> - <right_val>-0.2218343019485474</right_val></_></_> + <internalNodes> + 0 -1 631 -5.1301288604736328e-01</internalNodes> + <leafValues> + 3.3763039112091064e-01 -2.2183430194854736e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 8 6 4 -1.</_> - <_> - 12 10 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8631602227687836e-003</threshold> - <left_val>-0.3086059093475342</left_val> - <right_val>0.1502192020416260</right_val></_></_> + <internalNodes> + 0 -1 632 7.8631602227687836e-03</internalNodes> + <leafValues> + -3.0860590934753418e-01 1.5021920204162598e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 6 4 -1.</_> - <_> - 8 5 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0206501092761755</threshold> - <left_val>0.2439322024583817</left_val> - <right_val>-0.2732354104518890</right_val></_></_> + <internalNodes> + 0 -1 633 -2.0650109276175499e-02</internalNodes> + <leafValues> + 2.4393220245838165e-01 -2.7323541045188904e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 6 1 6 -1.</_> - <_> - 14 9 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.9594681002199650e-003</threshold> - <left_val>-0.1556881964206696</left_val> - <right_val>0.1000844985246658</right_val></_></_> + <internalNodes> + 0 -1 634 3.9594681002199650e-03</internalNodes> + <leafValues> + -1.5568819642066956e-01 1.0008449852466583e-01</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 2 2 -1.</_> - <_> - 7 10 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0465967915952206</threshold> - <left_val>0.0124803902581334</left_val> - <right_val>-1.1247110595703125e+003</right_val></_></_> + <internalNodes> + 0 -1 635 4.6596791595220566e-02</internalNodes> + <leafValues> + 1.2480390258133411e-02 -1.1247110595703125e+03</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 6 4 6 -1.</_> - <_> - 16 6 2 3 2.</_> - <_> - 14 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0107681397348642</threshold> - <left_val>-0.0741030126810074</left_val> - <right_val>0.1030061990022659</right_val></_></_> + <internalNodes> + 0 -1 636 1.0768139734864235e-02</internalNodes> + <leafValues> + -7.4103012681007385e-02 1.0300619900226593e-01</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 4 6 -1.</_> - <_> - 0 6 2 3 2.</_> - <_> - 2 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.1597883254289627e-003</threshold> - <left_val>-0.2426649928092957</left_val> - <right_val>0.1998627036809921</right_val></_></_> + <internalNodes> + 0 -1 637 8.1597883254289627e-03</internalNodes> + <leafValues> + -2.4266499280929565e-01 1.9986270368099213e-01</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 1 4 4 -1.</_> - <_> - 13 1 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2675480730831623e-003</threshold> - <left_val>0.1482053995132446</left_val> - <right_val>-0.2999232113361359</right_val></_></_> + <internalNodes> + 0 -1 638 -6.2675480730831623e-03</internalNodes> + <leafValues> + 1.4820539951324463e-01 -2.9992321133613586e-01</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 12 -1.</_> - <_> - 0 6 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.9478268958628178e-003</threshold> - <left_val>-0.2587324976921082</left_val> - <right_val>0.1570339053869247</right_val></_></_> + <internalNodes> + 0 -1 639 5.9478268958628178e-03</internalNodes> + <leafValues> + -2.5873249769210815e-01 1.5703390538692474e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 8 2 -1.</_> - <_> - 5 0 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0105143897235394</threshold> - <left_val>-0.1678138971328735</left_val> - <right_val>0.2417483925819397</right_val></_></_> + <internalNodes> + 0 -1 640 1.0514389723539352e-02</internalNodes> + <leafValues> + -1.6781389713287354e-01 2.4174839258193970e-01</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 4 14 6 -1.</_> - <_> - 8 4 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1224353983998299</threshold> - <left_val>-0.1068272963166237</left_val> - <right_val>0.3461236059665680</right_val></_></_> + <internalNodes> + 0 -1 641 1.2243539839982986e-01</internalNodes> + <leafValues> + -1.0682729631662369e-01 3.4612360596656799e-01</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 9 6 -1.</_> - <_> - 6 5 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1296852976083756</threshold> - <left_val>0.1743759959936142</left_val> - <right_val>-0.0993710532784462</right_val></_></_> + <internalNodes> + 0 -1 642 -1.2968529760837555e-01</internalNodes> + <leafValues> + 1.7437599599361420e-01 -9.9371053278446198e-02</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 1 2 -1.</_> - <_> - 1 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0830949759110808e-004</threshold> - <left_val>-0.2486529052257538</left_val> - <right_val>0.1116916984319687</right_val></_></_> + <internalNodes> + 0 -1 643 1.0830949759110808e-04</internalNodes> + <leafValues> + -2.4865290522575378e-01 1.1169169843196869e-01</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 7 8 1 -1.</_> - <_> - 8 7 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0322521589696407</threshold> - <left_val>0.4901643097400665</left_val> - <right_val>-0.0429643392562866</right_val></_></_> + <internalNodes> + 0 -1 644 -3.2252158969640732e-02</internalNodes> + <leafValues> + 4.9016430974006653e-01 -4.2964339256286621e-02</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 3 3 -1.</_> - <_> - 6 5 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0250787492841482</threshold> - <left_val>0.3188936114311218</left_val> - <right_val>-0.0779699534177780</right_val></_></_> + <internalNodes> + 0 -1 645 -2.5078749284148216e-02</internalNodes> + <leafValues> + 3.1889361143112183e-01 -7.7969953417778015e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 9 4 -1.</_> - <_> - 5 6 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0458320602774620</threshold> - <left_val>-0.1341957002878189</left_val> - <right_val>0.1799447983503342</right_val></_></_> + <internalNodes> + 0 -1 646 4.5832060277462006e-02</internalNodes> + <leafValues> + -1.3419570028781891e-01 1.7994479835033417e-01</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 3 1 2 -1.</_> - <_> - 2 3 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>8.3064418286085129e-003</threshold> - <left_val>0.0402554385364056</left_val> - <right_val>-0.4555304050445557</right_val></_></_> + <internalNodes> + 0 -1 647 8.3064418286085129e-03</internalNodes> + <leafValues> + 4.0255438536405563e-02 -4.5553040504455566e-01</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 6 4 -1.</_> - <_> - 9 2 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0426197685301304</threshold> - <left_val>-0.0254935696721077</left_val> - <right_val>0.1356887966394424</right_val></_></_> + <internalNodes> + 0 -1 648 4.2619768530130386e-02</internalNodes> + <leafValues> + -2.5493569672107697e-02 1.3568879663944244e-01</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 8 1 3 -1.</_> - <_> - 1 9 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.1548979980871081e-005</threshold> - <left_val>-0.1499771028757095</left_val> - <right_val>0.1406237035989761</right_val></_></_> + <internalNodes> + 0 -1 649 9.1548979980871081e-05</internalNodes> + <leafValues> + -1.4997710287570953e-01 1.4062370359897614e-01</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 16 4 -1.</_> - <_> - 9 0 8 2 2.</_> - <_> - 1 2 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0355998985469341</threshold> - <left_val>-0.1004965007305145</left_val> - <right_val>0.2160336971282959</right_val></_></_> + <internalNodes> + 0 -1 650 3.5599898546934128e-02</internalNodes> + <leafValues> + -1.0049650073051453e-01 2.1603369712829590e-01</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 3 1 3 -1.</_> - <_> - 2 4 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0164043996483088</threshold> - <left_val>-0.5240578055381775</left_val> - <right_val>0.0366753898561001</right_val></_></_> + <internalNodes> + 0 -1 651 -1.6404399648308754e-02</internalNodes> + <leafValues> + -5.2405780553817749e-01 3.6675389856100082e-02</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 1 4 4 -1.</_> - <_> - 13 2 4 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0211647991091013</threshold> - <left_val>-0.0371078811585903</left_val> - <right_val>0.1467673927545548</right_val></_></_> + <internalNodes> + 0 -1 652 2.1164799109101295e-02</internalNodes> + <leafValues> + -3.7107881158590317e-02 1.4676739275455475e-01</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 4 4 -1.</_> - <_> - 5 2 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0394629389047623</threshold> - <left_val>0.2676286995410919</left_val> - <right_val>-0.0755941867828369</right_val></_></_> + <internalNodes> + 0 -1 653 -3.9462938904762268e-02</internalNodes> + <leafValues> + 2.6762869954109192e-01 -7.5594186782836914e-02</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 4 1 2 -1.</_> - <_> - 14 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0178470890969038</threshold> - <left_val>0.2794097065925598</left_val> - <right_val>-0.0156717691570520</right_val></_></_> + <internalNodes> + 0 -1 654 -1.7847089096903801e-02</internalNodes> + <leafValues> + 2.7940970659255981e-01 -1.5671769157052040e-02</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 4 2 1 -1.</_> - <_> - 4 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>3.4505259245634079e-003</threshold> - <left_val>-0.1289491057395935</left_val> - <right_val>0.1632543951272965</right_val></_></_> + <internalNodes> + 0 -1 655 3.4505259245634079e-03</internalNodes> + <leafValues> + -1.2894910573959351e-01 1.6325439512729645e-01</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 3 5 3 -1.</_> - <_> - 12 4 5 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0456877201795578</threshold> - <left_val>-0.0206062905490398</left_val> - <right_val>0.2264503985643387</right_val></_></_> + <internalNodes> + 0 -1 656 4.5687720179557800e-02</internalNodes> + <leafValues> + -2.0606290549039841e-02 2.2645039856433868e-01</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 3 5 -1.</_> - <_> - 6 4 1 5 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0210024192929268</threshold> - <left_val>-0.0620056092739105</left_val> - <right_val>0.3201406896114349</right_val></_></_> + <internalNodes> + 0 -1 657 2.1002419292926788e-02</internalNodes> + <leafValues> + -6.2005609273910522e-02 3.2014068961143494e-01</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 4 3 5 -1.</_> - <_> - 15 4 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.5569739993661642e-003</threshold> - <left_val>0.1284316927194595</left_val> - <right_val>-0.0887603089213371</right_val></_></_> + <internalNodes> + 0 -1 658 -3.5569739993661642e-03</internalNodes> + <leafValues> + 1.2843169271945953e-01 -8.8760308921337128e-02</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 4 3 5 -1.</_> - <_> - 2 4 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0336466915905476</threshold> - <left_val>-0.6888722777366638</left_val> - <right_val>0.0343056395649910</right_val></_></_> + <internalNodes> + 0 -1 659 -3.3646691590547562e-02</internalNodes> + <leafValues> + -6.8887227773666382e-01 3.4305639564990997e-02</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 0 3 5 -1.</_> - <_> - 12 0 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0130832800641656</threshold> - <left_val>0.0420319996774197</left_val> - <right_val>-0.5268985033035278</right_val></_></_> + <internalNodes> + 0 -1 660 1.3083280064165592e-02</internalNodes> + <leafValues> + 4.2031999677419662e-02 -5.2689850330352783e-01</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 3 5 -1.</_> - <_> - 5 0 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0166603103280067</threshold> - <left_val>0.0306016094982624</left_val> - <right_val>-0.5382601022720337</right_val></_></_> + <internalNodes> + 0 -1 661 1.6660310328006744e-02</internalNodes> + <leafValues> + 3.0601609498262405e-02 -5.3826010227203369e-01</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 0 6 10 -1.</_> - <_> - 14 0 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0209240708500147</threshold> - <left_val>0.1459171026945114</left_val> - <right_val>-0.1297913044691086</right_val></_></_> + <internalNodes> + 0 -1 662 -2.0924070850014687e-02</internalNodes> + <leafValues> + 1.4591710269451141e-01 -1.2979130446910858e-01</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 6 8 2 -1.</_> - <_> - 6 6 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0616948604583740</threshold> - <left_val>0.4439657032489777</left_val> - <right_val>-0.0383695401251316</right_val></_></_> + <internalNodes> + 0 -1 663 -6.1694860458374023e-02</internalNodes> + <leafValues> + 4.4396570324897766e-01 -3.8369540125131607e-02</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 10 6 2 -1.</_> - <_> - 12 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0119723901152611</threshold> - <left_val>-0.5604804158210754</left_val> - <right_val>0.0232706200331450</right_val></_></_> + <internalNodes> + 0 -1 664 -1.1972390115261078e-02</internalNodes> + <leafValues> + -5.6048041582107544e-01 2.3270620033144951e-02</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 4 4 -1.</_> - <_> - 6 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0179692599922419</threshold> - <left_val>0.0250263605266809</left_val> - <right_val>-0.5743259191513062</right_val></_></_> + <internalNodes> + 0 -1 665 1.7969259992241859e-02</internalNodes> + <leafValues> + 2.5026360526680946e-02 -5.7432591915130615e-01</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 5 2 -1.</_> - <_> - 13 8 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.5994659624993801e-003</threshold> - <left_val>-0.1241895034909248</left_val> - <right_val>0.0507428906857967</right_val></_></_> + <internalNodes> + 0 -1 666 1.5994659624993801e-03</internalNodes> + <leafValues> + -1.2418950349092484e-01 5.0742890685796738e-02</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 11 16 1 -1.</_> - <_> - 5 11 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0116954399272799</threshold> - <left_val>-0.0761605277657509</left_val> - <right_val>0.2052146941423416</right_val></_></_> + <internalNodes> + 0 -1 667 1.1695439927279949e-02</internalNodes> + <leafValues> + -7.6160527765750885e-02 2.0521469414234161e-01</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 11 8 1 -1.</_> - <_> - 8 11 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.8982479814440012e-003</threshold> - <left_val>0.0802794471383095</left_val> - <right_val>-0.0573095604777336</right_val></_></_> + <internalNodes> + 0 -1 668 -1.8982479814440012e-03</internalNodes> + <leafValues> + 8.0279447138309479e-02 -5.7309560477733612e-02</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 11 2 1 -1.</_> - <_> - 6 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4634410035796463e-004</threshold> - <left_val>0.1370849013328552</left_val> - <right_val>-0.1256242990493774</right_val></_></_> + <internalNodes> + 0 -1 669 -1.4634410035796463e-04</internalNodes> + <leafValues> + 1.3708490133285522e-01 -1.2562429904937744e-01</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 0 1 9 -1.</_> - <_> - 17 3 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8092161566019058e-003</threshold> - <left_val>0.0796157866716385</left_val> - <right_val>-0.3489489853382111</right_val></_></_> + <internalNodes> + 0 -1 670 7.8092161566019058e-03</internalNodes> + <leafValues> + 7.9615786671638489e-02 -3.4894898533821106e-01</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 6 2 -1.</_> - <_> - 11 4 2 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1044330969452858</threshold> - <left_val>0.2322252988815308</left_val> - <right_val>-0.0632370188832283</right_val></_></_> + <internalNodes> + 0 -1 671 -1.0443309694528580e-01</internalNodes> + <leafValues> + 2.3222529888153076e-01 -6.3237018883228302e-02</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 2 4 4 -1.</_> - <_> - 8 3 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0214824005961418</threshold> - <left_val>0.1726696938276291</left_val> - <right_val>-0.0558063089847565</right_val></_></_> + <internalNodes> + 0 -1 672 -2.1482400596141815e-02</internalNodes> + <leafValues> + 1.7266969382762909e-01 -5.5806308984756470e-02</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 6 9 -1.</_> - <_> - 2 1 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0108288899064064</threshold> - <left_val>0.1279796957969666</left_val> - <right_val>-0.1163730993866921</right_val></_></_> + <internalNodes> + 0 -1 673 -1.0828889906406403e-02</internalNodes> + <leafValues> + 1.2797969579696655e-01 -1.1637309938669205e-01</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 1 3 10 -1.</_> - <_> - 14 1 1 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0424714908003807</threshold> - <left_val>-0.6127359271049500</left_val> - <right_val>0.0246067494153976</right_val></_></_> + <internalNodes> + 0 -1 674 -4.2471490800380707e-02</internalNodes> + <leafValues> + -6.1273592710494995e-01 2.4606749415397644e-02</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 6 4 2 -1.</_> - <_> - 4 6 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.9633461274206638e-003</threshold> - <left_val>0.1839026063680649</left_val> - <right_val>-0.0886545926332474</right_val></_></_> + <internalNodes> + 0 -1 675 -3.9633461274206638e-03</internalNodes> + <leafValues> + 1.8390260636806488e-01 -8.8654592633247375e-02</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 3 16 6 -1.</_> - <_> - 10 3 8 3 2.</_> - <_> - 2 6 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0351601801812649</threshold> - <left_val>-0.0430688709020615</left_val> - <right_val>0.0963409096002579</right_val></_></_> + <internalNodes> + 0 -1 676 3.5160180181264877e-02</internalNodes> + <leafValues> + -4.3068870902061462e-02 9.6340909600257874e-02</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 2 2 2 -1.</_> - <_> - 8 3 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.4553930163383484e-003</threshold> - <left_val>-0.0629184469580650</left_val> - <right_val>0.2417149990797043</right_val></_></_> + <internalNodes> + 0 -1 677 3.4553930163383484e-03</internalNodes> + <leafValues> + -6.2918446958065033e-02 2.4171499907970428e-01</leafValues></_> <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 11 6 1 -1.</_> - <_> - 10 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0175848100334406</threshold> - <left_val>-0.6167618036270142</left_val> - <right_val>0.0174098797142506</right_val></_></_> + <internalNodes> + 0 -1 678 -1.7584810033440590e-02</internalNodes> + <leafValues> + -6.1676180362701416e-01 1.7409879714250565e-02</leafValues></_> <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 14 12 -1.</_> - <_> - 8 0 7 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.4428744018077850</threshold> - <left_val>0.3073793053627014</left_val> - <right_val>-0.0492081902921200</right_val></_></_> + <internalNodes> + 0 -1 679 -4.4287440180778503e-01</internalNodes> + <leafValues> + 3.0737930536270142e-01 -4.9208190292119980e-02</leafValues></_> <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 11 2 1 -1.</_> - <_> - 11 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1836509656859562e-004</threshold> - <left_val>-0.0535119101405144</left_val> - <right_val>0.0829684510827065</right_val></_></_> + <internalNodes> + 0 -1 680 1.1836509656859562e-04</internalNodes> + <leafValues> + -5.3511910140514374e-02 8.2968451082706451e-02</leafValues></_> <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 11 2 1 -1.</_> - <_> - 6 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2763170525431633e-004</threshold> - <left_val>-0.1069253981113434</left_val> - <right_val>0.1596336066722870</right_val></_></_> + <internalNodes> + 0 -1 681 1.2763170525431633e-04</internalNodes> + <leafValues> + -1.0692539811134338e-01 1.5963360667228699e-01</leafValues></_> <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 10 6 2 -1.</_> - <_> - 12 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.4990289928391576e-003</threshold> - <left_val>-0.1028444021940231</left_val> - <right_val>0.0593635700643063</right_val></_></_> + <internalNodes> + 0 -1 682 1.4990289928391576e-03</internalNodes> + <leafValues> + -1.0284440219402313e-01 5.9363570064306259e-02</leafValues></_> <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 2 3 -1.</_> - <_> - 7 5 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0141856800764799</threshold> - <left_val>0.1678701043128967</left_val> - <right_val>-0.0820643231272697</right_val></_></_> + <internalNodes> + 0 -1 683 -1.4185680076479912e-02</internalNodes> + <leafValues> + 1.6787010431289673e-01 -8.2064323127269745e-02</leafValues></_> <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 10 6 2 -1.</_> - <_> - 12 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0264235101640224</threshold> - <left_val>0.0151414396241307</left_val> - <right_val>-0.2154995054006577</right_val></_></_> + <internalNodes> + 0 -1 684 2.6423510164022446e-02</internalNodes> + <leafValues> + 1.5141439624130726e-02 -2.1549950540065765e-01</leafValues></_> <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 6 2 -1.</_> - <_> - 0 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2152690032962710e-004</threshold> - <left_val>-0.2142913937568665</left_val> - <right_val>0.0675361901521683</right_val></_></_> + <internalNodes> + 0 -1 685 1.2152690032962710e-04</internalNodes> + <leafValues> + -2.1429139375686646e-01 6.7536190152168274e-02</leafValues></_> <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 0 1 9 -1.</_> - <_> - 17 3 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0440340004861355</threshold> - <left_val>-0.3851638138294220</left_val> - <right_val>0.0279856491833925</right_val></_></_> + <internalNodes> + 0 -1 686 -4.4034000486135483e-02</internalNodes> + <leafValues> + -3.8516381382942200e-01 2.7985649183392525e-02</leafValues></_> <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 9 -1.</_> - <_> - 0 3 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0230793599039316</threshold> - <left_val>0.0390075594186783</left_val> - <right_val>-0.3570446074008942</right_val></_></_> + <internalNodes> + 0 -1 687 2.3079359903931618e-02</internalNodes> + <leafValues> + 3.9007559418678284e-02 -3.5704460740089417e-01</leafValues></_> <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 4 6 -1.</_> - <_> - 9 3 4 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0169830191880465</threshold> - <left_val>0.0617679208517075</left_val> - <right_val>-0.0617618113756180</right_val></_></_> + <internalNodes> + 0 -1 688 -1.6983019188046455e-02</internalNodes> + <leafValues> + 6.1767920851707458e-02 -6.1761811375617981e-02</leafValues></_> <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 3 10 -1.</_> - <_> - 3 1 1 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0394527800381184</threshold> - <left_val>-0.5435693264007568</left_val> - <right_val>0.0241404101252556</right_val></_></_> + <internalNodes> + 0 -1 689 -3.9452780038118362e-02</internalNodes> + <leafValues> + -5.4356932640075684e-01 2.4140410125255585e-02</leafValues></_> <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 3 4 3 -1.</_> - <_> - 13 4 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0405681207776070</threshold> - <left_val>-0.0280233100056648</left_val> - <right_val>0.3506341874599457</right_val></_></_> + <internalNodes> + 0 -1 690 4.0568120777606964e-02</internalNodes> + <leafValues> + -2.8023310005664825e-02 3.5063418745994568e-01</leafValues></_> <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 3 4 -1.</_> - <_> - 5 4 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0517579615116119</threshold> - <left_val>0.3302401900291443</left_val> - <right_val>-0.0401711687445641</right_val></_></_> + <internalNodes> + 0 -1 691 -5.1757961511611938e-02</internalNodes> + <leafValues> + 3.3024019002914429e-01 -4.0171168744564056e-02</leafValues></_> <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 6 5 3 -1.</_> - <_> - 13 7 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0457092002034187</threshold> - <left_val>7.3070619255304337e-003</left_val> - <right_val>-0.5901234745979309</right_val></_></_> + <internalNodes> + 0 -1 692 4.5709200203418732e-02</internalNodes> + <leafValues> + 7.3070619255304337e-03 -5.9012347459793091e-01</leafValues></_> <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 4 4 -1.</_> - <_> - 5 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0153255201876163</threshold> - <left_val>-0.4629181027412415</left_val> - <right_val>0.0268638096749783</right_val></_></_> + <internalNodes> + 0 -1 693 -1.5325520187616348e-02</internalNodes> + <leafValues> + -4.6291810274124146e-01 2.6863809674978256e-02</leafValues></_> <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 6 5 3 -1.</_> - <_> - 13 7 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0309789907187223</threshold> - <left_val>-0.1948003023862839</left_val> - <right_val>7.2842082008719444e-003</right_val></_></_> + <internalNodes> + 0 -1 694 -3.0978990718722343e-02</internalNodes> + <leafValues> + -1.9480030238628387e-01 7.2842082008719444e-03</leafValues></_> <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 9 4 3 -1.</_> - <_> - 7 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.9987199753522873e-003</threshold> - <left_val>-0.3502084910869598</left_val> - <right_val>0.0341698005795479</right_val></_></_> + <internalNodes> + 0 -1 695 -8.9987199753522873e-03</internalNodes> + <leafValues> + -3.5020849108695984e-01 3.4169800579547882e-02</leafValues></_> <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 9 12 3 -1.</_> - <_> - 7 9 4 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0237770192325115</threshold> - <left_val>0.1451911032199860</left_val> - <right_val>-0.0901970788836479</right_val></_></_> + <internalNodes> + 0 -1 696 -2.3777019232511520e-02</internalNodes> + <leafValues> + 1.4519110321998596e-01 -9.0197078883647919e-02</leafValues></_> <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 8 2 -1.</_> - <_> - 4 0 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0274418704211712</threshold> - <left_val>-0.0597847998142242</left_val> - <right_val>0.2124803066253662</right_val></_></_> + <internalNodes> + 0 -1 697 2.7441870421171188e-02</internalNodes> + <leafValues> + -5.9784799814224243e-02 2.1248030662536621e-01</leafValues></_> <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 6 0 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0160809792578220</threshold> - <left_val>0.1277222037315369</left_val> - <right_val>-0.1156089007854462</right_val></_></_> + <internalNodes> + 0 -1 698 -1.6080979257822037e-02</internalNodes> + <leafValues> + 1.2772220373153687e-01 -1.1560890078544617e-01</leafValues></_> <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 2 -1.</_> - <_> - 7 5 1 1 2.</_> - <_> - 8 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.8815989606082439e-003</threshold> - <left_val>0.1826366037130356</left_val> - <right_val>-0.0697237327694893</right_val></_></_> + <internalNodes> + 0 -1 699 -1.8815989606082439e-03</internalNodes> + <leafValues> + 1.8263660371303558e-01 -6.9723732769489288e-02</leafValues></_> <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 3 3 -1.</_> - <_> - 9 5 1 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0205701794475317</threshold> - <left_val>0.1351132988929749</left_val> - <right_val>-0.0566788315773010</right_val></_></_> + <internalNodes> + 0 -1 700 -2.0570179447531700e-02</internalNodes> + <leafValues> + 1.3511329889297485e-01 -5.6678831577301025e-02</leafValues></_> <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 5 3 -1.</_> - <_> - 0 7 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0212467797100544</threshold> - <left_val>0.0272479504346848</left_val> - <right_val>-0.4548186957836151</right_val></_></_> + <internalNodes> + 0 -1 701 2.1246779710054398e-02</internalNodes> + <leafValues> + 2.7247950434684753e-02 -4.5481869578361511e-01</leafValues></_> <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 2 4 3 -1.</_> - <_> - 8 3 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0188432596623898</threshold> - <left_val>0.2036436945199966</left_val> - <right_val>-0.0399243608117104</right_val></_></_> + <internalNodes> + 0 -1 702 -1.8843259662389755e-02</internalNodes> + <leafValues> + 2.0364369451999664e-01 -3.9924360811710358e-02</leafValues></_> <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 5 8 4 -1.</_> - <_> - 3 6 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0316970013082027</threshold> - <left_val>0.1488299071788788</left_val> - <right_val>-0.0753140971064568</right_val></_></_> + <internalNodes> + 0 -1 703 -3.1697001308202744e-02</internalNodes> + <leafValues> + 1.4882990717887878e-01 -7.5314097106456757e-02</leafValues></_> <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 3 2 6 -1.</_> - <_> - 16 5 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0393889509141445</threshold> - <left_val>-0.4044514894485474</left_val> - <right_val>0.0371668599545956</right_val></_></_> + <internalNodes> + 0 -1 704 -3.9388950914144516e-02</internalNodes> + <leafValues> + -4.0445148944854736e-01 3.7166859954595566e-02</leafValues></_> <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 2 6 -1.</_> - <_> - 0 5 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0168635398149490</threshold> - <left_val>0.0379643589258194</left_val> - <right_val>-0.2931546866893768</right_val></_></_> + <internalNodes> + 0 -1 705 1.6863539814949036e-02</internalNodes> + <leafValues> + 3.7964358925819397e-02 -2.9315468668937683e-01</leafValues></_> <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 8 4 -1.</_> - <_> - 6 1 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0588746406137943</threshold> - <left_val>0.2981685996055603</left_val> - <right_val>-0.0304510295391083</right_val></_></_> + <internalNodes> + 0 -1 706 -5.8874640613794327e-02</internalNodes> + <leafValues> + 2.9816859960556030e-01 -3.0451029539108276e-02</leafValues></_> <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 11 6 1 -1.</_> - <_> - 6 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0108912596479058</threshold> - <left_val>-0.4062632918357849</left_val> - <right_val>0.0275177191942930</right_val></_></_> + <internalNodes> + 0 -1 707 -1.0891259647905827e-02</internalNodes> + <leafValues> + -4.0626329183578491e-01 2.7517719194293022e-02</leafValues></_> <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 11 4 1 -1.</_> - <_> - 10 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0890879639191553e-004</threshold> - <left_val>0.1042433977127075</left_val> - <right_val>-0.0990792736411095</right_val></_></_> + <internalNodes> + 0 -1 708 -1.0890879639191553e-04</internalNodes> + <leafValues> + 1.0424339771270752e-01 -9.9079273641109467e-02</leafValues></_> <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 11 4 1 -1.</_> - <_> - 6 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3655682576354593e-005</threshold> - <left_val>0.1148850992321968</left_val> - <right_val>-0.1030184030532837</right_val></_></_> + <internalNodes> + 0 -1 709 -9.3655682576354593e-05</internalNodes> + <leafValues> + 1.1488509923219681e-01 -1.0301840305328369e-01</leafValues></_> <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 11 4 -1.</_> - <_> - 4 2 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0383788496255875</threshold> - <left_val>-0.0669137313961983</left_val> - <right_val>0.1558261960744858</right_val></_></_> + <internalNodes> + 0 -1 710 3.8378849625587463e-02</internalNodes> + <leafValues> + -6.6913731396198273e-02 1.5582619607448578e-01</leafValues></_> <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 12 8 -1.</_> - <_> - 0 2 12 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1333481967449188</threshold> - <left_val>0.1747573018074036</left_val> - <right_val>-0.0818243995308876</right_val></_></_> + <internalNodes> + 0 -1 711 -1.3334819674491882e-01</internalNodes> + <leafValues> + 1.7475730180740356e-01 -8.1824399530887604e-02</leafValues></_> <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 2 4 -1.</_> - <_> - 14 0 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0233332701027393</threshold> - <left_val>-0.3101679980754852</left_val> - <right_val>0.0284895095974207</right_val></_></_> + <internalNodes> + 0 -1 712 -2.3333270102739334e-02</internalNodes> + <leafValues> + -3.1016799807548523e-01 2.8489509597420692e-02</leafValues></_> <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 4 2 -1.</_> - <_> - 4 0 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0320153608918190</threshold> - <left_val>0.0302598997950554</left_val> - <right_val>-0.3935722112655640</right_val></_></_> + <internalNodes> + 0 -1 713 3.2015360891819000e-02</internalNodes> + <leafValues> + 3.0259899795055389e-02 -3.9357221126556396e-01</leafValues></_> <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 3 1 -1.</_> - <_> - 9 5 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.2134500108659267e-003</threshold> - <left_val>-0.0302903205156326</left_val> - <right_val>0.1907422989606857</right_val></_></_> + <internalNodes> + 0 -1 714 4.2134500108659267e-03</internalNodes> + <leafValues> + -3.0290320515632629e-02 1.9074229896068573e-01</leafValues></_> <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 3 -1.</_> - <_> - 0 1 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0145530002191663</threshold> - <left_val>0.0211590807884932</left_val> - <right_val>-0.4789972007274628</right_val></_></_> + <internalNodes> + 0 -1 715 1.4553000219166279e-02</internalNodes> + <leafValues> + 2.1159080788493156e-02 -4.7899720072746277e-01</leafValues></_> <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 4 2 1 -1.</_> - <_> - 11 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>1.6254920046776533e-004</threshold> - <left_val>-0.0417022891342640</left_val> - <right_val>0.0668183416128159</right_val></_></_> + <internalNodes> + 0 -1 716 1.6254920046776533e-04</internalNodes> + <leafValues> + -4.1702289134263992e-02 6.6818341612815857e-02</leafValues></_> <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 8 1 -1.</_> - <_> - 11 5 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0512419901788235</threshold> - <left_val>-0.0259015504270792</left_val> - <right_val>0.3892486095428467</right_val></_></_> + <internalNodes> + 0 -1 717 5.1241990178823471e-02</internalNodes> + <leafValues> + -2.5901550427079201e-02 3.8924860954284668e-01</leafValues></_> <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 9 4 2 -1.</_> - <_> - 14 10 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0190147198736668</threshold> - <left_val>-0.6824030280113220</left_val> - <right_val>7.9030347988009453e-003</right_val></_></_> + <internalNodes> + 0 -1 718 -1.9014719873666763e-02</internalNodes> + <leafValues> + -6.8240302801132202e-01 7.9030347988009453e-03</leafValues></_> <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 11 4 1 -1.</_> - <_> - 8 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1731980339391157e-004</threshold> - <left_val>0.1034583002328873</left_val> - <right_val>-0.0927721709012985</right_val></_></_> + <internalNodes> + 0 -1 719 -1.1731980339391157e-04</internalNodes> + <leafValues> + 1.0345830023288727e-01 -9.2772170901298523e-02</leafValues></_> <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 4 3 -1.</_> - <_> - 8 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0123993903398514</threshold> - <left_val>-0.4849419891834259</left_val> - <right_val>0.0224051196128130</right_val></_></_> + <internalNodes> + 0 -1 720 -1.2399390339851379e-02</internalNodes> + <leafValues> + -4.8494198918342590e-01 2.2405119612812996e-02</leafValues></_> <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 2 -1.</_> - <_> - 0 0 1 1 2.</_> - <_> - 1 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1162629816681147e-003</threshold> - <left_val>-0.0624047815799713</left_val> - <right_val>0.1598809957504273</right_val></_></_> + <internalNodes> + 0 -1 721 1.1162629816681147e-03</internalNodes> + <leafValues> + -6.2404781579971313e-02 1.5988099575042725e-01</leafValues></_> <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 2 -1.</_> - <_> - 17 0 1 1 2.</_> - <_> - 16 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.3414581082761288e-003</threshold> - <left_val>-0.5093036890029907</left_val> - <right_val>0.0566513910889626</right_val></_></_> + <internalNodes> + 0 -1 722 -2.3414581082761288e-03</internalNodes> + <leafValues> + -5.0930368900299072e-01 5.6651391088962555e-02</leafValues></_> <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 2 -1.</_> - <_> - 0 0 1 1 2.</_> - <_> - 1 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1256740253884345e-004</threshold> - <left_val>0.1041925996541977</left_val> - <right_val>-0.0990771502256393</right_val></_></_> + <internalNodes> + 0 -1 723 -1.1256740253884345e-04</internalNodes> + <leafValues> + 1.0419259965419769e-01 -9.9077150225639343e-02</leafValues></_> <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 2 -1.</_> - <_> - 17 0 1 1 2.</_> - <_> - 16 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.4960099942982197e-003</threshold> - <left_val>0.0582640096545219</left_val> - <right_val>-0.3106968998908997</right_val></_></_> + <internalNodes> + 0 -1 724 1.4960099942982197e-03</internalNodes> + <leafValues> + 5.8264009654521942e-02 -3.1069689989089966e-01</leafValues></_> <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 2 -1.</_> - <_> - 0 0 1 1 2.</_> - <_> - 1 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1897009972017258e-004</threshold> - <left_val>-0.0964676067233086</left_val> - <right_val>0.1170964986085892</right_val></_></_> + <internalNodes> + 0 -1 725 1.1897009972017258e-04</internalNodes> + <leafValues> + -9.6467606723308563e-02 1.1709649860858917e-01</leafValues></_> <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 2 2 -1.</_> - <_> - 9 7 1 1 2.</_> - <_> - 8 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1693680426105857e-003</threshold> - <left_val>0.1521774977445602</left_val> - <right_val>-0.0708187595009804</right_val></_></_> + <internalNodes> + 0 -1 726 -1.1693680426105857e-03</internalNodes> + <leafValues> + 1.5217749774456024e-01 -7.0818759500980377e-02</leafValues></_> <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 2 2 -1.</_> - <_> - 7 10 1 1 2.</_> - <_> - 8 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.4839929584413767e-004</threshold> - <left_val>-0.0693603530526161</left_val> - <right_val>0.1507522016763687</right_val></_></_> + <internalNodes> + 0 -1 727 7.4839929584413767e-04</internalNodes> + <leafValues> + -6.9360353052616119e-02 1.5075220167636871e-01</leafValues></_> <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 10 2 2 -1.</_> - <_> - 10 10 1 1 2.</_> - <_> - 9 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1113719344139099e-003</threshold> - <left_val>-0.2890081107616425</left_val> - <right_val>0.0114481803029776</right_val></_></_> + <internalNodes> + 0 -1 728 -4.1113719344139099e-03</internalNodes> + <leafValues> + -2.8900811076164246e-01 1.1448180302977562e-02</leafValues></_> <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 2 2 -1.</_> - <_> - 7 10 1 1 2.</_> - <_> - 8 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4193469542078674e-004</threshold> - <left_val>0.1192665025591850</left_val> - <right_val>-0.0949712693691254</right_val></_></_> + <internalNodes> + 0 -1 729 -1.4193469542078674e-04</internalNodes> + <leafValues> + 1.1926650255918503e-01 -9.4971269369125366e-02</leafValues></_> <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 10 2 2 -1.</_> - <_> - 10 10 1 1 2.</_> - <_> - 9 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1901040124939755e-004</threshold> - <left_val>0.0642887875437737</left_val> - <right_val>-0.0477969199419022</right_val></_></_> + <internalNodes> + 0 -1 730 -1.1901040124939755e-04</internalNodes> + <leafValues> + 6.4288787543773651e-02 -4.7796919941902161e-02</leafValues></_> <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 2 2 -1.</_> - <_> - 7 10 1 1 2.</_> - <_> - 8 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0498589836061001e-004</threshold> - <left_val>-0.0966326668858528</left_val> - <right_val>0.1153898984193802</right_val></_></_> + <internalNodes> + 0 -1 731 1.0498589836061001e-04</internalNodes> + <leafValues> + -9.6632666885852814e-02 1.1538989841938019e-01</leafValues></_> <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 3 5 2 -1.</_> - <_> - 8 4 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.3408653736114502e-003</threshold> - <left_val>0.0446046590805054</left_val> - <right_val>-0.0408294089138508</right_val></_></_> + <internalNodes> + 0 -1 732 -8.3408653736114502e-03</internalNodes> + <leafValues> + 4.4604659080505371e-02 -4.0829408913850784e-02</leafValues></_> <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 3 2 -1.</_> - <_> - 6 4 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9393332600593567e-003</threshold> - <left_val>-0.0402716994285584</left_val> - <right_val>0.3078837990760803</right_val></_></_> + <internalNodes> + 0 -1 733 8.9393332600593567e-03</internalNodes> + <leafValues> + -4.0271699428558350e-02 3.0788379907608032e-01</leafValues></_> <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 9 1 2 -1.</_> - <_> - 14 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0168400331167504e-004</threshold> - <left_val>0.0834398791193962</left_val> - <right_val>-0.0296694301068783</right_val></_></_> + <internalNodes> + 0 -1 734 -1.0168400331167504e-04</internalNodes> + <leafValues> + 8.3439879119396210e-02 -2.9669430106878281e-02</leafValues></_> <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 9 1 2 -1.</_> - <_> - 3 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0159109660889953e-004</threshold> - <left_val>-0.1679400056600571</left_val> - <right_val>0.0614469610154629</right_val></_></_> + <internalNodes> + 0 -1 735 1.0159109660889953e-04</internalNodes> + <leafValues> + -1.6794000566005707e-01 6.1446961015462875e-02</leafValues></_> <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 4 2 -1.</_> - <_> - 11 3 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0203809794038534</threshold> - <left_val>-0.4637332856655121</left_val> - <right_val>0.0108193103224039</right_val></_></_> + <internalNodes> + 0 -1 736 -2.0380979403853416e-02</internalNodes> + <leafValues> + -4.6373328566551208e-01 1.0819310322403908e-02</leafValues></_> <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 7 3 1 -1.</_> - <_> - 6 7 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4813670422881842e-003</threshold> - <left_val>0.1430608928203583</left_val> - <right_val>-0.0670247301459312</right_val></_></_> + <internalNodes> + 0 -1 737 -1.4813670422881842e-03</internalNodes> + <leafValues> + 1.4306089282035828e-01 -6.7024730145931244e-02</leafValues></_> <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 5 4 4 -1.</_> - <_> - 11 7 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0109615698456764</threshold> - <left_val>-0.1020217016339302</left_val> - <right_val>0.0506100207567215</right_val></_></_> + <internalNodes> + 0 -1 738 1.0961569845676422e-02</internalNodes> + <leafValues> + -1.0202170163393021e-01 5.0610020756721497e-02</leafValues></_> <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 7 2 2 -1.</_> - <_> - 6 7 1 1 2.</_> - <_> - 7 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.2087350953370333e-003</threshold> - <left_val>-0.0570639409124851</left_val> - <right_val>0.1762620955705643</right_val></_></_> + <internalNodes> + 0 -1 739 2.2087350953370333e-03</internalNodes> + <leafValues> + -5.7063940912485123e-02 1.7626209557056427e-01</leafValues></_> <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 8 3 2 -1.</_> - <_> - 15 9 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0162783507257700</threshold> - <left_val>0.0163493994623423</left_val> - <right_val>-0.2635554075241089</right_val></_></_> + <internalNodes> + 0 -1 740 1.6278350725769997e-02</internalNodes> + <leafValues> + 1.6349399462342262e-02 -2.6355540752410889e-01</leafValues></_> <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 3 2 -1.</_> - <_> - 0 9 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9292189069092274e-003</threshold> - <left_val>-0.4008415043354034</left_val> - <right_val>0.0247115101665258</right_val></_></_> + <internalNodes> + 0 -1 741 -4.9292189069092274e-03</internalNodes> + <leafValues> + -4.0084150433540344e-01 2.4711510166525841e-02</leafValues></_> <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 4 2 -1.</_> - <_> - 11 3 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1716609587892890e-003</threshold> - <left_val>0.0846072733402252</left_val> - <right_val>-0.0754897966980934</right_val></_></_> + <internalNodes> + 0 -1 742 -1.1716609587892890e-03</internalNodes> + <leafValues> + 8.4607273340225220e-02 -7.5489796698093414e-02</leafValues></_> <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 4 2 -1.</_> - <_> - 5 3 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0221331994980574</threshold> - <left_val>-0.7988120913505554</left_val> - <right_val>0.0130158802494407</right_val></_></_> + <internalNodes> + 0 -1 743 -2.2133199498057365e-02</internalNodes> + <leafValues> + -7.9881209135055542e-01 1.3015880249440670e-02</leafValues></_> <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 14 8 -1.</_> - <_> - 11 2 7 4 2.</_> - <_> - 4 6 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0600502304732800</threshold> - <left_val>-0.0305999293923378</left_val> - <right_val>0.0651800408959389</right_val></_></_> + <internalNodes> + 0 -1 744 6.0050230473279953e-02</internalNodes> + <leafValues> + -3.0599929392337799e-02 6.5180040895938873e-02</leafValues></_> <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 3 4 4 -1.</_> - <_> - 1 3 2 2 2.</_> - <_> - 3 5 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.2345595583319664e-003</threshold> - <left_val>0.1370068937540054</left_val> - <right_val>-0.0728798508644104</right_val></_></_> + <internalNodes> + 0 -1 745 -8.2345595583319664e-03</internalNodes> + <leafValues> + 1.3700689375400543e-01 -7.2879850864410400e-02</leafValues></_> <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 3 -1.</_> - <_> - 16 0 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0183028802275658</threshold> - <left_val>0.0381704792380333</left_val> - <right_val>-0.3056429922580719</right_val></_></_> + <internalNodes> + 0 -1 746 1.8302880227565765e-02</internalNodes> + <leafValues> + 3.8170479238033295e-02 -3.0564299225807190e-01</leafValues></_> <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 1 2 -1.</_> - <_> - 0 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6368640353903174e-003</threshold> - <left_val>-0.2922838032245636</left_val> - <right_val>0.0316950716078281</right_val></_></_> + <internalNodes> + 0 -1 747 -1.6368640353903174e-03</internalNodes> + <leafValues> + -2.9228380322456360e-01 3.1695071607828140e-02</leafValues></_> <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 6 2 -1.</_> - <_> - 9 1 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0369524396955967</threshold> - <left_val>-0.5229138731956482</left_val> - <right_val>6.8037798628211021e-003</right_val></_></_> + <internalNodes> + 0 -1 748 -3.6952439695596695e-02</internalNodes> + <leafValues> + -5.2291387319564819e-01 6.8037798628211021e-03</leafValues></_> <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 1 6 2 -1.</_> - <_> - 7 1 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0251328703016043</threshold> - <left_val>-0.4940544068813324</left_val> - <right_val>0.0187225099653006</right_val></_></_> + <internalNodes> + 0 -1 749 -2.5132870301604271e-02</internalNodes> + <leafValues> + -4.9405440688133240e-01 1.8722509965300560e-02</leafValues></_> <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 10 2 2 -1.</_> - <_> - 16 10 1 1 2.</_> - <_> - 15 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7387202074751258e-004</threshold> - <left_val>-0.0605909302830696</left_val> - <right_val>0.1199930980801582</right_val></_></_> + <internalNodes> + 0 -1 750 8.7387202074751258e-04</internalNodes> + <leafValues> + -6.0590930283069611e-02 1.1999309808015823e-01</leafValues></_> <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 2 2 -1.</_> - <_> - 1 10 1 1 2.</_> - <_> - 2 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.7723852377384901e-005</threshold> - <left_val>-0.0996944829821587</left_val> - <right_val>0.0996118783950806</right_val></_></_> + <internalNodes> + 0 -1 751 9.7723852377384901e-05</internalNodes> + <leafValues> + -9.9694482982158661e-02 9.9611878395080566e-02</leafValues></_> <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 14 8 -1.</_> - <_> - 11 2 7 4 2.</_> - <_> - 4 6 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0365600399672985</threshold> - <left_val>-0.0346987992525101</left_val> - <right_val>0.0237058997154236</right_val></_></_> + <internalNodes> + 0 -1 752 -3.6560039967298508e-02</internalNodes> + <leafValues> + -3.4698799252510071e-02 2.3705899715423584e-02</leafValues></_> <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 4 4 -1.</_> - <_> - 5 4 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1409696042537689</threshold> - <left_val>-0.5103353857994080</left_val> - <right_val>0.0171346999704838</right_val></_></_> + <internalNodes> + 0 -1 753 -1.4096960425376892e-01</internalNodes> + <leafValues> + -5.1033538579940796e-01 1.7134699970483780e-02</leafValues></_> <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 4 6 6 -1.</_> - <_> - 15 4 3 3 2.</_> - <_> - 12 7 3 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0184929501265287</threshold> - <left_val>0.1354658007621765</left_val> - <right_val>-0.0375994816422462</right_val></_></_> + <internalNodes> + 0 -1 754 -1.8492950126528740e-02</internalNodes> + <leafValues> + 1.3546580076217651e-01 -3.7599481642246246e-02</leafValues></_> <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 12 1 -1.</_> - <_> - 6 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.4302928037941456e-003</threshold> - <left_val>-0.0745975822210312</left_val> - <right_val>0.1326764971017838</right_val></_></_> + <internalNodes> + 0 -1 755 5.4302928037941456e-03</internalNodes> + <leafValues> + -7.4597582221031189e-02 1.3267649710178375e-01</leafValues></_> <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 8 2 2 -1.</_> - <_> - 11 8 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0289790108799934</threshold> - <left_val>-0.5686805844306946</left_val> - <right_val>0.0147117003798485</right_val></_></_> + <internalNodes> + 0 -1 756 -2.8979010879993439e-02</internalNodes> + <leafValues> + -5.6868058443069458e-01 1.4711700379848480e-02</leafValues></_> <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 2 3 -1.</_> - <_> - 1 3 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1912179440259933e-003</threshold> - <left_val>0.1458799988031387</left_val> - <right_val>-0.0764634609222412</right_val></_></_> + <internalNodes> + 0 -1 757 -4.1912179440259933e-03</internalNodes> + <leafValues> + 1.4587999880313873e-01 -7.6463460922241211e-02</leafValues></_> <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 4 6 6 -1.</_> - <_> - 14 4 3 3 2.</_> - <_> - 11 7 3 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0993952900171280</threshold> - <left_val>7.5935330241918564e-003</left_val> - <right_val>-0.3043062984943390</right_val></_></_> + <internalNodes> + 0 -1 758 9.9395290017127991e-02</internalNodes> + <leafValues> + 7.5935330241918564e-03 -3.0430629849433899e-01</leafValues></_> <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 4 6 6 -1.</_> - <_> - 1 4 3 3 2.</_> - <_> - 4 7 3 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0340690799057484</threshold> - <left_val>-0.0668366998434067</left_val> - <right_val>0.1543917059898377</right_val></_></_></trees> - <stage_threshold>-1.5292299985885620</stage_threshold> - <parent>8</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 759 3.4069079905748367e-02</internalNodes> + <leafValues> + -6.6836699843406677e-02 1.5439170598983765e-01</leafValues></_></weakClassifiers></_> <_> - <!-- stage 10 --> - <trees> + <maxWeakCount>170</maxWeakCount> + <stageThreshold>-1.5202269554138184e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 6 3 -1.</_> - <_> - 11 3 2 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1068997979164124</threshold> - <left_val>0.3065895140171051</left_val> - <right_val>-0.2463105022907257</right_val></_></_> + <internalNodes> + 0 -1 760 -1.0689979791641235e-01</internalNodes> + <leafValues> + 3.0658951401710510e-01 -2.4631050229072571e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 2 3 4 -1.</_> - <_> - 13 3 3 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0300844796001911</threshold> - <left_val>0.1461059004068375</left_val> - <right_val>-0.0482189394533634</right_val></_></_> + <internalNodes> + 0 -1 761 -3.0084479600191116e-02</internalNodes> + <leafValues> + 1.4610590040683746e-01 -4.8218939453363419e-02</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 4 3 -1.</_> - <_> - 5 3 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0350008308887482</threshold> - <left_val>0.3175526857376099</left_val> - <right_val>-0.1447803974151611</right_val></_></_> + <internalNodes> + 0 -1 762 -3.5000830888748169e-02</internalNodes> + <leafValues> + 3.1755268573760986e-01 -1.4478039741516113e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 12 -1.</_> - <_> - 16 6 2 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1102595999836922</threshold> - <left_val>0.0212385002523661</left_val> - <right_val>-0.1601230055093765</right_val></_></_> + <internalNodes> + 0 -1 763 1.1025959998369217e-01</internalNodes> + <leafValues> + 2.1238500252366066e-02 -1.6012300550937653e-01</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 12 -1.</_> - <_> - 0 6 2 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0124844098463655</threshold> - <left_val>-0.2746626138687134</left_val> - <right_val>0.1846054941415787</right_val></_></_> + <internalNodes> + 0 -1 764 1.2484409846365452e-02</internalNodes> + <leafValues> + -2.7466261386871338e-01 1.8460549414157867e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 8 3 -1.</_> - <_> - 6 0 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0150614902377129</threshold> - <left_val>-0.1314907073974609</left_val> - <right_val>0.1639087051153183</right_val></_></_> + <internalNodes> + 0 -1 765 1.5061490237712860e-02</internalNodes> + <leafValues> + -1.3149070739746094e-01 1.6390870511531830e-01</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 9 -1.</_> - <_> - 6 0 6 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2205734997987747</threshold> - <left_val>0.1963908970355988</left_val> - <right_val>-0.2306918948888779</right_val></_></_> + <internalNodes> + 0 -1 766 -2.2057349979877472e-01</internalNodes> + <leafValues> + 1.9639089703559875e-01 -2.3069189488887787e-01</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 3 4 -1.</_> - <_> - 11 4 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0325992591679096</threshold> - <left_val>0.1243973001837730</left_val> - <right_val>-0.0876483768224716</right_val></_></_> + <internalNodes> + 0 -1 767 -3.2599259167909622e-02</internalNodes> + <leafValues> + 1.2439730018377304e-01 -8.7648376822471619e-02</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 6 4 -1.</_> - <_> - 0 10 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1759902164340019e-003</threshold> - <left_val>-0.3832491934299469</left_val> - <right_val>0.0945175364613533</right_val></_></_> + <internalNodes> + 0 -1 768 6.1759902164340019e-03</internalNodes> + <leafValues> + -3.8324919342994690e-01 9.4517536461353302e-02</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 3 4 -1.</_> - <_> - 11 4 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0303403101861477</threshold> - <left_val>-0.0215594992041588</left_val> - <right_val>0.2399456053972244</right_val></_></_> + <internalNodes> + 0 -1 769 3.0340310186147690e-02</internalNodes> + <leafValues> + -2.1559499204158783e-02 2.3994560539722443e-01</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 3 4 3 -1.</_> - <_> - 7 4 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0263465903699398</threshold> - <left_val>0.2514367997646332</left_val> - <right_val>-0.1257061064243317</right_val></_></_> + <internalNodes> + 0 -1 770 -2.6346590369939804e-02</internalNodes> + <leafValues> + 2.5143679976463318e-01 -1.2570610642433167e-01</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 3 4 3 -1.</_> - <_> - 11 4 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0474787391722202</threshold> - <left_val>-0.0230064094066620</left_val> - <right_val>0.2878957986831665</right_val></_></_> + <internalNodes> + 0 -1 771 4.7478739172220230e-02</internalNodes> + <leafValues> + -2.3006409406661987e-02 2.8789579868316650e-01</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 3 4 -1.</_> - <_> - 7 4 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0333478003740311</threshold> - <left_val>0.2813386023044586</left_val> - <right_val>-0.1014425978064537</right_val></_></_> + <internalNodes> + 0 -1 772 -3.3347800374031067e-02</internalNodes> + <leafValues> + 2.8133860230445862e-01 -1.0144259780645370e-01</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 6 0 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0291741508990526</threshold> - <left_val>0.1780585944652557</left_val> - <right_val>-0.1181761994957924</right_val></_></_> + <internalNodes> + 0 -1 773 -2.9174150899052620e-02</internalNodes> + <leafValues> + 1.7805859446525574e-01 -1.1817619949579239e-01</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 2 4 -1.</_> - <_> - 5 3 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0283867400139570</threshold> - <left_val>0.3956272006034851</left_val> - <right_val>-0.0499168895184994</right_val></_></_> + <internalNodes> + 0 -1 774 -2.8386740013957024e-02</internalNodes> + <leafValues> + 3.9562720060348511e-01 -4.9916889518499374e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 3 5 -1.</_> - <_> - 9 0 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0189510192722082</threshold> - <left_val>0.0253290999680758</left_val> - <right_val>-0.5337107777595520</right_val></_></_> + <internalNodes> + 0 -1 775 1.8951019272208214e-02</internalNodes> + <leafValues> + 2.5329099968075752e-02 -5.3371077775955200e-01</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 3 5 -1.</_> - <_> - 8 0 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0147616900503635</threshold> - <left_val>0.0347115099430084</left_val> - <right_val>-0.5034946799278259</right_val></_></_> + <internalNodes> + 0 -1 776 1.4761690050363541e-02</internalNodes> + <leafValues> + 3.4711509943008423e-02 -5.0349467992782593e-01</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 4 3 3 -1.</_> - <_> - 12 5 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0275413095951080</threshold> - <left_val>0.2549135982990265</left_val> - <right_val>-0.0777612030506134</right_val></_></_> + <internalNodes> + 0 -1 777 -2.7541309595108032e-02</internalNodes> + <leafValues> + 2.5491359829902649e-01 -7.7761203050613403e-02</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 9 4 3 -1.</_> - <_> - 7 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0112868901342154</threshold> - <left_val>0.0277946405112743</left_val> - <right_val>-0.6348956823348999</right_val></_></_> + <internalNodes> + 0 -1 778 1.1286890134215355e-02</internalNodes> + <leafValues> + 2.7794640511274338e-02 -6.3489568233489990e-01</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 12 12 -1.</_> - <_> - 6 0 6 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.7104052901268005</threshold> - <left_val>-0.4678632020950317</left_val> - <right_val>3.7275071372278035e-004</right_val></_></_> + <internalNodes> + 0 -1 779 -7.1040529012680054e-01</internalNodes> + <leafValues> + -4.6786320209503174e-01 3.7275071372278035e-04</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 14 12 -1.</_> - <_> - 7 0 7 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1640232950448990</threshold> - <left_val>-0.0674500316381454</left_val> - <right_val>0.2560296952724457</right_val></_></_> + <internalNodes> + 0 -1 780 1.6402329504489899e-01</internalNodes> + <leafValues> + -6.7450031638145447e-02 2.5602969527244568e-01</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 9 8 1 -1.</_> - <_> - 5 9 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.4193330258131027e-003</threshold> - <left_val>-0.0902327001094818</left_val> - <right_val>0.2060980945825577</right_val></_></_> + <internalNodes> + 0 -1 781 8.4193330258131027e-03</internalNodes> + <leafValues> + -9.0232700109481812e-02 2.0609809458255768e-01</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 1 7 6 -1.</_> - <_> - 5 3 7 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1468850970268250</threshold> - <left_val>0.3600434958934784</left_val> - <right_val>-0.0495125502347946</right_val></_></_> + <internalNodes> + 0 -1 782 -1.4688509702682495e-01</internalNodes> + <leafValues> + 3.6004349589347839e-01 -4.9512550234794617e-02</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 4 -1.</_> - <_> - 7 1 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0195542108267546</threshold> - <left_val>0.3065305948257446</left_val> - <right_val>-0.0634515434503555</right_val></_></_> + <internalNodes> + 0 -1 783 -1.9554210826754570e-02</internalNodes> + <leafValues> + 3.0653059482574463e-01 -6.3451543450355530e-02</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 6 4 -1.</_> - <_> - 0 2 3 2 2.</_> - <_> - 3 4 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0104449195787311</threshold> - <left_val>0.1329057067632675</left_val> - <right_val>-0.1282705962657929</right_val></_></_> + <internalNodes> + 0 -1 784 -1.0444919578731060e-02</internalNodes> + <leafValues> + 1.3290570676326752e-01 -1.2827059626579285e-01</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 3 1 -1.</_> - <_> - 16 1 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0110623296350241</threshold> - <left_val>0.0406869798898697</left_val> - <right_val>-0.6298875808715820</right_val></_></_> + <internalNodes> + 0 -1 785 1.1062329635024071e-02</internalNodes> + <leafValues> + 4.0686979889869690e-02 -6.2988758087158203e-01</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 1 3 -1.</_> - <_> - 2 1 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0150402104482055</threshold> - <left_val>-0.5846170186996460</left_val> - <right_val>0.0231177695095539</right_val></_></_> + <internalNodes> + 0 -1 786 -1.5040210448205471e-02</internalNodes> + <leafValues> + -5.8461701869964600e-01 2.3117769509553909e-02</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 9 2 2 -1.</_> - <_> - 16 9 1 1 2.</_> - <_> - 15 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0194590140599757e-004</threshold> - <left_val>0.1199664026498795</left_val> - <right_val>-0.0791245475411415</right_val></_></_> + <internalNodes> + 0 -1 787 -1.0194590140599757e-04</internalNodes> + <leafValues> + 1.1996640264987946e-01 -7.9124547541141510e-02</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 2 2 -1.</_> - <_> - 1 9 1 1 2.</_> - <_> - 2 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.0414949227124453e-005</threshold> - <left_val>-0.1360127031803131</left_val> - <right_val>0.1183627992868424</right_val></_></_> + <internalNodes> + 0 -1 788 9.0414949227124453e-05</internalNodes> + <leafValues> + -1.3601270318031311e-01 1.1836279928684235e-01</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 7 2 4 -1.</_> - <_> - 14 8 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0164963100105524</threshold> - <left_val>0.0154076498001814</left_val> - <right_val>-0.3374196887016296</right_val></_></_> + <internalNodes> + 0 -1 789 1.6496310010552406e-02</internalNodes> + <leafValues> + 1.5407649800181389e-02 -3.3741968870162964e-01</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 7 2 4 -1.</_> - <_> - 2 8 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1918049858650193e-004</threshold> - <left_val>-0.1349862962961197</left_val> - <right_val>0.1221467033028603</right_val></_></_> + <internalNodes> + 0 -1 790 1.1918049858650193e-04</internalNodes> + <leafValues> + -1.3498629629611969e-01 1.2214670330286026e-01</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 4 3 4 -1.</_> - <_> - 12 5 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0446369610726833</threshold> - <left_val>-0.0357825383543968</left_val> - <right_val>0.3591647148132324</right_val></_></_> + <internalNodes> + 0 -1 791 4.4636961072683334e-02</internalNodes> + <leafValues> + -3.5782538354396820e-02 3.5916471481323242e-01</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 10 12 2 -1.</_> - <_> - 3 11 12 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9213429018855095e-003</threshold> - <left_val>-0.1704276055097580</left_val> - <right_val>0.0977377369999886</right_val></_></_> + <internalNodes> + 0 -1 792 8.9213429018855095e-03</internalNodes> + <leafValues> + -1.7042760550975800e-01 9.7737736999988556e-02</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 4 3 4 -1.</_> - <_> - 12 5 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0209771692752838</threshold> - <left_val>0.0996034890413284</left_val> - <right_val>-0.0449266210198402</right_val></_></_> + <internalNodes> + 0 -1 793 -2.0977169275283813e-02</internalNodes> + <leafValues> + 9.9603489041328430e-02 -4.4926621019840240e-02</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 4 3 -1.</_> - <_> - 6 5 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0373202301561832</threshold> - <left_val>0.3244209885597229</left_val> - <right_val>-0.0458211116492748</right_val></_></_> + <internalNodes> + 0 -1 794 -3.7320230156183243e-02</internalNodes> + <leafValues> + 3.2442098855972290e-01 -4.5821111649274826e-02</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 10 6 2 -1.</_> - <_> - 11 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.9962401129305363e-003</threshold> - <left_val>0.0877332836389542</left_val> - <right_val>-0.0639531314373016</right_val></_></_> + <internalNodes> + 0 -1 795 -1.9962401129305363e-03</internalNodes> + <leafValues> + 8.7733283638954163e-02 -6.3953131437301636e-02</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 10 6 2 -1.</_> - <_> - 5 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0180807691067457</threshold> - <left_val>0.0333061888813972</left_val> - <right_val>-0.4879122972488403</right_val></_></_> + <internalNodes> + 0 -1 796 1.8080769106745720e-02</internalNodes> + <leafValues> + 3.3306188881397247e-02 -4.8791229724884033e-01</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 8 8 -1.</_> - <_> - 10 3 4 4 2.</_> - <_> - 6 7 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1877630949020386</threshold> - <left_val>-1.0865679942071438e-003</left_val> - <right_val>-0.4659563899040222</right_val></_></_> + <internalNodes> + 0 -1 797 1.8776309490203857e-01</internalNodes> + <leafValues> + -1.0865679942071438e-03 -4.6595638990402222e-01</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 3 2 -1.</_> - <_> - 2 1 3 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0231924392282963</threshold> - <left_val>0.0326414704322815</left_val> - <right_val>-0.4328950941562653</right_val></_></_> + <internalNodes> + 0 -1 798 2.3192439228296280e-02</internalNodes> + <leafValues> + 3.2641470432281494e-02 -4.3289509415626526e-01</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 7 5 3 -1.</_> - <_> - 7 8 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0103381900116801</threshold> - <left_val>-0.0875770226120949</left_val> - <right_val>0.1507108956575394</right_val></_></_> + <internalNodes> + 0 -1 799 1.0338190011680126e-02</internalNodes> + <leafValues> + -8.7577022612094879e-02 1.5071089565753937e-01</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 3 3 -1.</_> - <_> - 0 4 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0191331207752228</threshold> - <left_val>0.0258956793695688</left_val> - <right_val>-0.5301573276519775</right_val></_></_> + <internalNodes> + 0 -1 800 1.9133120775222778e-02</internalNodes> + <leafValues> + 2.5895679369568825e-02 -5.3015732765197754e-01</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 2 2 -1.</_> - <_> - 11 3 1 1 2.</_> - <_> - 10 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.1426696851849556e-005</threshold> - <left_val>0.0809258222579956</left_val> - <right_val>-0.0962679833173752</right_val></_></_> + <internalNodes> + 0 -1 801 -8.1426696851849556e-05</internalNodes> + <leafValues> + 8.0925822257995605e-02 -9.6267983317375183e-02</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 9 3 -1.</_> - <_> - 3 1 9 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0185608491301537</threshold> - <left_val>-0.0709683224558830</left_val> - <right_val>0.1696263998746872</right_val></_></_> + <internalNodes> + 0 -1 802 1.8560849130153656e-02</internalNodes> + <leafValues> + -7.0968322455883026e-02 1.6962639987468719e-01</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 8 1 4 -1.</_> - <_> - 17 10 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.5964579805731773e-003</threshold> - <left_val>-0.4166347086429596</left_val> - <right_val>0.0303780604153872</right_val></_></_> + <internalNodes> + 0 -1 803 -5.5964579805731773e-03</internalNodes> + <leafValues> + -4.1663470864295959e-01 3.0378060415387154e-02</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 1 7 2 -1.</_> - <_> - 5 2 7 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0177739597856998</threshold> - <left_val>-0.0542575381696224</left_val> - <right_val>0.2256149053573608</right_val></_></_> + <internalNodes> + 0 -1 804 1.7773959785699844e-02</internalNodes> + <leafValues> + -5.4257538169622421e-02 2.2561490535736084e-01</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 8 4 -1.</_> - <_> - 7 2 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0598320104181767</threshold> - <left_val>0.2294614017009735</left_val> - <right_val>-0.0155030498281121</right_val></_></_> + <internalNodes> + 0 -1 805 -5.9832010418176651e-02</internalNodes> + <leafValues> + 2.2946140170097351e-01 -1.5503049828112125e-02</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 2 3 -1.</_> - <_> - 0 5 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0116685498505831</threshold> - <left_val>0.0255278591066599</left_val> - <right_val>-0.4887343049049377</right_val></_></_> + <internalNodes> + 0 -1 806 1.1668549850583076e-02</internalNodes> + <leafValues> + 2.5527859106659889e-02 -4.8873430490493774e-01</leafValues></_> <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 12 8 -1.</_> - <_> - 11 2 6 4 2.</_> - <_> - 5 6 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0176241490989923</threshold> - <left_val>-0.0328362099826336</left_val> - <right_val>0.0415283106267452</right_val></_></_> + <internalNodes> + 0 -1 807 1.7624149098992348e-02</internalNodes> + <leafValues> + -3.2836209982633591e-02 4.1528310626745224e-02</leafValues></_> <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 8 8 -1.</_> - <_> - 4 3 4 4 2.</_> - <_> - 8 7 4 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0528338812291622</threshold> - <left_val>-0.2849169075489044</left_val> - <right_val>0.0465317890048027</right_val></_></_> + <internalNodes> + 0 -1 808 -5.2833881229162216e-02</internalNodes> + <leafValues> + -2.8491690754890442e-01 4.6531789004802704e-02</leafValues></_> <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 1 2 2 -1.</_> - <_> - 17 1 1 1 2.</_> - <_> - 16 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0954129286110401e-003</threshold> - <left_val>-0.4879463911056519</left_val> - <right_val>0.0535930208861828</right_val></_></_> + <internalNodes> + 0 -1 809 -2.0954129286110401e-03</internalNodes> + <leafValues> + -4.8794639110565186e-01 5.3593020886182785e-02</leafValues></_> <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 2 2 -1.</_> - <_> - 0 1 1 1 2.</_> - <_> - 1 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0130889859283343e-004</threshold> - <left_val>0.1124050989747047</left_val> - <right_val>-0.1033485010266304</right_val></_></_> + <internalNodes> + 0 -1 810 -1.0130889859283343e-04</internalNodes> + <leafValues> + 1.1240509897470474e-01 -1.0334850102663040e-01</leafValues></_> <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 1 2 2 -1.</_> - <_> - 17 1 1 1 2.</_> - <_> - 16 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.9346430199220777e-003</threshold> - <left_val>0.0497517809271812</left_val> - <right_val>-0.3711118102073669</right_val></_></_> + <internalNodes> + 0 -1 811 1.9346430199220777e-03</internalNodes> + <leafValues> + 4.9751780927181244e-02 -3.7111181020736694e-01</leafValues></_> <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 2 2 -1.</_> - <_> - 0 1 1 1 2.</_> - <_> - 1 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1420589726185426e-004</threshold> - <left_val>-0.1248224973678589</left_val> - <right_val>0.1646624952554703</right_val></_></_> + <internalNodes> + 0 -1 812 1.1420589726185426e-04</internalNodes> + <leafValues> + -1.2482249736785889e-01 1.6466249525547028e-01</leafValues></_> <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 1 2 2 -1.</_> - <_> - 17 1 1 1 2.</_> - <_> - 16 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.1585953012108803e-005</threshold> - <left_val>0.0961032584309578</left_val> - <right_val>-0.0768077895045280</right_val></_></_> + <internalNodes> + 0 -1 813 -8.1585953012108803e-05</internalNodes> + <leafValues> + 9.6103258430957794e-02 -7.6807789504528046e-02</leafValues></_> <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 3 3 -1.</_> - <_> - 8 5 1 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0255181398242712</threshold> - <left_val>0.2078004032373428</left_val> - <right_val>-0.0602239407598972</right_val></_></_> + <internalNodes> + 0 -1 814 -2.5518139824271202e-02</internalNodes> + <leafValues> + 2.0780040323734283e-01 -6.0223940759897232e-02</leafValues></_> <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 0 3 12 -1.</_> - <_> - 13 0 1 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0506166294217110</threshold> - <left_val>-0.6663321852684021</left_val> - <right_val>0.0129908695816994</right_val></_></_> + <internalNodes> + 0 -1 815 -5.0616629421710968e-02</internalNodes> + <leafValues> + -6.6633218526840210e-01 1.2990869581699371e-02</leafValues></_> <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 2 2 -1.</_> - <_> - 0 1 1 1 2.</_> - <_> - 1 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1321919737383723e-004</threshold> - <left_val>0.1162087991833687</left_val> - <right_val>-0.1048611029982567</right_val></_></_> + <internalNodes> + 0 -1 816 -1.1321919737383723e-04</internalNodes> + <leafValues> + 1.1620879918336868e-01 -1.0486110299825668e-01</leafValues></_> <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 0 3 10 -1.</_> - <_> - 13 0 1 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.8787519335746765e-003</threshold> - <left_val>0.1585139930248261</left_val> - <right_val>-0.0967515110969543</right_val></_></_> + <internalNodes> + 0 -1 817 -4.8787519335746765e-03</internalNodes> + <leafValues> + 1.5851399302482605e-01 -9.6751511096954346e-02</leafValues></_> <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 2 1 2 -1.</_> - <_> - 6 2 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0120077803730965</threshold> - <left_val>0.0329582095146179</left_val> - <right_val>-0.3602350950241089</right_val></_></_> + <internalNodes> + 0 -1 818 1.2007780373096466e-02</internalNodes> + <leafValues> + 3.2958209514617920e-02 -3.6023509502410889e-01</leafValues></_> <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 5 1 6 -1.</_> - <_> - 16 5 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-3.9686369709670544e-003</threshold> - <left_val>0.0588958300650120</left_val> - <right_val>-0.2057598978281021</right_val></_></_> + <internalNodes> + 0 -1 819 -3.9686369709670544e-03</internalNodes> + <leafValues> + 5.8895830065011978e-02 -2.0575989782810211e-01</leafValues></_> <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 12 -1.</_> - <_> - 9 0 9 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1198747009038925</threshold> - <left_val>-0.0942827910184860</left_val> - <right_val>0.1271630972623825</right_val></_></_> + <internalNodes> + 0 -1 820 1.1987470090389252e-01</internalNodes> + <leafValues> + -9.4282791018486023e-02 1.2716309726238251e-01</leafValues></_> <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 10 12 2 -1.</_> - <_> - 7 10 4 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0151014300063252</threshold> - <left_val>0.1544785946607590</left_val> - <right_val>-0.0988143980503082</right_val></_></_> + <internalNodes> + 0 -1 821 -1.5101430006325245e-02</internalNodes> + <leafValues> + 1.5447859466075897e-01 -9.8814398050308228e-02</leafValues></_> <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 7 3 -1.</_> - <_> - 8 3 7 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0352536588907242</threshold> - <left_val>0.1902227997779846</left_val> - <right_val>-0.0634641796350479</right_val></_></_> + <internalNodes> + 0 -1 822 -3.5253658890724182e-02</internalNodes> + <leafValues> + 1.9022279977798462e-01 -6.3464179635047913e-02</leafValues></_> <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 4 1 -1.</_> - <_> - 10 6 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.2858894020318985e-003</threshold> - <left_val>0.1928718984127045</left_val> - <right_val>-0.0247865393757820</right_val></_></_> + <internalNodes> + 0 -1 823 -8.2858894020318985e-03</internalNodes> + <leafValues> + 1.9287189841270447e-01 -2.4786539375782013e-02</leafValues></_> <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 4 1 -1.</_> - <_> - 6 6 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7197180315852165e-003</threshold> - <left_val>0.1731874942779541</left_val> - <right_val>-0.0706930309534073</right_val></_></_> + <internalNodes> + 0 -1 824 -2.7197180315852165e-03</internalNodes> + <leafValues> + 1.7318749427795410e-01 -7.0693030953407288e-02</leafValues></_> <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 2 2 -1.</_> - <_> - 10 5 1 1 2.</_> - <_> - 9 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1073380301240832e-004</threshold> - <left_val>0.0766692310571671</left_val> - <right_val>-0.0775807872414589</right_val></_></_> + <internalNodes> + 0 -1 825 -1.1073380301240832e-04</internalNodes> + <leafValues> + 7.6669231057167053e-02 -7.7580787241458893e-02</leafValues></_> <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 11 6 1 -1.</_> - <_> - 6 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0129251601174474</threshold> - <left_val>-0.5093346834182739</left_val> - <right_val>0.0232668407261372</right_val></_></_> + <internalNodes> + 0 -1 826 -1.2925160117447376e-02</internalNodes> + <leafValues> + -5.0933468341827393e-01 2.3266840726137161e-02</leafValues></_> <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 4 2 7 -1.</_> - <_> - 16 4 1 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0100037604570389</threshold> - <left_val>0.2072820961475372</left_val> - <right_val>-0.1172078028321266</right_val></_></_> + <internalNodes> + 0 -1 827 -1.0003760457038879e-02</internalNodes> + <leafValues> + 2.0728209614753723e-01 -1.1720780283212662e-01</leafValues></_> <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 4 4 -1.</_> - <_> - 4 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0164574701339006</threshold> - <left_val>-0.4544798135757446</left_val> - <right_val>0.0230529494583607</right_val></_></_> + <internalNodes> + 0 -1 828 -1.6457470133900642e-02</internalNodes> + <leafValues> + -4.5447981357574463e-01 2.3052949458360672e-02</leafValues></_> <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 0 2 6 -1.</_> - <_> - 11 0 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0151726696640253</threshold> - <left_val>-0.2038412988185883</left_val> - <right_val>0.0208796393126249</right_val></_></_> + <internalNodes> + 0 -1 829 -1.5172669664025307e-02</internalNodes> + <leafValues> + -2.0384129881858826e-01 2.0879639312624931e-02</leafValues></_> <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 4 4 -1.</_> - <_> - 6 1 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0411502793431282</threshold> - <left_val>-0.4852608144283295</left_val> - <right_val>0.0233750008046627</right_val></_></_> + <internalNodes> + 0 -1 830 -4.1150279343128204e-02</internalNodes> + <leafValues> + -4.8526081442832947e-01 2.3375000804662704e-02</leafValues></_> <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 2 2 -1.</_> - <_> - 10 5 1 1 2.</_> - <_> - 9 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7554886704310775e-005</threshold> - <left_val>-0.0831706374883652</left_val> - <right_val>0.1149104014039040</right_val></_></_> + <internalNodes> + 0 -1 831 8.7554886704310775e-05</internalNodes> + <leafValues> + -8.3170637488365173e-02 1.1491040140390396e-01</leafValues></_> <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 2 -1.</_> - <_> - 7 5 1 1 2.</_> - <_> - 8 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4003519900143147e-003</threshold> - <left_val>0.1705211997032166</left_val> - <right_val>-0.0798976123332977</right_val></_></_> + <internalNodes> + 0 -1 832 -1.4003519900143147e-03</internalNodes> + <leafValues> + 1.7052119970321655e-01 -7.9897612333297729e-02</leafValues></_> <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 5 1 6 -1.</_> - <_> - 17 7 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0143200298771262</threshold> - <left_val>-0.2797814011573792</left_val> - <right_val>0.0276442207396030</right_val></_></_> + <internalNodes> + 0 -1 833 -1.4320029877126217e-02</internalNodes> + <leafValues> + -2.7978140115737915e-01 2.7644220739603043e-02</leafValues></_> <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 1 6 -1.</_> - <_> - 0 7 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0105369901284575</threshold> - <left_val>0.0327263213694096</left_val> - <right_val>-0.3097409009933472</right_val></_></_> + <internalNodes> + 0 -1 834 1.0536990128457546e-02</internalNodes> + <leafValues> + 3.2726321369409561e-02 -3.0974090099334717e-01</leafValues></_> <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 4 2 7 -1.</_> - <_> - 16 4 1 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0103228399530053</threshold> - <left_val>-0.0220373701304197</left_val> - <right_val>0.1570003926753998</right_val></_></_> + <internalNodes> + 0 -1 835 1.0322839953005314e-02</internalNodes> + <leafValues> + -2.2037370130419731e-02 1.5700039267539978e-01</leafValues></_> <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 2 7 -1.</_> - <_> - 1 4 1 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.9464110266417265e-003</threshold> - <left_val>0.0955066308379173</left_val> - <right_val>-0.1115986034274101</right_val></_></_> + <internalNodes> + 0 -1 836 -2.9464110266417265e-03</internalNodes> + <leafValues> + 9.5506630837917328e-02 -1.1159860342741013e-01</leafValues></_> <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 3 2 2 -1.</_> - <_> - 13 3 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0465437509119511</threshold> - <left_val>0.5239524245262146</left_val> - <right_val>-0.0102667100727558</right_val></_></_> + <internalNodes> + 0 -1 837 -4.6543750911951065e-02</internalNodes> + <leafValues> + 5.2395242452621460e-01 -1.0266710072755814e-02</leafValues></_> <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 2 2 -1.</_> - <_> - 5 3 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0275878105312586</threshold> - <left_val>0.0177575293928385</left_val> - <right_val>-0.6075562238693237</right_val></_></_> + <internalNodes> + 0 -1 838 2.7587810531258583e-02</internalNodes> + <leafValues> + 1.7757529392838478e-02 -6.0755622386932373e-01</leafValues></_> <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 1 15 3 -1.</_> - <_> - 8 2 5 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1277920007705689</threshold> - <left_val>-0.0295501891523600</left_val> - <right_val>0.1919368952512741</right_val></_></_> + <internalNodes> + 0 -1 839 1.2779200077056885e-01</internalNodes> + <leafValues> + -2.9550189152359962e-02 1.9193689525127411e-01</leafValues></_> <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 2 2 -1.</_> - <_> - 5 1 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.7071989607065916e-003</threshold> - <left_val>0.1328884959220886</left_val> - <right_val>-0.0751214623451233</right_val></_></_> + <internalNodes> + 0 -1 840 -2.7071989607065916e-03</internalNodes> + <leafValues> + 1.3288849592208862e-01 -7.5121462345123291e-02</leafValues></_> <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 5 3 2 -1.</_> - <_> - 12 6 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0405175089836121</threshold> - <left_val>-0.0182852093130350</left_val> - <right_val>0.2339898943901062</right_val></_></_> + <internalNodes> + 0 -1 841 4.0517508983612061e-02</internalNodes> + <leafValues> + -1.8285209313035011e-02 2.3398989439010620e-01</leafValues></_> <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 10 3 -1.</_> - <_> - 7 1 5 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0232265498489141</threshold> - <left_val>0.1103753969073296</left_val> - <right_val>-0.0959457531571388</right_val></_></_> + <internalNodes> + 0 -1 842 -2.3226549848914146e-02</internalNodes> + <leafValues> + 1.1037539690732956e-01 -9.5945753157138824e-02</leafValues></_> <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 16 3 -1.</_> - <_> - 6 1 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0741460099816322</threshold> - <left_val>-0.0240149293094873</left_val> - <right_val>0.2143170982599258</right_val></_></_> + <internalNodes> + 0 -1 843 7.4146009981632233e-02</internalNodes> + <leafValues> + -2.4014929309487343e-02 2.1431709825992584e-01</leafValues></_> <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 2 3 -1.</_> - <_> - 8 8 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0976808890700340e-003</threshold> - <left_val>0.2042918056249619</left_val> - <right_val>-0.0521130003035069</right_val></_></_> + <internalNodes> + 0 -1 844 -6.0976808890700340e-03</internalNodes> + <leafValues> + 2.0429180562496185e-01 -5.2113000303506851e-02</leafValues></_> <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 5 3 3 -1.</_> - <_> - 12 6 1 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0152460895478725</threshold> - <left_val>0.1843024939298630</left_val> - <right_val>-0.0574743896722794</right_val></_></_> + <internalNodes> + 0 -1 845 -1.5246089547872543e-02</internalNodes> + <leafValues> + 1.8430249392986298e-01 -5.7474389672279358e-02</leafValues></_> <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 8 2 -1.</_> - <_> - 0 7 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.0064720883965492e-003</threshold> - <left_val>-0.1590142995119095</left_val> - <right_val>0.0667500719428062</right_val></_></_> + <internalNodes> + 0 -1 846 2.0064720883965492e-03</internalNodes> + <leafValues> + -1.5901429951190948e-01 6.6750071942806244e-02</leafValues></_> <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 8 2 2 -1.</_> - <_> - 16 8 1 1 2.</_> - <_> - 15 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.3912119902670383e-003</threshold> - <left_val>-0.0667261183261871</left_val> - <right_val>0.1602869033813477</right_val></_></_> + <internalNodes> + 0 -1 847 1.3912119902670383e-03</internalNodes> + <leafValues> + -6.6726118326187134e-02 1.6028690338134766e-01</leafValues></_> <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 8 2 2 -1.</_> - <_> - 1 8 1 1 2.</_> - <_> - 2 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.6176161605399102e-005</threshold> - <left_val>-0.1078343987464905</left_val> - <right_val>0.0979657769203186</right_val></_></_> + <internalNodes> + 0 -1 848 9.6176161605399102e-05</internalNodes> + <leafValues> + -1.0783439874649048e-01 9.7965776920318604e-02</leafValues></_> <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 5 2 6 -1.</_> - <_> - 15 5 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7600788101553917e-003</threshold> - <left_val>-0.0265470594167709</left_val> - <right_val>0.1601714938879013</right_val></_></_> + <internalNodes> + 0 -1 849 8.7600788101553917e-03</internalNodes> + <leafValues> + -2.6547059416770935e-02 1.6017149388790131e-01</leafValues></_> <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 5 2 6 -1.</_> - <_> - 2 5 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0253300108015537</threshold> - <left_val>-0.4531281888484955</left_val> - <right_val>0.0231767501682043</right_val></_></_> + <internalNodes> + 0 -1 850 -2.5330010801553726e-02</internalNodes> + <leafValues> + -4.5312818884849548e-01 2.3176750168204308e-02</leafValues></_> <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 10 1 2 -1.</_> - <_> - 15 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.3010559794493020e-005</threshold> - <left_val>-0.0744140818715096</left_val> - <right_val>0.0397057682275772</right_val></_></_> + <internalNodes> + 0 -1 851 9.3010559794493020e-05</internalNodes> + <leafValues> + -7.4414081871509552e-02 3.9705768227577209e-02</leafValues></_> <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 2 -1.</_> - <_> - 7 5 1 1 2.</_> - <_> - 8 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2664360110647976e-004</threshold> - <left_val>-0.0888621434569359</left_val> - <right_val>0.1093820035457611</right_val></_></_> + <internalNodes> + 0 -1 852 1.2664360110647976e-04</internalNodes> + <leafValues> + -8.8862143456935883e-02 1.0938200354576111e-01</leafValues></_> <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 7 2 2 -1.</_> - <_> - 10 7 1 1 2.</_> - <_> - 9 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0378329898230731e-004</threshold> - <left_val>-0.0796221718192101</left_val> - <right_val>0.0741624236106873</right_val></_></_> + <internalNodes> + 0 -1 853 1.0378329898230731e-04</internalNodes> + <leafValues> + -7.9622171819210052e-02 7.4162423610687256e-02</leafValues></_> <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 10 1 2 -1.</_> - <_> - 2 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1490810429677367e-003</threshold> - <left_val>-0.2873553931713104</left_val> - <right_val>0.0329633392393589</right_val></_></_> + <internalNodes> + 0 -1 854 -1.1490810429677367e-03</internalNodes> + <leafValues> + -2.8735539317131042e-01 3.2963339239358902e-02</leafValues></_> <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 6 3 2 -1.</_> - <_> - 12 6 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7716159131377935e-003</threshold> - <left_val>0.1633304059505463</left_val> - <right_val>-0.0559756606817245</right_val></_></_> + <internalNodes> + 0 -1 855 -3.7716159131377935e-03</internalNodes> + <leafValues> + 1.6333040595054626e-01 -5.5975660681724548e-02</leafValues></_> <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 6 8 6 -1.</_> - <_> - 4 6 4 3 2.</_> - <_> - 8 9 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0669165104627609</threshold> - <left_val>-0.3290657103061676</left_val> - <right_val>0.0309113096445799</right_val></_></_> + <internalNodes> + 0 -1 856 -6.6916510462760925e-02</internalNodes> + <leafValues> + -3.2906571030616760e-01 3.0911309644579887e-02</leafValues></_> <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 5 3 2 -1.</_> - <_> - 12 6 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0461534485220909</threshold> - <left_val>0.3159846961498261</left_val> - <right_val>-0.0100060403347015</right_val></_></_> + <internalNodes> + 0 -1 857 -4.6153448522090912e-02</internalNodes> + <leafValues> + 3.1598469614982605e-01 -1.0006040334701538e-02</leafValues></_> <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 3 -1.</_> - <_> - 6 6 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0141141302883625</threshold> - <left_val>0.1911844015121460</left_val> - <right_val>-0.0543416589498520</right_val></_></_> + <internalNodes> + 0 -1 858 -1.4114130288362503e-02</internalNodes> + <leafValues> + 1.9118440151214600e-01 -5.4341658949851990e-02</leafValues></_> <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 9 1 3 -1.</_> - <_> - 15 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.7449989728629589e-003</threshold> - <left_val>-0.4302727878093720</left_val> - <right_val>0.0176168493926525</right_val></_></_> + <internalNodes> + 0 -1 859 -6.7449989728629589e-03</internalNodes> + <leafValues> + -4.3027278780937195e-01 1.7616849392652512e-02</leafValues></_> <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 4 2 -1.</_> - <_> - 6 0 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0124704595655203</threshold> - <left_val>-0.6029021143913269</left_val> - <right_val>0.0142932496964931</right_val></_></_> + <internalNodes> + 0 -1 860 -1.2470459565520287e-02</internalNodes> + <leafValues> + -6.0290211439132690e-01 1.4293249696493149e-02</leafValues></_> <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 5 -1.</_> - <_> - 8 0 2 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0184201803058386</threshold> - <left_val>-0.3858920037746429</left_val> - <right_val>0.0201335903257132</right_val></_></_> + <internalNodes> + 0 -1 861 -1.8420180305838585e-02</internalNodes> + <leafValues> + -3.8589200377464294e-01 2.0133590325713158e-02</leafValues></_> <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 2 3 -1.</_> - <_> - 0 10 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.0734250843524933e-003</threshold> - <left_val>-0.4316655993461609</left_val> - <right_val>0.0188817996531725</right_val></_></_> + <internalNodes> + 0 -1 862 -9.0734250843524933e-03</internalNodes> + <leafValues> + -4.3166559934616089e-01 1.8881799653172493e-02</leafValues></_> <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 2 2 -1.</_> - <_> - 10 1 1 1 2.</_> - <_> - 9 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0161520185647532e-004</threshold> - <left_val>0.0678573772311211</left_val> - <right_val>-0.0575374104082584</right_val></_></_> + <internalNodes> + 0 -1 863 -1.0161520185647532e-04</internalNodes> + <leafValues> + 6.7857377231121063e-02 -5.7537410408258438e-02</leafValues></_> <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 2 2 -1.</_> - <_> - 6 3 1 1 2.</_> - <_> - 7 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.2353780039120466e-004</threshold> - <left_val>0.0973757430911064</left_val> - <right_val>-0.0923620313405991</right_val></_></_> + <internalNodes> + 0 -1 864 -1.2353780039120466e-04</internalNodes> + <leafValues> + 9.7375743091106415e-02 -9.2362031340599060e-02</leafValues></_> <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 2 2 -1.</_> - <_> - 11 3 1 1 2.</_> - <_> - 10 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.8377313406672329e-005</threshold> - <left_val>-0.0582359507679939</left_val> - <right_val>0.0953808873891830</right_val></_></_> + <internalNodes> + 0 -1 865 9.8377313406672329e-05</internalNodes> + <leafValues> + -5.8235950767993927e-02 9.5380887389183044e-02</leafValues></_> <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 2 12 8 -1.</_> - <_> - 1 2 6 4 2.</_> - <_> - 7 6 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1063909009099007</threshold> - <left_val>-0.2830651104450226</left_val> - <right_val>0.0329236090183258</right_val></_></_> + <internalNodes> + 0 -1 866 -1.0639090090990067e-01</internalNodes> + <leafValues> + -2.8306511044502258e-01 3.2923609018325806e-02</leafValues></_> <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 16 3 -1.</_> - <_> - 5 9 8 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0636164471507072</threshold> - <left_val>0.1644766926765442</left_val> - <right_val>-0.0605731010437012</right_val></_></_> + <internalNodes> + 0 -1 867 -6.3616447150707245e-02</internalNodes> + <leafValues> + 1.6447669267654419e-01 -6.0573101043701172e-02</leafValues></_> <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 16 2 -1.</_> - <_> - 5 10 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0172454807907343</threshold> - <left_val>-0.0639791786670685</left_val> - <right_val>0.1543094068765640</right_val></_></_> + <internalNodes> + 0 -1 868 1.7245480790734291e-02</internalNodes> + <leafValues> + -6.3979178667068481e-02 1.5430940687656403e-01</leafValues></_> <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 11 4 1 -1.</_> - <_> - 8 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.7837438546121120e-003</threshold> - <left_val>-0.6765002012252808</left_val> - <right_val>0.0136859202757478</right_val></_></_> + <internalNodes> + 0 -1 869 -6.7837438546121120e-03</internalNodes> + <leafValues> + -6.7650020122528076e-01 1.3685920275747776e-02</leafValues></_> <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 11 4 -1.</_> - <_> - 0 2 11 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0199937000870705</threshold> - <left_val>-0.0819841325283051</left_val> - <right_val>0.1095750033855438</right_val></_></_> + <internalNodes> + 0 -1 870 1.9993700087070465e-02</internalNodes> + <leafValues> + -8.1984132528305054e-02 1.0957500338554382e-01</leafValues></_> <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 4 4 -1.</_> - <_> - 9 2 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0105753503739834</threshold> - <left_val>0.1018545031547546</left_val> - <right_val>-0.0355126485228539</right_val></_></_> + <internalNodes> + 0 -1 871 -1.0575350373983383e-02</internalNodes> + <leafValues> + 1.0185450315475464e-01 -3.5512648522853851e-02</leafValues></_> <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 2 1 -1.</_> - <_> - 9 5 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1901520338142291e-004</threshold> - <left_val>0.1020810008049011</left_val> - <right_val>-0.0960037186741829</right_val></_></_> + <internalNodes> + 0 -1 872 -1.1901520338142291e-04</internalNodes> + <leafValues> + 1.0208100080490112e-01 -9.6003718674182892e-02</leafValues></_> <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 3 4 -1.</_> - <_> - 9 4 1 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7127197980880737e-003</threshold> - <left_val>-0.0256693102419376</left_val> - <right_val>0.1206037998199463</right_val></_></_> + <internalNodes> + 0 -1 873 6.7127197980880737e-03</internalNodes> + <leafValues> + -2.5669310241937637e-02 1.2060379981994629e-01</leafValues></_> <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 6 11 -1.</_> - <_> - 8 1 2 11 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0197343900799751</threshold> - <left_val>0.0929254367947578</left_val> - <right_val>-0.1092232018709183</right_val></_></_> + <internalNodes> + 0 -1 874 -1.9734390079975128e-02</internalNodes> + <leafValues> + 9.2925436794757843e-02 -1.0922320187091827e-01</leafValues></_> <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 2 2 8 -1.</_> - <_> - 16 6 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.9160222299396992e-003</threshold> - <left_val>-0.0560943894088268</left_val> - <right_val>0.0402121692895889</right_val></_></_> + <internalNodes> + 0 -1 875 5.9160222299396992e-03</internalNodes> + <leafValues> + -5.6094389408826828e-02 4.0212169289588928e-02</leafValues></_> <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 1 6 -1.</_> - <_> - 0 3 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0168865993618965</threshold> - <left_val>0.0257204491645098</left_val> - <right_val>-0.3189992010593414</right_val></_></_> + <internalNodes> + 0 -1 876 1.6886599361896515e-02</internalNodes> + <leafValues> + 2.5720449164509773e-02 -3.1899920105934143e-01</leafValues></_> <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 2 2 -1.</_> - <_> - 11 3 1 1 2.</_> - <_> - 10 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.1426696851849556e-005</threshold> - <left_val>0.0483190491795540</left_val> - <right_val>-0.0566031485795975</right_val></_></_> + <internalNodes> + 0 -1 877 -8.1426696851849556e-05</internalNodes> + <leafValues> + 4.8319049179553986e-02 -5.6603148579597473e-02</leafValues></_> <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 2 2 -1.</_> - <_> - 6 3 1 1 2.</_> - <_> - 7 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.8076612630393356e-005</threshold> - <left_val>-0.0800489932298660</left_val> - <right_val>0.1101766973733902</right_val></_></_> + <internalNodes> + 0 -1 878 9.8076612630393356e-05</internalNodes> + <leafValues> + -8.0048993229866028e-02 1.1017669737339020e-01</leafValues></_> <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 9 2 2 -1.</_> - <_> - 10 9 1 1 2.</_> - <_> - 9 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1393799688667059e-003</threshold> - <left_val>0.0270481202751398</left_val> - <right_val>-0.1764943003654480</right_val></_></_> + <internalNodes> + 0 -1 879 2.1393799688667059e-03</internalNodes> + <leafValues> + 2.7048120275139809e-02 -1.7649430036544800e-01</leafValues></_> <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 2 2 -1.</_> - <_> - 7 9 1 1 2.</_> - <_> - 8 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1872709728777409e-003</threshold> - <left_val>0.1565327942371368</left_val> - <right_val>-0.0536770410835743</right_val></_></_> + <internalNodes> + 0 -1 880 -1.1872709728777409e-03</internalNodes> + <leafValues> + 1.5653279423713684e-01 -5.3677041083574295e-02</leafValues></_> <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 4 2 -1.</_> - <_> - 8 8 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.3500297516584396e-003</threshold> - <left_val>0.0220350790768862</left_val> - <right_val>-0.3852975070476532</right_val></_></_> + <internalNodes> + 0 -1 881 9.3500297516584396e-03</internalNodes> + <leafValues> + 2.2035079076886177e-02 -3.8529750704765320e-01</leafValues></_> <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 6 0 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0129074901342392</threshold> - <left_val>0.0858555287122726</left_val> - <right_val>-0.0943521410226822</right_val></_></_> + <internalNodes> + 0 -1 882 -1.2907490134239197e-02</internalNodes> + <leafValues> + 8.5855528712272644e-02 -9.4352141022682190e-02</leafValues></_> <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 0 8 2 -1.</_> - <_> - 10 0 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.6925812065601349e-003</threshold> - <left_val>0.0823238119482994</left_val> - <right_val>-0.1126175001263619</right_val></_></_> + <internalNodes> + 0 -1 883 -8.6925812065601349e-03</internalNodes> + <leafValues> + 8.2323811948299408e-02 -1.1261750012636185e-01</leafValues></_> <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 16 2 -1.</_> - <_> - 4 0 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0262253396213055</threshold> - <left_val>-0.0795982033014297</left_val> - <right_val>0.2143841981887817</right_val></_></_> + <internalNodes> + 0 -1 884 2.6225339621305466e-02</internalNodes> + <leafValues> + -7.9598203301429749e-02 2.1438419818878174e-01</leafValues></_> <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 14 12 -1.</_> - <_> - 11 0 7 6 2.</_> - <_> - 4 6 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0553246587514877</threshold> - <left_val>-0.0343707986176014</left_val> - <right_val>0.0618176497519016</right_val></_></_> + <internalNodes> + 0 -1 885 5.5324658751487732e-02</internalNodes> + <leafValues> + -3.4370798617601395e-02 6.1817649751901627e-02</leafValues></_> <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 4 8 -1.</_> - <_> - 9 0 2 8 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1364589035511017</threshold> - <left_val>-0.3960858881473541</left_val> - <right_val>0.0226425901055336</right_val></_></_> + <internalNodes> + 0 -1 886 -1.3645890355110168e-01</internalNodes> + <leafValues> + -3.9608588814735413e-01 2.2642590105533600e-02</leafValues></_> <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 1 12 6 -1.</_> - <_> - 7 3 4 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4376384913921356</threshold> - <left_val>-0.0212570205330849</left_val> - <right_val>0.4214116036891937</right_val></_></_> + <internalNodes> + 0 -1 887 4.3763849139213562e-01</internalNodes> + <leafValues> + -2.1257020533084869e-02 4.2141160368919373e-01</leafValues></_> <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 14 12 -1.</_> - <_> - 0 0 7 6 2.</_> - <_> - 7 6 7 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4012426137924194</threshold> - <left_val>0.0134781198576093</left_val> - <right_val>-0.6443703174591065</right_val></_></_> + <internalNodes> + 0 -1 888 4.0124261379241943e-01</internalNodes> + <leafValues> + 1.3478119857609272e-02 -6.4437031745910645e-01</leafValues></_> <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 8 4 -1.</_> - <_> - 14 5 4 2 2.</_> - <_> - 10 7 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0519283488392830</threshold> - <left_val>0.0162441805005074</left_val> - <right_val>-0.1429118961095810</right_val></_></_> + <internalNodes> + 0 -1 889 5.1928348839282990e-02</internalNodes> + <leafValues> + 1.6244180500507355e-02 -1.4291189610958099e-01</leafValues></_> <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 8 4 -1.</_> - <_> - 0 5 4 2 2.</_> - <_> - 4 7 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0221555996686220</threshold> - <left_val>-0.0787389725446701</left_val> - <right_val>0.1186705008149147</right_val></_></_> + <internalNodes> + 0 -1 890 2.2155599668622017e-02</internalNodes> + <leafValues> + -7.8738972544670105e-02 1.1867050081491470e-01</leafValues></_> <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 1 4 3 -1.</_> - <_> - 12 2 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0179059095680714</threshold> - <left_val>0.1040515974164009</left_val> - <right_val>-0.0427935793995857</right_val></_></_> + <internalNodes> + 0 -1 891 -1.7905909568071365e-02</internalNodes> + <leafValues> + 1.0405159741640091e-01 -4.2793579399585724e-02</leafValues></_> <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 1 3 4 -1.</_> - <_> - 6 2 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0261578708887100</threshold> - <left_val>0.1952134966850281</left_val> - <right_val>-0.0470647886395454</right_val></_></_> + <internalNodes> + 0 -1 892 -2.6157870888710022e-02</internalNodes> + <leafValues> + 1.9521349668502808e-01 -4.7064788639545441e-02</leafValues></_> <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 3 4 3 -1.</_> - <_> - 13 4 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0793037265539169</threshold> - <left_val>-5.7728658430278301e-003</left_val> - <right_val>0.5296401977539063</right_val></_></_> + <internalNodes> + 0 -1 893 7.9303726553916931e-02</internalNodes> + <leafValues> + -5.7728658430278301e-03 5.2964019775390625e-01</leafValues></_> <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 3 4 -1.</_> - <_> - 5 4 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>9.9063310772180557e-003</threshold> - <left_val>-0.0549699105322361</left_val> - <right_val>0.1701035946607590</right_val></_></_> + <internalNodes> + 0 -1 894 9.9063310772180557e-03</internalNodes> + <leafValues> + -5.4969910532236099e-02 1.7010359466075897e-01</leafValues></_> <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 4 1 2 -1.</_> - <_> - 14 5 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4349560660775751e-004</threshold> - <left_val>0.0751546993851662</left_val> - <right_val>-0.0685249194502831</right_val></_></_> + <internalNodes> + 0 -1 895 -1.4349560660775751e-04</internalNodes> + <leafValues> + 7.5154699385166168e-02 -6.8524919450283051e-02</leafValues></_> <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 1 2 -1.</_> - <_> - 3 5 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0576599743217230e-004</threshold> - <left_val>0.0893216878175735</left_val> - <right_val>-0.1127184033393860</right_val></_></_> + <internalNodes> + 0 -1 896 -1.0576599743217230e-04</internalNodes> + <leafValues> + 8.9321687817573547e-02 -1.1271840333938599e-01</leafValues></_> <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 1 3 2 -1.</_> - <_> - 16 2 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0126823596656322</threshold> - <left_val>0.0564630404114723</left_val> - <right_val>-0.4328708946704865</right_val></_></_> + <internalNodes> + 0 -1 897 1.2682359665632248e-02</internalNodes> + <leafValues> + 5.6463040411472321e-02 -4.3287089467048645e-01</leafValues></_> <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 11 4 1 -1.</_> - <_> - 4 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.5023408494889736e-003</threshold> - <left_val>-0.4438258111476898</left_val> - <right_val>0.0152419302612543</right_val></_></_> + <internalNodes> + 0 -1 898 -5.5023408494889736e-03</internalNodes> + <leafValues> + -4.4382581114768982e-01 1.5241930261254311e-02</leafValues></_> <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 2 2 -1.</_> - <_> - 10 8 1 1 2.</_> - <_> - 9 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.9810098931193352e-003</threshold> - <left_val>0.0180840007960796</left_val> - <right_val>-0.1333236992359161</right_val></_></_> + <internalNodes> + 0 -1 899 2.9810098931193352e-03</internalNodes> + <leafValues> + 1.8084000796079636e-02 -1.3332369923591614e-01</leafValues></_> <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 14 9 -1.</_> - <_> - 7 2 7 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3413197100162506</threshold> - <left_val>-0.0210426002740860</left_val> - <right_val>0.3842144012451172</right_val></_></_> + <internalNodes> + 0 -1 900 3.4131971001625061e-01</internalNodes> + <leafValues> + -2.1042600274085999e-02 3.8421440124511719e-01</leafValues></_> <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 3 2 2 -1.</_> - <_> - 11 3 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0240691993385553</threshold> - <left_val>0.1072318032383919</left_val> - <right_val>-8.4255319088697433e-003</right_val></_></_> + <internalNodes> + 0 -1 901 -2.4069199338555336e-02</internalNodes> + <leafValues> + 1.0723180323839188e-01 -8.4255319088697433e-03</leafValues></_> <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 3 2 2 -1.</_> - <_> - 7 3 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0285752192139626</threshold> - <left_val>0.0188344195485115</left_val> - <right_val>-0.4403854012489319</right_val></_></_> + <internalNodes> + 0 -1 902 2.8575219213962555e-02</internalNodes> + <leafValues> + 1.8834419548511505e-02 -4.4038540124893188e-01</leafValues></_> <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 2 2 -1.</_> - <_> - 10 8 1 1 2.</_> - <_> - 9 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1502469715196639e-004</threshold> - <left_val>-0.0552201382815838</left_val> - <right_val>0.0518893711268902</right_val></_></_> + <internalNodes> + 0 -1 903 1.1502469715196639e-04</internalNodes> + <leafValues> + -5.5220138281583786e-02 5.1889371126890182e-02</leafValues></_> <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 2 2 -1.</_> - <_> - 7 8 1 1 2.</_> - <_> - 8 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2718510162085295e-004</threshold> - <left_val>0.1216868013143539</left_val> - <right_val>-0.0691522806882858</right_val></_></_> + <internalNodes> + 0 -1 904 -6.2718510162085295e-04</internalNodes> + <leafValues> + 1.2168680131435394e-01 -6.9152280688285828e-02</leafValues></_> <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 0 6 2 -1.</_> - <_> - 12 0 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9285031855106354e-003</threshold> - <left_val>0.1189381033182144</left_val> - <right_val>-0.1892953068017960</right_val></_></_> + <internalNodes> + 0 -1 905 -4.9285031855106354e-03</internalNodes> + <leafValues> + 1.1893810331821442e-01 -1.8929530680179596e-01</leafValues></_> <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 2 2 -1.</_> - <_> - 7 8 1 1 2.</_> - <_> - 8 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.6798430604394525e-005</threshold> - <left_val>-0.0841797292232513</left_val> - <right_val>0.0933803096413612</right_val></_></_> + <internalNodes> + 0 -1 906 9.6798430604394525e-05</internalNodes> + <leafValues> + -8.4179729223251343e-02 9.3380309641361237e-02</leafValues></_> <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 2 2 -1.</_> - <_> - 10 8 1 1 2.</_> - <_> - 9 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.0068537499755621e-005</threshold> - <left_val>0.0955572128295898</left_val> - <right_val>-0.0642184391617775</right_val></_></_> + <internalNodes> + 0 -1 907 -8.0068537499755621e-05</internalNodes> + <leafValues> + 9.5557212829589844e-02 -6.4218439161777496e-02</leafValues></_> <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 5 2 1 -1.</_> - <_> - 4 5 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.6070143627002835e-005</threshold> - <left_val>0.0730910971760750</left_val> - <right_val>-0.1072010025382042</right_val></_></_> + <internalNodes> + 0 -1 908 -9.6070143627002835e-05</internalNodes> + <leafValues> + 7.3091097176074982e-02 -1.0720100253820419e-01</leafValues></_> <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 2 1 2 -1.</_> - <_> - 15 3 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3654278316535056e-005</threshold> - <left_val>0.0649831965565681</left_val> - <right_val>-0.0829758867621422</right_val></_></_> + <internalNodes> + 0 -1 909 -9.3654278316535056e-05</internalNodes> + <leafValues> + 6.4983196556568146e-02 -8.2975886762142181e-02</leafValues></_> <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 2 11 -1.</_> - <_> - 4 0 1 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0296139493584633</threshold> - <left_val>-0.3441329002380371</left_val> - <right_val>0.0216039493680000</right_val></_></_> + <internalNodes> + 0 -1 910 -2.9613949358463287e-02</internalNodes> + <leafValues> + -3.4413290023803711e-01 2.1603949368000031e-02</leafValues></_> <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 4 3 4 -1.</_> - <_> - 14 5 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0197383593767881</threshold> - <left_val>-0.0749104693531990</left_val> - <right_val>0.1620353013277054</right_val></_></_> + <internalNodes> + 0 -1 911 1.9738359376788139e-02</internalNodes> + <leafValues> + -7.4910469353199005e-02 1.6203530132770538e-01</leafValues></_> <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 6 10 6 -1.</_> - <_> - 4 9 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0546229109168053</threshold> - <left_val>-0.5384355187416077</left_val> - <right_val>0.0158262196928263</right_val></_></_> + <internalNodes> + 0 -1 912 -5.4622910916805267e-02</internalNodes> + <leafValues> + -5.3843551874160767e-01 1.5826219692826271e-02</leafValues></_> <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 4 4 -1.</_> - <_> - 13 1 4 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0254069603979588</threshold> - <left_val>-0.0320187695324421</left_val> - <right_val>0.1385188996791840</right_val></_></_> + <internalNodes> + 0 -1 913 2.5406960397958755e-02</internalNodes> + <leafValues> + -3.2018769532442093e-02 1.3851889967918396e-01</leafValues></_> <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 8 2 -1.</_> - <_> - 4 10 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0153735298663378</threshold> - <left_val>0.1362162977457047</left_val> - <right_val>-0.0682220980525017</right_val></_></_> + <internalNodes> + 0 -1 914 -1.5373529866337776e-02</internalNodes> + <leafValues> + 1.3621629774570465e-01 -6.8222098052501678e-02</leafValues></_> <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 4 4 -1.</_> - <_> - 13 1 4 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0906877592206001</threshold> - <left_val>-4.4694212265312672e-003</left_val> - <right_val>0.3596541881561279</right_val></_></_> + <internalNodes> + 0 -1 915 9.0687759220600128e-02</internalNodes> + <leafValues> + -4.4694212265312672e-03 3.5965418815612793e-01</leafValues></_> <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 4 4 -1.</_> - <_> - 5 1 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0251267608255148</threshold> - <left_val>0.1724008023738861</left_val> - <right_val>-0.0511551387608051</right_val></_></_> + <internalNodes> + 0 -1 916 -2.5126760825514793e-02</internalNodes> + <leafValues> + 1.7240080237388611e-01 -5.1155138760805130e-02</leafValues></_> <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 4 2 -1.</_> - <_> - 16 10 2 1 2.</_> - <_> - 14 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0066540930420160e-003</threshold> - <left_val>-0.0384728088974953</left_val> - <right_val>0.1070256009697914</right_val></_></_> + <internalNodes> + 0 -1 917 3.0066540930420160e-03</internalNodes> + <leafValues> + -3.8472808897495270e-02 1.0702560096979141e-01</leafValues></_> <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 4 2 -1.</_> - <_> - 0 10 2 1 2.</_> - <_> - 2 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.4653347730636597e-003</threshold> - <left_val>0.0234789792448282</left_val> - <right_val>-0.3750950992107391</right_val></_></_> + <internalNodes> + 0 -1 918 8.4653347730636597e-03</internalNodes> + <leafValues> + 2.3478979244828224e-02 -3.7509509921073914e-01</leafValues></_> <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 2 2 -1.</_> - <_> - 10 8 1 1 2.</_> - <_> - 9 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.7920412372332066e-005</threshold> - <left_val>-0.0509083010256290</left_val> - <right_val>0.0467324182391167</right_val></_></_> + <internalNodes> + 0 -1 919 9.7920412372332066e-05</internalNodes> + <leafValues> + -5.0908301025629044e-02 4.6732418239116669e-02</leafValues></_> <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 2 2 -1.</_> - <_> - 7 8 1 1 2.</_> - <_> - 8 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.7232358055189252e-005</threshold> - <left_val>0.0991919934749603</left_val> - <right_val>-0.0837992727756500</right_val></_></_> + <internalNodes> + 0 -1 920 -8.7232358055189252e-05</internalNodes> + <leafValues> + 9.9191993474960327e-02 -8.3799272775650024e-02</leafValues></_> <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 9 8 2 -1.</_> - <_> - 14 9 4 1 2.</_> - <_> - 10 10 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.9487859942018986e-003</threshold> - <left_val>-0.0452641695737839</left_val> - <right_val>0.0921764075756073</right_val></_></_> + <internalNodes> + 0 -1 921 4.9487859942018986e-03</internalNodes> + <leafValues> + -4.5264169573783875e-02 9.2176407575607300e-02</leafValues></_> <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 2 3 -1.</_> - <_> - 2 3 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0266607701778412</threshold> - <left_val>-0.3804174959659576</left_val> - <right_val>0.0196713600307703</right_val></_></_> + <internalNodes> + 0 -1 922 -2.6660770177841187e-02</internalNodes> + <leafValues> + -3.8041749596595764e-01 1.9671360030770302e-02</leafValues></_> <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 2 2 -1.</_> - <_> - 10 1 1 1 2.</_> - <_> - 9 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.6467640358023345e-005</threshold> - <left_val>-0.0794270411133766</left_val> - <right_val>0.0919691771268845</right_val></_></_> + <internalNodes> + 0 -1 923 8.6467640358023345e-05</internalNodes> + <leafValues> + -7.9427041113376617e-02 9.1969177126884460e-02</leafValues></_> <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 2 2 -1.</_> - <_> - 7 1 1 1 2.</_> - <_> - 8 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.8532250542193651e-003</threshold> - <left_val>0.1768230050802231</left_val> - <right_val>-0.0471489690244198</right_val></_></_> + <internalNodes> + 0 -1 924 -1.8532250542193651e-03</internalNodes> + <leafValues> + 1.7682300508022308e-01 -4.7148969024419785e-02</leafValues></_> <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 4 3 -1.</_> - <_> - 10 2 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0149155296385288</threshold> - <left_val>-0.3369263112545013</left_val> - <right_val>0.0239033792167902</right_val></_></_> + <internalNodes> + 0 -1 925 -1.4915529638528824e-02</internalNodes> + <leafValues> + -3.3692631125450134e-01 2.3903379216790199e-02</leafValues></_> <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 18 1 -1.</_> - <_> - 9 11 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1022280976176262</threshold> - <left_val>-0.5582759976387024</left_val> - <right_val>0.0124260298907757</right_val></_></_> + <internalNodes> + 0 -1 926 -1.0222809761762619e-01</internalNodes> + <leafValues> + -5.5827599763870239e-01 1.2426029890775681e-02</leafValues></_> <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 4 3 -1.</_> - <_> - 10 2 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.2015138790011406e-003</threshold> - <left_val>0.0328004211187363</left_val> - <right_val>-0.1463125050067902</right_val></_></_> + <internalNodes> + 0 -1 927 5.2015138790011406e-03</internalNodes> + <leafValues> + 3.2800421118736267e-02 -1.4631250500679016e-01</leafValues></_> <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 2 2 -1.</_> - <_> - 7 1 1 1 2.</_> - <_> - 8 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.3680468853563070e-004</threshold> - <left_val>-0.0604381300508976</left_val> - <right_val>0.1309542059898377</right_val></_></_> + <internalNodes> + 0 -1 928 9.3680468853563070e-04</internalNodes> + <leafValues> + -6.0438130050897598e-02 1.3095420598983765e-01</leafValues></_> <_> - <!-- tree 169 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 2 -1.</_> - <_> - 8 0 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.4108080007135868e-003</threshold> - <left_val>-0.3467412889003754</left_val> - <right_val>0.0260078795254231</right_val></_></_></trees> - <stage_threshold>-1.5202269554138184</stage_threshold> - <parent>9</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 929 -7.4108080007135868e-03</internalNodes> + <leafValues> + -3.4674128890037537e-01 2.6007879525423050e-02</leafValues></_></weakClassifiers></_> <_> - <!-- stage 11 --> - <trees> + <maxWeakCount>193</maxWeakCount> + <stageThreshold>-1.4360860586166382e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 4 6 -1.</_> - <_> - 0 1 2 3 2.</_> - <_> - 2 4 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0186657793819904</threshold> - <left_val>0.2980225086212158</left_val> - <right_val>-0.2016436010599136</right_val></_></_> + <internalNodes> + 0 -1 930 -1.8665779381990433e-02</internalNodes> + <leafValues> + 2.9802250862121582e-01 -2.0164360105991364e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 11 8 -1.</_> - <_> - 7 8 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1787620931863785</threshold> - <left_val>-0.2884173095226288</left_val> - <right_val>0.0854408368468285</right_val></_></_> + <internalNodes> + 0 -1 931 1.7876209318637848e-01</internalNodes> + <leafValues> + -2.8841730952262878e-01 8.5440836846828461e-02</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 6 2 -1.</_> - <_> - 8 6 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0243681706488132</threshold> - <left_val>0.2956128120422363</left_val> - <right_val>-0.1750854998826981</right_val></_></_> + <internalNodes> + 0 -1 932 -2.4368170648813248e-02</internalNodes> + <leafValues> + 2.9561281204223633e-01 -1.7508549988269806e-01</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 5 6 6 -1.</_> - <_> - 12 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1517567932605743</threshold> - <left_val>0.0551814101636410</left_val> - <right_val>-0.0805568397045136</right_val></_></_> + <internalNodes> + 0 -1 933 1.5175679326057434e-01</internalNodes> + <leafValues> + 5.5181410163640976e-02 -8.0556839704513550e-02</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 6 6 -1.</_> - <_> - 0 8 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0435656383633614</threshold> - <left_val>-0.3050786852836609</left_val> - <right_val>0.0904600992798805</right_val></_></_> + <internalNodes> + 0 -1 934 4.3565638363361359e-02</internalNodes> + <leafValues> + -3.0507868528366089e-01 9.0460099279880524e-02</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 2 1 -1.</_> - <_> - 9 0 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-2.8217849321663380e-003</threshold> - <left_val>0.1347997933626175</left_val> - <right_val>-0.0458209700882435</right_val></_></_> + <internalNodes> + 0 -1 935 -2.8217849321663380e-03</internalNodes> + <leafValues> + 1.3479979336261749e-01 -4.5820970088243484e-02</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 6 8 -1.</_> - <_> - 9 4 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2915348112583160</threshold> - <left_val>-0.0250420793890953</left_val> - <right_val>-528.6234741210937500</right_val></_></_> + <internalNodes> + 0 -1 936 2.9153481125831604e-01</internalNodes> + <leafValues> + -2.5042079389095306e-02 -5.2862347412109375e+02</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 10 12 2 -1.</_> - <_> - 3 11 12 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.6751398369669914e-003</threshold> - <left_val>-0.2020815014839172</left_val> - <right_val>0.1364797055721283</right_val></_></_> + <internalNodes> + 0 -1 937 5.6751398369669914e-03</internalNodes> + <leafValues> + -2.0208150148391724e-01 1.3647970557212830e-01</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 8 4 -1.</_> - <_> - 5 4 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0543610006570816</threshold> - <left_val>0.2182675004005432</left_val> - <right_val>-0.1102183014154434</right_val></_></_> + <internalNodes> + 0 -1 938 -5.4361000657081604e-02</internalNodes> + <leafValues> + 2.1826750040054321e-01 -1.1021830141544342e-01</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 2 3 4 -1.</_> - <_> - 14 3 3 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0185149293392897</threshold> - <left_val>0.0997008830308914</left_val> - <right_val>-0.0876608863472939</right_val></_></_> + <internalNodes> + 0 -1 939 -1.8514929339289665e-02</internalNodes> + <leafValues> + 9.9700883030891418e-02 -8.7660886347293854e-02</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 2 2 -1.</_> - <_> - 5 4 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0108261397108436</threshold> - <left_val>-0.0902396291494370</left_val> - <right_val>0.2302881032228470</right_val></_></_> + <internalNodes> + 0 -1 940 1.0826139710843563e-02</internalNodes> + <leafValues> + -9.0239629149436951e-02 2.3028810322284698e-01</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 3 -1.</_> - <_> - 6 0 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0549153909087181</threshold> - <left_val>0.1484854072332382</left_val> - <right_val>-0.1524683982133865</right_val></_></_> + <internalNodes> + 0 -1 941 -5.4915390908718109e-02</internalNodes> + <leafValues> + 1.4848540723323822e-01 -1.5246839821338654e-01</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 6 6 -1.</_> - <_> - 4 3 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1001823991537094</threshold> - <left_val>0.3187054097652435</left_val> - <right_val>-0.0595698282122612</right_val></_></_> + <internalNodes> + 0 -1 942 -1.0018239915370941e-01</internalNodes> + <leafValues> + 3.1870540976524353e-01 -5.9569828212261200e-02</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 1 4 -1.</_> - <_> - 8 5 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0124497003853321</threshold> - <left_val>0.1912271976470947</left_val> - <right_val>-0.0864640176296234</right_val></_></_> + <internalNodes> + 0 -1 943 -1.2449700385332108e-02</internalNodes> + <leafValues> + 1.9122719764709473e-01 -8.6464017629623413e-02</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 6 4 -1.</_> - <_> - 6 0 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0248186197131872</threshold> - <left_val>-0.4252462983131409</left_val> - <right_val>0.0488429702818394</right_val></_></_> + <internalNodes> + 0 -1 944 -2.4818619713187218e-02</internalNodes> + <leafValues> + -4.2524629831314087e-01 4.8842970281839371e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 0 3 7 -1.</_> - <_> - 12 1 1 7 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1036828979849815</threshold> - <left_val>-0.3789359927177429</left_val> - <right_val>-2.5603040121495724e-003</right_val></_></_> + <internalNodes> + 0 -1 945 -1.0368289798498154e-01</internalNodes> + <leafValues> + -3.7893599271774292e-01 -2.5603040121495724e-03</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 7 3 -1.</_> - <_> - 6 1 7 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0277563408017159</threshold> - <left_val>0.2015216052532196</left_val> - <right_val>-0.0938467606902123</right_val></_></_> + <internalNodes> + 0 -1 946 -2.7756340801715851e-02</internalNodes> + <leafValues> + 2.0152160525321960e-01 -9.3846760690212250e-02</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 9 1 2 -1.</_> - <_> - 15 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2664039968512952e-004</threshold> - <left_val>-0.1043327003717423</left_val> - <right_val>0.0586948506534100</right_val></_></_> + <internalNodes> + 0 -1 947 1.2664039968512952e-04</internalNodes> + <leafValues> + -1.0433270037174225e-01 5.8694850653409958e-02</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 9 1 2 -1.</_> - <_> - 2 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0114379983860999e-004</threshold> - <left_val>-0.2199925035238266</left_val> - <right_val>0.0745101571083069</right_val></_></_> + <internalNodes> + 0 -1 948 1.0114379983860999e-04</internalNodes> + <leafValues> + -2.1999250352382660e-01 7.4510157108306885e-02</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 3 1 6 -1.</_> - <_> - 17 5 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0223847609013319</threshold> - <left_val>-0.5483086109161377</left_val> - <right_val>0.0329390503466129</right_val></_></_> + <internalNodes> + 0 -1 949 -2.2384760901331902e-02</internalNodes> + <leafValues> + -5.4830861091613770e-01 3.2939050346612930e-02</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 1 6 -1.</_> - <_> - 0 5 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0129075096920133</threshold> - <left_val>0.0325817689299583</left_val> - <right_val>-0.4388734996318817</right_val></_></_> + <internalNodes> + 0 -1 950 1.2907509692013264e-02</internalNodes> + <leafValues> + 3.2581768929958344e-02 -4.3887349963188171e-01</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 6 4 -1.</_> - <_> - 6 1 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0280636101961136</threshold> - <left_val>0.2891145050525665</left_val> - <right_val>-0.0639025270938873</right_val></_></_> + <internalNodes> + 0 -1 951 -2.8063610196113586e-02</internalNodes> + <leafValues> + 2.8911450505256653e-01 -6.3902527093887329e-02</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 9 2 -1.</_> - <_> - 3 1 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0158168207854033</threshold> - <left_val>-0.0771971568465233</left_val> - <right_val>0.2395129948854446</right_val></_></_> + <internalNodes> + 0 -1 952 1.5816820785403252e-02</internalNodes> + <leafValues> + -7.7197156846523285e-02 2.3951299488544464e-01</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 3 3 -1.</_> - <_> - 9 0 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0119507098570466</threshold> - <left_val>0.0158301703631878</left_val> - <right_val>-0.5384339094161987</right_val></_></_> + <internalNodes> + 0 -1 953 1.1950709857046604e-02</internalNodes> + <leafValues> + 1.5830170363187790e-02 -5.3843390941619873e-01</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 3 -1.</_> - <_> - 8 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.8720219209790230e-003</threshold> - <left_val>-0.4236744046211243</left_val> - <right_val>0.0330005213618279</right_val></_></_> + <internalNodes> + 0 -1 954 -8.8720219209790230e-03</internalNodes> + <leafValues> + -4.2367440462112427e-01 3.3000521361827850e-02</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 6 2 -1.</_> - <_> - 12 6 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0369729287922382</threshold> - <left_val>-0.0708592012524605</left_val> - <right_val>0.3515239953994751</right_val></_></_> + <internalNodes> + 0 -1 955 3.6972928792238235e-02</internalNodes> + <leafValues> + -7.0859201252460480e-02 3.5152399539947510e-01</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 6 6 2 -1.</_> - <_> - 4 6 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0396069586277008</threshold> - <left_val>-0.0469609685242176</left_val> - <right_val>0.3659656047821045</right_val></_></_> + <internalNodes> + 0 -1 956 3.9606958627700806e-02</internalNodes> + <leafValues> + -4.6960968524217606e-02 3.6596560478210449e-01</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 14 12 -1.</_> - <_> - 4 0 7 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.6629592776298523</threshold> - <left_val>-0.3015295863151550</left_val> - <right_val>9.6956668421626091e-003</right_val></_></_> + <internalNodes> + 0 -1 957 -6.6295927762985229e-01</internalNodes> + <leafValues> + -3.0152958631515503e-01 9.6956668421626091e-03</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 9 2 2 -1.</_> - <_> - 1 9 1 1 2.</_> - <_> - 2 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4906129110604525e-003</threshold> - <left_val>0.0442264191806316</left_val> - <right_val>-0.3290875852108002</right_val></_></_> + <internalNodes> + 0 -1 958 2.4906129110604525e-03</internalNodes> + <leafValues> + 4.4226419180631638e-02 -3.2908758521080017e-01</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 5 6 5 -1.</_> - <_> - 13 5 2 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0139718595892191</threshold> - <left_val>0.1558924019336700</left_val> - <right_val>-0.1160188987851143</right_val></_></_> + <internalNodes> + 0 -1 959 -1.3971859589219093e-02</internalNodes> + <leafValues> + 1.5589240193367004e-01 -1.1601889878511429e-01</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 16 9 -1.</_> - <_> - 4 3 8 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1137507036328316</threshold> - <left_val>0.1148568987846375</left_val> - <right_val>-0.1321364939212799</right_val></_></_> + <internalNodes> + 0 -1 960 -1.1375070363283157e-01</internalNodes> + <leafValues> + 1.1485689878463745e-01 -1.3213649392127991e-01</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 12 12 -1.</_> - <_> - 6 0 6 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2991181015968323</threshold> - <left_val>6.8873511627316475e-003</left_val> - <right_val>-0.3881449103355408</right_val></_></_> + <internalNodes> + 0 -1 961 2.9911810159683228e-01</internalNodes> + <leafValues> + 6.8873511627316475e-03 -3.8814491033554077e-01</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 12 12 -1.</_> - <_> - 6 0 6 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1768777966499329</threshold> - <left_val>-0.0532504208385944</left_val> - <right_val>0.3071394860744476</right_val></_></_> + <internalNodes> + 0 -1 962 1.7687779664993286e-01</internalNodes> + <leafValues> + -5.3250420838594437e-02 3.0713948607444763e-01</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 1 8 10 -1.</_> - <_> - 5 1 4 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1100004985928536</threshold> - <left_val>-0.0616912096738815</left_val> - <right_val>0.2242321968078613</right_val></_></_> + <internalNodes> + 0 -1 963 1.1000049859285355e-01</internalNodes> + <leafValues> + -6.1691209673881531e-02 2.2423219680786133e-01</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 3 2 -1.</_> - <_> - 6 4 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0114818904548883</threshold> - <left_val>-0.0368494503200054</left_val> - <right_val>0.3699466884136200</right_val></_></_> + <internalNodes> + 0 -1 964 1.1481890454888344e-02</internalNodes> + <leafValues> + -3.6849450320005417e-02 3.6994668841362000e-01</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 2 2 6 -1.</_> - <_> - 10 4 2 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0434822812676430</threshold> - <left_val>0.0667590573430061</left_val> - <right_val>-0.0820931717753410</right_val></_></_> + <internalNodes> + 0 -1 965 -4.3482281267642975e-02</internalNodes> + <leafValues> + 6.6759057343006134e-02 -8.2093171775341034e-02</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 8 1 3 -1.</_> - <_> - 1 9 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.2705739140510559e-003</threshold> - <left_val>-0.3120352923870087</left_val> - <right_val>0.0368611104786396</right_val></_></_> + <internalNodes> + 0 -1 966 -3.2705739140510559e-03</internalNodes> + <leafValues> + -3.1203529238700867e-01 3.6861110478639603e-02</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 8 3 -1.</_> - <_> - 5 1 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0195399299263954</threshold> - <left_val>0.2087699025869370</left_val> - <right_val>-0.0635671019554138</right_val></_></_> + <internalNodes> + 0 -1 967 -1.9539929926395416e-02</internalNodes> + <leafValues> + 2.0876990258693695e-01 -6.3567101955413818e-02</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 12 5 -1.</_> - <_> - 4 5 4 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1141956001520157</threshold> - <left_val>0.0374830998480320</left_val> - <right_val>-0.3369993865489960</right_val></_></_> + <internalNodes> + 0 -1 968 1.1419560015201569e-01</internalNodes> + <leafValues> + 3.7483099848031998e-02 -3.3699938654899597e-01</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 9 6 3 -1.</_> - <_> - 11 9 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0547153502702713</threshold> - <left_val>-0.6484239101409912</left_val> - <right_val>5.5782468989491463e-003</right_val></_></_> + <internalNodes> + 0 -1 969 -5.4715350270271301e-02</internalNodes> + <leafValues> + -6.4842391014099121e-01 5.5782468989491463e-03</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 9 6 2 -1.</_> - <_> - 6 9 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0206970795989037</threshold> - <left_val>-0.4087164998054504</left_val> - <right_val>0.0278010200709105</right_val></_></_> + <internalNodes> + 0 -1 970 -2.0697079598903656e-02</internalNodes> + <leafValues> + -4.0871649980545044e-01 2.7801020070910454e-02</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 4 4 -1.</_> - <_> - 9 5 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0162917096167803</threshold> - <left_val>-0.0302606392651796</left_val> - <right_val>0.2335986942052841</right_val></_></_> + <internalNodes> + 0 -1 971 1.6291709616780281e-02</internalNodes> + <leafValues> + -3.0260639265179634e-02 2.3359869420528412e-01</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 1 2 3 -1.</_> - <_> - 2 2 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0156916603446007</threshold> - <left_val>0.0331888683140278</left_val> - <right_val>-0.3699297010898590</right_val></_></_> + <internalNodes> + 0 -1 972 1.5691660344600677e-02</internalNodes> + <leafValues> + 3.3188868314027786e-02 -3.6992970108985901e-01</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 2 3 1 -1.</_> - <_> - 15 3 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0149823604151607</threshold> - <left_val>-0.5046744942665100</left_val> - <right_val>0.0266051497310400</right_val></_></_> + <internalNodes> + 0 -1 973 -1.4982360415160656e-02</internalNodes> + <leafValues> + -5.0467449426651001e-01 2.6605149731040001e-02</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 4 10 -1.</_> - <_> - 0 5 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1630643010139465</threshold> - <left_val>0.0241505093872547</left_val> - <right_val>-0.4544095993041992</right_val></_></_> + <internalNodes> + 0 -1 974 1.6306430101394653e-01</internalNodes> + <leafValues> + 2.4150509387254715e-02 -4.5440959930419922e-01</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 1 4 2 -1.</_> - <_> - 14 1 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0296363700181246</threshold> - <left_val>0.3234812021255493</left_val> - <right_val>-0.0195190403610468</right_val></_></_> + <internalNodes> + 0 -1 975 -2.9636370018124580e-02</internalNodes> + <leafValues> + 3.2348120212554932e-01 -1.9519040361046791e-02</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 2 4 -1.</_> - <_> - 4 1 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0212267898023129</threshold> - <left_val>0.3500868082046509</left_val> - <right_val>-0.0368941389024258</right_val></_></_> + <internalNodes> + 0 -1 976 -2.1226789802312851e-02</internalNodes> + <leafValues> + 3.5008680820465088e-01 -3.6894138902425766e-02</leafValues></_> <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 12 9 -1.</_> - <_> - 3 3 12 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1838302016258240</threshold> - <left_val>0.1124954968690872</left_val> - <right_val>-0.1238723024725914</right_val></_></_> + <internalNodes> + 0 -1 977 -1.8383020162582397e-01</internalNodes> + <leafValues> + 1.1249549686908722e-01 -1.2387230247259140e-01</leafValues></_> <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 4 3 -1.</_> - <_> - 5 6 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0197275504469872</threshold> - <left_val>0.2218450009822846</left_val> - <right_val>-0.0537588596343994</right_val></_></_> + <internalNodes> + 0 -1 978 -1.9727550446987152e-02</internalNodes> + <leafValues> + 2.2184500098228455e-01 -5.3758859634399414e-02</leafValues></_> <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 3 1 -1.</_> - <_> - 10 6 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-5.5899647995829582e-003</threshold> - <left_val>0.0806023031473160</left_val> - <right_val>-0.0747311115264893</right_val></_></_> + <internalNodes> + 0 -1 979 -5.5899647995829582e-03</internalNodes> + <leafValues> + 8.0602303147315979e-02 -7.4731111526489258e-02</leafValues></_> <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 1 2 3 -1.</_> - <_> - 2 2 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0209637805819511</threshold> - <left_val>-0.3925526142120361</left_val> - <right_val>0.0287585500627756</right_val></_></_> + <internalNodes> + 0 -1 980 -2.0963780581951141e-02</internalNodes> + <leafValues> + -3.9255261421203613e-01 2.8758550062775612e-02</leafValues></_> <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 1 6 9 -1.</_> - <_> - 14 1 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0161387305706739</threshold> - <left_val>0.1198647990822792</left_val> - <right_val>-0.1285510957241058</right_val></_></_> + <internalNodes> + 0 -1 981 -1.6138730570673943e-02</internalNodes> + <leafValues> + 1.1986479908227921e-01 -1.2855109572410583e-01</leafValues></_> <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 3 4 -1.</_> - <_> - 7 5 1 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.6363878324627876e-003</threshold> - <left_val>0.1783673018217087</left_val> - <right_val>-0.0641103908419609</right_val></_></_> + <internalNodes> + 0 -1 982 -7.6363878324627876e-03</internalNodes> + <leafValues> + 1.7836730182170868e-01 -6.4110390841960907e-02</leafValues></_> <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 1 8 -1.</_> - <_> - 7 3 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0285797696560621</threshold> - <left_val>-7.4946638196706772e-003</left_val> - <right_val>0.1291497051715851</right_val></_></_> + <internalNodes> + 0 -1 983 2.8579769656062126e-02</internalNodes> + <leafValues> + -7.4946638196706772e-03 1.2914970517158508e-01</leafValues></_> <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 8 1 -1.</_> - <_> - 11 3 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0207129605114460</threshold> - <left_val>0.0947175025939941</left_val> - <right_val>-0.1375170946121216</right_val></_></_> + <internalNodes> + 0 -1 984 -2.0712960511445999e-02</internalNodes> + <leafValues> + 9.4717502593994141e-02 -1.3751709461212158e-01</leafValues></_> <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 1 8 -1.</_> - <_> - 9 0 1 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>3.3245470840483904e-003</threshold> - <left_val>0.0436914190649986</left_val> - <right_val>-0.0435151495039463</right_val></_></_> + <internalNodes> + 0 -1 985 3.3245470840483904e-03</internalNodes> + <leafValues> + 4.3691419064998627e-02 -4.3515149503946304e-02</leafValues></_> <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 6 9 -1.</_> - <_> - 2 1 2 9 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0156577993184328</threshold> - <left_val>0.1105260029435158</left_val> - <right_val>-0.0932034626603127</right_val></_></_> + <internalNodes> + 0 -1 986 -1.5657799318432808e-02</internalNodes> + <leafValues> + 1.1052600294351578e-01 -9.3203462660312653e-02</leafValues></_> <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 4 3 -1.</_> - <_> - 11 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.9033246040344238e-003</threshold> - <left_val>0.2136887013912201</left_val> - <right_val>-0.0572282113134861</right_val></_></_> + <internalNodes> + 0 -1 987 -8.9033246040344238e-03</internalNodes> + <leafValues> + 2.1368870139122009e-01 -5.7228211313486099e-02</leafValues></_> <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 1 3 -1.</_> - <_> - 4 5 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0225170608609915</threshold> - <left_val>-0.5450509190559387</left_val> - <right_val>0.0241874307394028</right_val></_></_> + <internalNodes> + 0 -1 988 -2.2517060860991478e-02</internalNodes> + <leafValues> + -5.4505091905593872e-01 2.4187430739402771e-02</leafValues></_> <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 3 3 -1.</_> - <_> - 9 5 1 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.1859940439462662e-003</threshold> - <left_val>0.0590406507253647</left_val> - <right_val>-0.0663388669490814</right_val></_></_> + <internalNodes> + 0 -1 989 -9.1859940439462662e-03</internalNodes> + <leafValues> + 5.9040650725364685e-02 -6.6338866949081421e-02</leafValues></_> <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 9 6 2 -1.</_> - <_> - 8 9 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0193045996129513</threshold> - <left_val>-0.3458541035652161</left_val> - <right_val>0.0295628197491169</right_val></_></_> + <internalNodes> + 0 -1 990 -1.9304599612951279e-02</internalNodes> + <leafValues> + -3.4585410356521606e-01 2.9562819749116898e-02</leafValues></_> <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 3 2 -1.</_> - <_> - 9 5 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.9454459697008133e-003</threshold> - <left_val>-0.0318287797272205</left_val> - <right_val>0.1574669927358627</right_val></_></_> + <internalNodes> + 0 -1 991 5.9454459697008133e-03</internalNodes> + <leafValues> + -3.1828779727220535e-02 1.5746699273586273e-01</leafValues></_> <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 4 5 -1.</_> - <_> - 7 0 2 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0214861296117306</threshold> - <left_val>-0.5155659914016724</left_val> - <right_val>0.0193808004260063</right_val></_></_> + <internalNodes> + 0 -1 992 -2.1486129611730576e-02</internalNodes> + <leafValues> + -5.1556599140167236e-01 1.9380800426006317e-02</leafValues></_> <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 4 4 -1.</_> - <_> - 9 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0148078501224518</threshold> - <left_val>-0.4462536871433258</left_val> - <right_val>0.0252729803323746</right_val></_></_> + <internalNodes> + 0 -1 993 -1.4807850122451782e-02</internalNodes> + <leafValues> + -4.4625368714332581e-01 2.5272980332374573e-02</leafValues></_> <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 8 1 -1.</_> - <_> - 9 0 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0419156812131405</threshold> - <left_val>0.0408641397953033</left_val> - <right_val>-0.2249899953603745</right_val></_></_> + <internalNodes> + 0 -1 994 4.1915681213140488e-02</internalNodes> + <leafValues> + 4.0864139795303345e-02 -2.2498999536037445e-01</leafValues></_> <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 3 6 4 -1.</_> - <_> - 15 3 3 2 2.</_> - <_> - 12 5 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0185423605144024</threshold> - <left_val>-0.0456282012164593</left_val> - <right_val>0.1247989982366562</right_val></_></_> + <internalNodes> + 0 -1 995 1.8542360514402390e-02</internalNodes> + <leafValues> + -4.5628201216459274e-02 1.2479899823665619e-01</leafValues></_> <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 6 4 -1.</_> - <_> - 0 3 3 2 2.</_> - <_> - 3 5 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0219785999506712</threshold> - <left_val>0.1662651002407074</left_val> - <right_val>-0.0681815296411514</right_val></_></_> + <internalNodes> + 0 -1 996 -2.1978599950671196e-02</internalNodes> + <leafValues> + 1.6626510024070740e-01 -6.8181529641151428e-02</leafValues></_> <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 3 4 3 -1.</_> - <_> - 12 4 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0223059095442295</threshold> - <left_val>0.1217634975910187</left_val> - <right_val>-0.0469965189695358</right_val></_></_> + <internalNodes> + 0 -1 997 -2.2305909544229507e-02</internalNodes> + <leafValues> + 1.2176349759101868e-01 -4.6996518969535828e-02</leafValues></_> <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 3 4 -1.</_> - <_> - 6 4 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0277811102569103</threshold> - <left_val>-0.0369721204042435</left_val> - <right_val>0.2852365970611572</right_val></_></_> + <internalNodes> + 0 -1 998 2.7781110256910324e-02</internalNodes> + <leafValues> + -3.6972120404243469e-02 2.8523659706115723e-01</leafValues></_> <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 8 12 4 -1.</_> - <_> - 7 8 4 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0179947596043348</threshold> - <left_val>0.1044797971844673</left_val> - <right_val>-0.0990006625652313</right_val></_></_> + <internalNodes> + 0 -1 999 -1.7994759604334831e-02</internalNodes> + <leafValues> + 1.0447979718446732e-01 -9.9000662565231323e-02</leafValues></_> <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 1 3 -1.</_> - <_> - 5 2 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0147548001259565</threshold> - <left_val>0.0218691397458315</left_val> - <right_val>-0.4304389059543610</right_val></_></_> + <internalNodes> + 0 -1 1000 1.4754800125956535e-02</internalNodes> + <leafValues> + 2.1869139745831490e-02 -4.3043890595436096e-01</leafValues></_> <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 5 3 4 -1.</_> - <_> - 14 5 3 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-7.7450848184525967e-003</threshold> - <left_val>0.0329999700188637</left_val> - <right_val>-0.0984743162989616</right_val></_></_> + <internalNodes> + 0 -1 1001 -7.7450848184525967e-03</internalNodes> + <leafValues> + 3.2999970018863678e-02 -9.8474316298961639e-02</leafValues></_> <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 3 3 -1.</_> - <_> - 6 3 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0274515394121408</threshold> - <left_val>0.1959954947233200</left_val> - <right_val>-0.0503785088658333</right_val></_></_> + <internalNodes> + 0 -1 1002 -2.7451539412140846e-02</internalNodes> + <leafValues> + 1.9599549472332001e-01 -5.0378508865833282e-02</leafValues></_> <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 10 2 2 -1.</_> - <_> - 16 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.0835710931569338e-003</threshold> - <left_val>-0.3375248014926910</left_val> - <right_val>0.0339105091989040</right_val></_></_> + <internalNodes> + 0 -1 1003 -3.0835710931569338e-03</internalNodes> + <leafValues> + -3.3752480149269104e-01 3.3910509198904037e-02</leafValues></_> <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 2 2 -1.</_> - <_> - 0 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.1450988762080669e-003</threshold> - <left_val>-0.6780729889869690</left_val> - <right_val>0.0119285099208355</right_val></_></_> + <internalNodes> + 0 -1 1004 -7.1450988762080669e-03</internalNodes> + <leafValues> + -6.7807298898696899e-01 1.1928509920835495e-02</leafValues></_> <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 11 2 1 -1.</_> - <_> - 16 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1973819928243756e-003</threshold> - <left_val>0.1277793049812317</left_val> - <right_val>-0.0555209293961525</right_val></_></_> + <internalNodes> + 0 -1 1005 -1.1973819928243756e-03</internalNodes> + <leafValues> + 1.2777930498123169e-01 -5.5520929396152496e-02</leafValues></_> <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 2 1 -1.</_> - <_> - 1 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2104130291845649e-004</threshold> - <left_val>-0.0973940566182137</left_val> - <right_val>0.0999899134039879</right_val></_></_> + <internalNodes> + 0 -1 1006 1.2104130291845649e-04</internalNodes> + <leafValues> + -9.7394056618213654e-02 9.9989913403987885e-02</leafValues></_> <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 11 2 1 -1.</_> - <_> - 16 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1540119885466993e-004</threshold> - <left_val>-0.0381012484431267</left_val> - <right_val>0.0531424805521965</right_val></_></_> + <internalNodes> + 0 -1 1007 1.1540119885466993e-04</internalNodes> + <leafValues> + -3.8101248443126678e-02 5.3142480552196503e-02</leafValues></_> <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 2 1 -1.</_> - <_> - 1 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0320250294171274e-004</threshold> - <left_val>0.1188025027513504</left_val> - <right_val>-0.0828879326581955</right_val></_></_> + <internalNodes> + 0 -1 1008 -1.0320250294171274e-04</internalNodes> + <leafValues> + 1.1880250275135040e-01 -8.2887932658195496e-02</leafValues></_> <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 10 6 2 -1.</_> - <_> - 11 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0302170701324940</threshold> - <left_val>0.0130771202966571</left_val> - <right_val>-0.4251112937927246</right_val></_></_> + <internalNodes> + 0 -1 1009 3.0217070132493973e-02</internalNodes> + <leafValues> + 1.3077120296657085e-02 -4.2511129379272461e-01</leafValues></_> <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 16 2 -1.</_> - <_> - 5 10 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0144805302843452</threshold> - <left_val>-0.0646656006574631</left_val> - <right_val>0.1365126073360443</right_val></_></_> + <internalNodes> + 0 -1 1010 1.4480530284345150e-02</internalNodes> + <leafValues> + -6.4665600657463074e-02 1.3651260733604431e-01</leafValues></_> <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 4 2 -1.</_> - <_> - 8 10 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.6259230263531208e-003</threshold> - <left_val>0.0212066601961851</left_val> - <right_val>-0.4806919991970062</right_val></_></_> + <internalNodes> + 0 -1 1011 7.6259230263531208e-03</internalNodes> + <leafValues> + 2.1206660196185112e-02 -4.8069199919700623e-01</leafValues></_> <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 2 3 3 -1.</_> - <_> - 3 2 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0127067798748612</threshold> - <left_val>0.0204321704804897</left_val> - <right_val>-0.3803671002388001</right_val></_></_> + <internalNodes> + 0 -1 1012 1.2706779874861240e-02</internalNodes> + <leafValues> + 2.0432170480489731e-02 -3.8036710023880005e-01</leafValues></_> <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 3 5 -1.</_> - <_> - 9 4 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0708498582243919</threshold> - <left_val>-0.6700794100761414</left_val> - <right_val>5.8502932079136372e-003</right_val></_></_> + <internalNodes> + 0 -1 1013 -7.0849858224391937e-02</internalNodes> + <leafValues> + -6.7007941007614136e-01 5.8502932079136372e-03</leafValues></_> <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 18 10 -1.</_> - <_> - 0 1 9 5 2.</_> - <_> - 9 6 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3660708963871002</threshold> - <left_val>-0.6565138101577759</left_val> - <right_val>0.0119380904361606</right_val></_></_> + <internalNodes> + 0 -1 1014 -3.6607089638710022e-01</internalNodes> + <leafValues> + -6.5651381015777588e-01 1.1938090436160564e-02</leafValues></_> <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 7 4 1 -1.</_> - <_> - 15 8 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>6.7676370963454247e-003</threshold> - <left_val>-0.0547376014292240</left_val> - <right_val>0.1334920972585678</right_val></_></_> + <internalNodes> + 0 -1 1015 6.7676370963454247e-03</internalNodes> + <leafValues> + -5.4737601429224014e-02 1.3349209725856781e-01</leafValues></_> <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 4 12 4 -1.</_> - <_> - 5 4 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.8495830744504929e-003</threshold> - <left_val>0.0550069399178028</left_val> - <right_val>-0.1708720028400421</right_val></_></_> + <internalNodes> + 0 -1 1016 -5.8495830744504929e-03</internalNodes> + <leafValues> + 5.5006939917802811e-02 -1.7087200284004211e-01</leafValues></_> <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 4 3 -1.</_> - <_> - 7 2 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0131925102323294</threshold> - <left_val>0.2025216966867447</left_val> - <right_val>-0.0467488504946232</right_val></_></_> + <internalNodes> + 0 -1 1017 -1.3192510232329369e-02</internalNodes> + <leafValues> + 2.0252169668674469e-01 -4.6748850494623184e-02</leafValues></_> <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 6 6 3 -1.</_> - <_> - 3 6 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0262439791113138</threshold> - <left_val>0.1713120043277741</left_val> - <right_val>-0.0517422892153263</right_val></_></_> + <internalNodes> + 0 -1 1018 -2.6243979111313820e-02</internalNodes> + <leafValues> + 1.7131200432777405e-01 -5.1742289215326309e-02</leafValues></_> <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 3 4 9 -1.</_> - <_> - 13 3 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1983630061149597</threshold> - <left_val>0.6834859848022461</left_val> - <right_val>-5.4989140480756760e-003</right_val></_></_> + <internalNodes> + 0 -1 1019 -1.9836300611495972e-01</internalNodes> + <leafValues> + 6.8348598480224609e-01 -5.4989140480756760e-03</leafValues></_> <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 3 4 9 -1.</_> - <_> - 3 3 2 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0912645831704140</threshold> - <left_val>-0.3812245130538940</left_val> - <right_val>0.0246560908854008</right_val></_></_> + <internalNodes> + 0 -1 1020 -9.1264583170413971e-02</internalNodes> + <leafValues> + -3.8122451305389404e-01 2.4656090885400772e-02</leafValues></_> <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 11 10 1 -1.</_> - <_> - 7 11 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0510455593466759</threshold> - <left_val>4.7809281386435032e-003</left_val> - <right_val>-0.5138844847679138</right_val></_></_> + <internalNodes> + 0 -1 1021 5.1045559346675873e-02</internalNodes> + <leafValues> + 4.7809281386435032e-03 -5.1388448476791382e-01</leafValues></_> <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 14 3 -1.</_> - <_> - 7 9 7 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0626778528094292</threshold> - <left_val>0.1605121046304703</left_val> - <right_val>-0.0692914128303528</right_val></_></_> + <internalNodes> + 0 -1 1022 -6.2677852809429169e-02</internalNodes> + <leafValues> + 1.6051210463047028e-01 -6.9291412830352783e-02</leafValues></_> <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 12 4 -1.</_> - <_> - 5 1 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0219987593591213</threshold> - <left_val>-0.0635576993227005</left_val> - <right_val>0.1025841981172562</right_val></_></_> + <internalNodes> + 0 -1 1023 2.1998759359121323e-02</internalNodes> + <leafValues> + -6.3557699322700500e-02 1.0258419811725616e-01</leafValues></_> <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 4 3 -1.</_> - <_> - 9 2 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0985590964555740</threshold> - <left_val>0.4166687130928040</left_val> - <right_val>-0.0229825507849455</right_val></_></_> + <internalNodes> + 0 -1 1024 -9.8559096455574036e-02</internalNodes> + <leafValues> + 4.1666871309280396e-01 -2.2982550784945488e-02</leafValues></_> <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 3 1 -1.</_> - <_> - 11 6 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-7.8866537660360336e-003</threshold> - <left_val>0.1413310021162033</left_val> - <right_val>-0.0627465471625328</right_val></_></_> + <internalNodes> + 0 -1 1025 -7.8866537660360336e-03</internalNodes> + <leafValues> + 1.4133100211620331e-01 -6.2746547162532806e-02</leafValues></_> <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 11 4 1 -1.</_> - <_> - 6 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.7192011736333370e-003</threshold> - <left_val>0.0149394702166319</left_val> - <right_val>-0.5679485797882080</right_val></_></_> + <internalNodes> + 0 -1 1026 5.7192011736333370e-03</internalNodes> + <leafValues> + 1.4939470216631889e-02 -5.6794857978820801e-01</leafValues></_> <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 3 2 -1.</_> - <_> - 15 1 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.2656320177484304e-004</threshold> - <left_val>0.1540904939174652</left_val> - <right_val>-0.2722637057304382</right_val></_></_> + <internalNodes> + 0 -1 1027 -1.2656320177484304e-04</internalNodes> + <leafValues> + 1.5409049391746521e-01 -2.7226370573043823e-01</leafValues></_> <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 2 -1.</_> - <_> - 0 1 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0153636597096920</threshold> - <left_val>-0.5575292110443115</left_val> - <right_val>0.0166299808770418</right_val></_></_> + <internalNodes> + 0 -1 1028 -1.5363659709692001e-02</internalNodes> + <leafValues> + -5.5752921104431152e-01 1.6629980877041817e-02</leafValues></_> <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 4 3 -1.</_> - <_> - 11 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0117473099380732</threshold> - <left_val>-0.0286691505461931</left_val> - <right_val>0.0849198475480080</right_val></_></_> + <internalNodes> + 0 -1 1029 1.1747309938073158e-02</internalNodes> + <leafValues> + -2.8669150546193123e-02 8.4919847548007965e-02</leafValues></_> <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 4 3 -1.</_> - <_> - 5 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6546360030770302e-003</threshold> - <left_val>0.1505744010210037</left_val> - <right_val>-0.0587357692420483</right_val></_></_> + <internalNodes> + 0 -1 1030 -6.6546360030770302e-03</internalNodes> + <leafValues> + 1.5057440102100372e-01 -5.8735769242048264e-02</leafValues></_> <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 11 4 1 -1.</_> - <_> - 12 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.2943234592676163e-003</threshold> - <left_val>-0.4902375936508179</left_val> - <right_val>0.0119769498705864</right_val></_></_> + <internalNodes> + 0 -1 1031 -8.2943234592676163e-03</internalNodes> + <leafValues> + -4.9023759365081787e-01 1.1976949870586395e-02</leafValues></_> <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 12 6 -1.</_> - <_> - 4 4 4 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1995773017406464</threshold> - <left_val>-0.3204885125160217</left_val> - <right_val>0.0244485493749380</right_val></_></_> + <internalNodes> + 0 -1 1032 -1.9957730174064636e-01</internalNodes> + <leafValues> + -3.2048851251602173e-01 2.4448549374938011e-02</leafValues></_> <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 4 4 -1.</_> - <_> - 9 2 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0916234701871872</threshold> - <left_val>-0.0115658603608608</left_val> - <right_val>0.1212178021669388</right_val></_></_> + <internalNodes> + 0 -1 1033 9.1623470187187195e-02</internalNodes> + <leafValues> + -1.1565860360860825e-02 1.2121780216693878e-01</leafValues></_> <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 1 4 -1.</_> - <_> - 0 6 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1579290777444839e-003</threshold> - <left_val>0.0234328806400299</left_val> - <right_val>-0.3470208048820496</right_val></_></_> + <internalNodes> + 0 -1 1034 6.1579290777444839e-03</internalNodes> + <leafValues> + 2.3432880640029907e-02 -3.4702080488204956e-01</leafValues></_> <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 14 2 -1.</_> - <_> - 9 0 7 1 2.</_> - <_> - 2 1 7 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6728810779750347e-003</threshold> - <left_val>0.1337269991636276</left_val> - <right_val>-0.0604593902826309</right_val></_></_> + <internalNodes> + 0 -1 1035 -6.6728810779750347e-03</internalNodes> + <leafValues> + 1.3372699916362762e-01 -6.0459390282630920e-02</leafValues></_> <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 2 1 2 -1.</_> - <_> - 6 2 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>1.1792629811679944e-004</threshold> - <left_val>-0.1125829964876175</left_val> - <right_val>0.0691333189606667</right_val></_></_> + <internalNodes> + 0 -1 1036 1.1792629811679944e-04</internalNodes> + <leafValues> + -1.1258299648761749e-01 6.9133318960666656e-02</leafValues></_> <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 5 4 -1.</_> - <_> - 7 9 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0119264498353004</threshold> - <left_val>0.1305103003978729</left_val> - <right_val>-0.0385039001703262</right_val></_></_> + <internalNodes> + 0 -1 1037 -1.1926449835300446e-02</internalNodes> + <leafValues> + 1.3051030039787292e-01 -3.8503900170326233e-02</leafValues></_> <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 11 4 1 -1.</_> - <_> - 4 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.1339139938354492e-003</threshold> - <left_val>0.0173263307660818</left_val> - <right_val>-0.4599058032035828</right_val></_></_> + <internalNodes> + 0 -1 1038 6.1339139938354492e-03</internalNodes> + <leafValues> + 1.7326330766081810e-02 -4.5990580320358276e-01</leafValues></_> <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 12 -1.</_> - <_> - 9 0 9 6 2.</_> - <_> - 0 6 9 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3730992078781128</threshold> - <left_val>-0.3402409851551056</left_val> - <right_val>0.0206207595765591</right_val></_></_> + <internalNodes> + 0 -1 1039 -3.7309920787811279e-01</internalNodes> + <leafValues> + -3.4024098515510559e-01 2.0620759576559067e-02</leafValues></_> <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 7 5 3 -1.</_> - <_> - 0 8 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0326316691935062</threshold> - <left_val>0.0145410597324371</left_val> - <right_val>-0.5091521739959717</right_val></_></_> + <internalNodes> + 0 -1 1040 3.2631669193506241e-02</internalNodes> + <leafValues> + 1.4541059732437134e-02 -5.0915217399597168e-01</leafValues></_> <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 4 2 -1.</_> - <_> - 8 11 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.3705669920891523e-003</threshold> - <left_val>0.1625149995088577</left_val> - <right_val>-0.0274331904947758</right_val></_></_> + <internalNodes> + 0 -1 1041 -3.3705669920891523e-03</internalNodes> + <leafValues> + 1.6251499950885773e-01 -2.7433190494775772e-02</leafValues></_> <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 9 2 2 -1.</_> - <_> - 2 9 1 1 2.</_> - <_> - 3 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.6422692877240479e-005</threshold> - <left_val>-0.0808628499507904</left_val> - <right_val>0.0870257318019867</right_val></_></_> + <internalNodes> + 0 -1 1042 9.6422692877240479e-05</internalNodes> + <leafValues> + -8.0862849950790405e-02 8.7025731801986694e-02</leafValues></_> <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 9 6 -1.</_> - <_> - 9 5 3 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1367592066526413</threshold> - <left_val>0.0469436310231686</left_val> - <right_val>-0.0541204884648323</right_val></_></_> + <internalNodes> + 0 -1 1043 -1.3675920665264130e-01</internalNodes> + <leafValues> + 4.6943631023168564e-02 -5.4120488464832306e-02</leafValues></_> <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 6 4 -1.</_> - <_> - 7 4 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0186016298830509</threshold> - <left_val>0.1153108999133110</left_val> - <right_val>-0.0755600407719612</right_val></_></_> + <internalNodes> + 0 -1 1044 -1.8601629883050919e-02</internalNodes> + <leafValues> + 1.1531089991331100e-01 -7.5560040771961212e-02</leafValues></_> <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 8 3 -1.</_> - <_> - 8 5 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0397062711417675</threshold> - <left_val>-0.0415648892521858</left_val> - <right_val>0.0342070199549198</right_val></_></_> + <internalNodes> + 0 -1 1045 -3.9706271141767502e-02</internalNodes> + <leafValues> + -4.1564889252185822e-02 3.4207019954919815e-02</leafValues></_> <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 5 8 3 -1.</_> - <_> - 6 5 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0977933332324028</threshold> - <left_val>-0.2554945051670075</left_val> - <right_val>0.0326214581727982</right_val></_></_> + <internalNodes> + 0 -1 1046 -9.7793333232402802e-02</internalNodes> + <leafValues> + -2.5549450516700745e-01 3.2621458172798157e-02</leafValues></_> <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 3 -1.</_> - <_> - 6 0 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1246396973729134</threshold> - <left_val>0.1353075057268143</left_val> - <right_val>-0.0560001395642757</right_val></_></_> + <internalNodes> + 0 -1 1047 -1.2463969737291336e-01</internalNodes> + <leafValues> + 1.3530750572681427e-01 -5.6000139564275742e-02</leafValues></_> <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 1 3 -1.</_> - <_> - 7 6 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-7.3466179892420769e-003</threshold> - <left_val>0.1328029036521912</left_val> - <right_val>-0.0599772110581398</right_val></_></_> + <internalNodes> + 0 -1 1048 -7.3466179892420769e-03</internalNodes> + <leafValues> + 1.3280290365219116e-01 -5.9977211058139801e-02</leafValues></_> <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 2 2 -1.</_> - <_> - 15 0 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-9.1007994487881660e-003</threshold> - <left_val>0.0842158123850822</left_val> - <right_val>-9.5823230221867561e-003</right_val></_></_> + <internalNodes> + 0 -1 1049 -9.1007994487881660e-03</internalNodes> + <leafValues> + 8.4215812385082245e-02 -9.5823230221867561e-03</leafValues></_> <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 3 7 -1.</_> - <_> - 6 3 1 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0547123290598392</threshold> - <left_val>-0.7497063875198364</left_val> - <right_val>9.1644506901502609e-003</right_val></_></_> + <internalNodes> + 0 -1 1050 -5.4712329059839249e-02</internalNodes> + <leafValues> + -7.4970638751983643e-01 9.1644506901502609e-03</leafValues></_> <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 4 4 -1.</_> - <_> - 12 5 2 2 2.</_> - <_> - 10 7 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8011681325733662e-003</threshold> - <left_val>-0.0584721416234970</left_val> - <right_val>0.0758025124669075</right_val></_></_> + <internalNodes> + 0 -1 1051 7.8011681325733662e-03</internalNodes> + <leafValues> + -5.8472141623497009e-02 7.5802512466907501e-02</leafValues></_> <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 4 4 -1.</_> - <_> - 4 5 2 2 2.</_> - <_> - 6 7 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0115047404542565</threshold> - <left_val>-0.0544557087123394</left_val> - <right_val>0.1310382038354874</right_val></_></_> + <internalNodes> + 0 -1 1052 1.1504740454256535e-02</internalNodes> + <leafValues> + -5.4455708712339401e-02 1.3103820383548737e-01</leafValues></_> <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 5 3 3 -1.</_> - <_> - 12 6 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-3.0265720561146736e-003</threshold> - <left_val>0.0435957387089729</left_val> - <right_val>-0.0398318208754063</right_val></_></_> + <internalNodes> + 0 -1 1053 -3.0265720561146736e-03</internalNodes> + <leafValues> + 4.3595738708972931e-02 -3.9831820875406265e-02</leafValues></_> <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 5 3 3 -1.</_> - <_> - 6 6 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>3.9084558375179768e-003</threshold> - <left_val>-0.0702302232384682</left_val> - <right_val>0.1185000985860825</right_val></_></_> + <internalNodes> + 0 -1 1054 3.9084558375179768e-03</internalNodes> + <leafValues> + -7.0230223238468170e-02 1.1850009858608246e-01</leafValues></_> <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 1 4 4 -1.</_> - <_> - 11 1 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0171153508126736</threshold> - <left_val>-0.4875336885452271</left_val> - <right_val>0.0426067188382149</right_val></_></_> + <internalNodes> + 0 -1 1055 -1.7115350812673569e-02</internalNodes> + <leafValues> + -4.8753368854522705e-01 4.2606718838214874e-02</leafValues></_> <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 3 8 -1.</_> - <_> - 9 1 3 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0723911821842194</threshold> - <left_val>-0.0307138208299875</left_val> - <right_val>0.2877641022205353</right_val></_></_> + <internalNodes> + 0 -1 1056 7.2391182184219360e-02</internalNodes> + <leafValues> + -3.0713820829987526e-02 2.8776410222053528e-01</leafValues></_> <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 1 8 3 -1.</_> - <_> - 5 1 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0205427594482899</threshold> - <left_val>-0.0755908265709877</left_val> - <right_val>0.1041648983955383</right_val></_></_> + <internalNodes> + 0 -1 1057 2.0542759448289871e-02</internalNodes> + <leafValues> + -7.5590826570987701e-02 1.0416489839553833e-01</leafValues></_> <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 4 5 -1.</_> - <_> - 5 0 2 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0123379798606038</threshold> - <left_val>0.0331671983003616</left_val> - <right_val>-0.2329113930463791</right_val></_></_> + <internalNodes> + 0 -1 1058 1.2337979860603809e-02</internalNodes> + <leafValues> + 3.3167198300361633e-02 -2.3291139304637909e-01</leafValues></_> <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 8 3 -1.</_> - <_> - 5 3 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0409566015005112</threshold> - <left_val>0.2457851022481918</left_val> - <right_val>-0.0326002687215805</right_val></_></_> + <internalNodes> + 0 -1 1059 -4.0956601500511169e-02</internalNodes> + <leafValues> + 2.4578510224819183e-01 -3.2600268721580505e-02</leafValues></_> <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 6 2 -1.</_> - <_> - 7 0 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0227553192526102</threshold> - <left_val>0.0239908695220947</left_val> - <right_val>-0.3313775062561035</right_val></_></_> + <internalNodes> + 0 -1 1060 2.2755319252610207e-02</internalNodes> + <leafValues> + 2.3990869522094727e-02 -3.3137750625610352e-01</leafValues></_> <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 0 8 1 -1.</_> - <_> - 10 0 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6924870908260345e-003</threshold> - <left_val>0.0669525489211082</left_val> - <right_val>-0.1162751019001007</right_val></_></_> + <internalNodes> + 0 -1 1061 -2.6924870908260345e-03</internalNodes> + <leafValues> + 6.6952548921108246e-02 -1.1627510190010071e-01</leafValues></_> <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 16 1 -1.</_> - <_> - 5 0 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0101853199303150</threshold> - <left_val>-0.0643803775310516</left_val> - <right_val>0.1785684973001480</right_val></_></_> + <internalNodes> + 0 -1 1062 1.0185319930315018e-02</internalNodes> + <leafValues> + -6.4380377531051636e-02 1.7856849730014801e-01</leafValues></_> <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 9 2 2 -1.</_> - <_> - 11 9 1 1 2.</_> - <_> - 10 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1892699878662825e-003</threshold> - <left_val>0.0282022804021835</left_val> - <right_val>-0.1946022063493729</right_val></_></_> + <internalNodes> + 0 -1 1063 2.1892699878662825e-03</internalNodes> + <leafValues> + 2.8202280402183533e-02 -1.9460220634937286e-01</leafValues></_> <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 10 8 -1.</_> - <_> - 0 2 5 4 2.</_> - <_> - 5 6 5 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1761400997638702</threshold> - <left_val>0.0162122007459402</left_val> - <right_val>-0.4573405086994171</right_val></_></_> + <internalNodes> + 0 -1 1064 1.7614009976387024e-01</internalNodes> + <leafValues> + 1.6212200745940208e-02 -4.5734050869941711e-01</leafValues></_> <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 7 2 2 -1.</_> - <_> - 12 7 1 1 2.</_> - <_> - 11 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.4204170331358910e-003</threshold> - <left_val>0.1735994070768356</left_val> - <right_val>-0.0377625711262226</right_val></_></_> + <internalNodes> + 0 -1 1065 -2.4204170331358910e-03</internalNodes> + <leafValues> + 1.7359940707683563e-01 -3.7762571126222610e-02</leafValues></_> <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 7 2 2 -1.</_> - <_> - 5 7 1 1 2.</_> - <_> - 6 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4709460083395243e-003</threshold> - <left_val>0.1408634036779404</left_val> - <right_val>-0.0535050481557846</right_val></_></_> + <internalNodes> + 0 -1 1066 -1.4709460083395243e-03</internalNodes> + <leafValues> + 1.4086340367794037e-01 -5.3505048155784607e-02</leafValues></_> <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 6 8 -1.</_> - <_> - 7 8 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0176293104887009</threshold> - <left_val>-0.4337471127510071</left_val> - <right_val>0.0179103501141071</right_val></_></_> + <internalNodes> + 0 -1 1067 -1.7629310488700867e-02</internalNodes> + <leafValues> + -4.3374711275100708e-01 1.7910350114107132e-02</leafValues></_> <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 7 1 4 -1.</_> - <_> - 0 8 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.3175981156527996e-003</threshold> - <left_val>0.0266184508800507</left_val> - <right_val>-0.2981601059436798</right_val></_></_> + <internalNodes> + 0 -1 1068 5.3175981156527996e-03</internalNodes> + <leafValues> + 2.6618450880050659e-02 -2.9816010594367981e-01</leafValues></_> <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 9 2 2 -1.</_> - <_> - 9 9 1 1 2.</_> - <_> - 8 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.8915910040959716e-003</threshold> - <left_val>0.0359163992106915</left_val> - <right_val>-0.2090456038713455</right_val></_></_> + <internalNodes> + 0 -1 1069 1.8915910040959716e-03</internalNodes> + <leafValues> + 3.5916399210691452e-02 -2.0904560387134552e-01</leafValues></_> <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 9 2 2 -1.</_> - <_> - 8 9 1 1 2.</_> - <_> - 9 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.3355260016396642e-003</threshold> - <left_val>0.0409308485686779</left_val> - <right_val>-0.1843495965003967</right_val></_></_> + <internalNodes> + 0 -1 1070 1.3355260016396642e-03</internalNodes> + <leafValues> + 4.0930848568677902e-02 -1.8434959650039673e-01</leafValues></_> <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 9 3 2 -1.</_> - <_> - 9 10 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.9594341330230236e-003</threshold> - <left_val>0.1767732948064804</left_val> - <right_val>-0.0170477591454983</right_val></_></_> + <internalNodes> + 0 -1 1071 -6.9594341330230236e-03</internalNodes> + <leafValues> + 1.7677329480648041e-01 -1.7047759145498276e-02</leafValues></_> <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 9 2 2 -1.</_> - <_> - 8 9 1 1 2.</_> - <_> - 9 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.1313078883104026e-005</threshold> - <left_val>-0.0743692666292191</left_val> - <right_val>0.0962718501687050</right_val></_></_> + <internalNodes> + 0 -1 1072 9.1313078883104026e-05</internalNodes> + <leafValues> + -7.4369266629219055e-02 9.6271850168704987e-02</leafValues></_> <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 2 2 -1.</_> - <_> - 9 8 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-4.2544947937130928e-003</threshold> - <left_val>0.0446043200790882</left_val> - <right_val>-0.0631061196327209</right_val></_></_> + <internalNodes> + 0 -1 1073 -4.2544947937130928e-03</internalNodes> + <leafValues> + 4.4604320079088211e-02 -6.3106119632720947e-02</leafValues></_> <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 2 1 -1.</_> - <_> - 9 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0578350338619202e-004</threshold> - <left_val>0.0914376825094223</left_val> - <right_val>-0.0829734429717064</right_val></_></_> + <internalNodes> + 0 -1 1074 -1.0578350338619202e-04</internalNodes> + <leafValues> + 9.1437682509422302e-02 -8.2973442971706390e-02</leafValues></_> <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 2 1 -1.</_> - <_> - 8 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0263289732392877e-004</threshold> - <left_val>0.1079393997788429</left_val> - <right_val>-0.0798926129937172</right_val></_></_> + <internalNodes> + 0 -1 1075 -1.0263289732392877e-04</internalNodes> + <leafValues> + 1.0793939977884293e-01 -7.9892612993717194e-02</leafValues></_> <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 9 2 2 -1.</_> - <_> - 6 9 1 1 2.</_> - <_> - 7 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.4791778996586800e-003</threshold> - <left_val>-0.2586830854415894</left_val> - <right_val>0.0262862499803305</right_val></_></_> + <internalNodes> + 0 -1 1076 -2.4791778996586800e-03</internalNodes> + <leafValues> + -2.5868308544158936e-01 2.6286249980330467e-02</leafValues></_> <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 18 1 -1.</_> - <_> - 6 11 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0160746704787016</threshold> - <left_val>0.1052680015563965</left_val> - <right_val>-0.0656733810901642</right_val></_></_> + <internalNodes> + 0 -1 1077 -1.6074670478701591e-02</internalNodes> + <leafValues> + 1.0526800155639648e-01 -6.5673381090164185e-02</leafValues></_> <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 11 6 1 -1.</_> - <_> - 5 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0143102398142219</threshold> - <left_val>-0.4928967952728272</left_val> - <right_val>0.0159731097519398</right_val></_></_> + <internalNodes> + 0 -1 1078 -1.4310239814221859e-02</internalNodes> + <leafValues> + -4.9289679527282715e-01 1.5973109751939774e-02</leafValues></_> <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 9 2 2 -1.</_> - <_> - 10 9 1 1 2.</_> - <_> - 9 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.8974033133126795e-005</threshold> - <left_val>0.0587449483573437</left_val> - <right_val>-0.0453130416572094</right_val></_></_> + <internalNodes> + 0 -1 1079 -8.8974033133126795e-05</internalNodes> + <leafValues> + 5.8744948357343674e-02 -4.5313041657209396e-02</leafValues></_> <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 2 2 -1.</_> - <_> - 7 9 1 1 2.</_> - <_> - 8 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0300390422344208e-003</threshold> - <left_val>-0.0559087209403515</left_val> - <right_val>0.1439431011676788</right_val></_></_> + <internalNodes> + 0 -1 1080 1.0300390422344208e-03</internalNodes> + <leafValues> + -5.5908720940351486e-02 1.4394310116767883e-01</leafValues></_> <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 9 1 3 -1.</_> - <_> - 11 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.9175990968942642e-003</threshold> - <left_val>0.0292700603604317</left_val> - <right_val>-0.1977055966854096</right_val></_></_> + <internalNodes> + 0 -1 1081 3.9175990968942642e-03</internalNodes> + <leafValues> + 2.9270060360431671e-02 -1.9770559668540955e-01</leafValues></_> <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 9 1 3 -1.</_> - <_> - 6 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0633670171955600e-004</threshold> - <left_val>-0.1070486009120941</left_val> - <right_val>0.0962380468845367</right_val></_></_> + <internalNodes> + 0 -1 1082 1.0633670171955600e-04</internalNodes> + <leafValues> + -1.0704860091209412e-01 9.6238046884536743e-02</leafValues></_> <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 7 3 2 -1.</_> - <_> - 13 8 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0421816594898701</threshold> - <left_val>-0.0102994795888662</left_val> - <right_val>0.5146549940109253</right_val></_></_> + <internalNodes> + 0 -1 1083 4.2181659489870071e-02</internalNodes> + <leafValues> + -1.0299479588866234e-02 5.1465499401092529e-01</leafValues></_> <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 7 2 3 -1.</_> - <_> - 5 8 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0129485102370381</threshold> - <left_val>0.1917811036109924</left_val> - <right_val>-0.0390722006559372</right_val></_></_> + <internalNodes> + 0 -1 1084 -1.2948510237038136e-02</internalNodes> + <leafValues> + 1.9178110361099243e-01 -3.9072200655937195e-02</leafValues></_> <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 4 4 6 -1.</_> - <_> - 14 4 2 3 2.</_> - <_> - 12 7 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0116972401738167</threshold> - <left_val>0.0689069926738739</left_val> - <right_val>-0.0201800093054771</right_val></_></_> + <internalNodes> + 0 -1 1085 -1.1697240173816681e-02</internalNodes> + <leafValues> + 6.8906992673873901e-02 -2.0180009305477142e-02</leafValues></_> <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 4 4 6 -1.</_> - <_> - 2 4 2 3 2.</_> - <_> - 4 7 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0148155400529504</threshold> - <left_val>-0.0645370036363602</left_val> - <right_val>0.1153459995985031</right_val></_></_> + <internalNodes> + 0 -1 1086 1.4815540052950382e-02</internalNodes> + <leafValues> + -6.4537003636360168e-02 1.1534599959850311e-01</leafValues></_> <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 10 1 2 -1.</_> - <_> - 11 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2253019667696208e-004</threshold> - <left_val>-0.1350754052400589</left_val> - <right_val>0.0606626793742180</right_val></_></_> + <internalNodes> + 0 -1 1087 1.2253019667696208e-04</internalNodes> + <leafValues> + -1.3507540524005890e-01 6.0662679374217987e-02</leafValues></_> <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 3 2 -1.</_> - <_> - 8 5 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1337419059127569e-003</threshold> - <left_val>0.1123763993382454</left_val> - <right_val>-0.0668947696685791</right_val></_></_> + <internalNodes> + 0 -1 1088 -3.1337419059127569e-03</internalNodes> + <leafValues> + 1.1237639933824539e-01 -6.6894769668579102e-02</leafValues></_> <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 3 4 3 -1.</_> - <_> - 12 4 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0684925168752670</threshold> - <left_val>0.3122834861278534</left_val> - <right_val>-0.0100491000339389</right_val></_></_> + <internalNodes> + 0 -1 1089 -6.8492516875267029e-02</internalNodes> + <leafValues> + 3.1228348612785339e-01 -1.0049100033938885e-02</leafValues></_> <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 3 3 -1.</_> - <_> - 0 1 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0281487796455622</threshold> - <left_val>0.0118344696238637</left_val> - <right_val>-0.5978168845176697</right_val></_></_> + <internalNodes> + 0 -1 1090 2.8148779645562172e-02</internalNodes> + <leafValues> + 1.1834469623863697e-02 -5.9781688451766968e-01</leafValues></_> <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 2 5 3 -1.</_> - <_> - 12 3 5 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0385322310030460</threshold> - <left_val>-0.0222918596118689</left_val> - <right_val>0.1840278059244156</right_val></_></_> + <internalNodes> + 0 -1 1091 3.8532231003046036e-02</internalNodes> + <leafValues> + -2.2291859611868858e-02 1.8402780592441559e-01</leafValues></_> <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 3 4 -1.</_> - <_> - 6 4 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.2883451357483864e-003</threshold> - <left_val>-0.0479324683547020</left_val> - <right_val>0.1401637047529221</right_val></_></_> + <internalNodes> + 0 -1 1092 7.2883451357483864e-03</internalNodes> + <leafValues> + -4.7932468354701996e-02 1.4016370475292206e-01</leafValues></_> <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 10 3 1 -1.</_> - <_> - 11 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.5842391923069954e-003</threshold> - <left_val>-0.4475187957286835</left_val> - <right_val>0.0117678297683597</right_val></_></_> + <internalNodes> + 0 -1 1093 -6.5842391923069954e-03</internalNodes> + <leafValues> + -4.4751879572868347e-01 1.1767829768359661e-02</leafValues></_> <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 3 2 -1.</_> - <_> - 3 5 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1306579835945740e-004</threshold> - <left_val>0.0654381066560745</left_val> - <right_val>-0.1018785014748573</right_val></_></_> + <internalNodes> + 0 -1 1094 -1.1306579835945740e-04</internalNodes> + <leafValues> + 6.5438106656074524e-02 -1.0187850147485733e-01</leafValues></_> <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 9 3 1 -1.</_> - <_> - 11 9 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1586891748011112e-003</threshold> - <left_val>-0.2577165067195892</left_val> - <right_val>0.0203211903572083</right_val></_></_> + <internalNodes> + 0 -1 1095 -4.1586891748011112e-03</internalNodes> + <leafValues> + -2.5771650671958923e-01 2.0321190357208252e-02</leafValues></_> <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 3 2 -1.</_> - <_> - 5 2 3 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0305234193801880</threshold> - <left_val>0.0173887908458710</left_val> - <right_val>-0.3731609880924225</right_val></_></_> + <internalNodes> + 0 -1 1096 3.0523419380187988e-02</internalNodes> + <leafValues> + 1.7388790845870972e-02 -3.7316098809242249e-01</leafValues></_> <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 2 2 -1.</_> - <_> - 17 9 1 1 2.</_> - <_> - 16 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.5078412666916847e-004</threshold> - <left_val>-0.3903968036174774</left_val> - <right_val>0.0801882669329643</right_val></_></_> + <internalNodes> + 0 -1 1097 -8.5078412666916847e-04</internalNodes> + <leafValues> + -3.9039680361747742e-01 8.0188266932964325e-02</leafValues></_> <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 10 3 1 -1.</_> - <_> - 6 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0892679711105302e-004</threshold> - <left_val>0.0835343077778816</left_val> - <right_val>-0.0813964307308197</right_val></_></_> + <internalNodes> + 0 -1 1098 -1.0892679711105302e-04</internalNodes> + <leafValues> + 8.3534307777881622e-02 -8.1396430730819702e-02</leafValues></_> <_> - <!-- tree 169 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 8 4 -1.</_> - <_> - 9 0 8 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1989130973815918</threshold> - <left_val>-0.4618039131164551</left_val> - <right_val>5.7829180732369423e-003</right_val></_></_> + <internalNodes> + 0 -1 1099 -1.9891309738159180e-01</internalNodes> + <leafValues> + -4.6180391311645508e-01 5.7829180732369423e-03</leafValues></_> <_> - <!-- tree 170 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 4 2 -1.</_> - <_> - 9 3 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0312434807419777</threshold> - <left_val>0.2502228915691376</left_val> - <right_val>-0.0300326701253653</right_val></_></_> + <internalNodes> + 0 -1 1100 -3.1243480741977692e-02</internalNodes> + <leafValues> + 2.5022289156913757e-01 -3.0032670125365257e-02</leafValues></_> <_> - <!-- tree 171 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 2 3 3 -1.</_> - <_> - 8 3 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0234472099691629</threshold> - <left_val>-0.0250616297125816</left_val> - <right_val>0.1967055052518845</right_val></_></_> + <internalNodes> + 0 -1 1101 2.3447209969162941e-02</internalNodes> + <leafValues> + -2.5061629712581635e-02 1.9670550525188446e-01</leafValues></_> <_> - <!-- tree 172 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 4 2 -1.</_> - <_> - 8 2 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0115783698856831</threshold> - <left_val>0.0172653794288635</left_val> - <right_val>-0.3891330957412720</right_val></_></_> + <internalNodes> + 0 -1 1102 1.1578369885683060e-02</internalNodes> + <leafValues> + 1.7265379428863525e-02 -3.8913309574127197e-01</leafValues></_> <_> - <!-- tree 173 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 1 3 -1.</_> - <_> - 9 7 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6445279363542795e-003</threshold> - <left_val>0.0693675428628922</left_val> - <right_val>-0.0406082198023796</right_val></_></_> + <internalNodes> + 0 -1 1103 -2.6445279363542795e-03</internalNodes> + <leafValues> + 6.9367542862892151e-02 -4.0608219802379608e-02</leafValues></_> <_> - <!-- tree 174 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 8 1 -1.</_> - <_> - 11 5 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0357187986373901</threshold> - <left_val>-0.0308767706155777</left_val> - <right_val>0.2257014065980911</right_val></_></_> + <internalNodes> + 0 -1 1104 3.5718798637390137e-02</internalNodes> + <leafValues> + -3.0876770615577698e-02 2.2570140659809113e-01</leafValues></_> <_> - <!-- tree 175 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 2 6 2 -1.</_> - <_> - 8 2 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0328630693256855</threshold> - <left_val>-0.5208488106727600</left_val> - <right_val>0.0153109896928072</right_val></_></_> + <internalNodes> + 0 -1 1105 -3.2863069325685501e-02</internalNodes> + <leafValues> + -5.2084881067276001e-01 1.5310989692807198e-02</leafValues></_> <_> - <!-- tree 176 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 10 4 -1.</_> - <_> - 3 4 5 2 2.</_> - <_> - 8 6 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1200772970914841</threshold> - <left_val>9.3891620635986328e-003</left_val> - <right_val>-0.5965710282325745</right_val></_></_> + <internalNodes> + 0 -1 1106 1.2007729709148407e-01</internalNodes> + <leafValues> + 9.3891620635986328e-03 -5.9657102823257446e-01</leafValues></_> <_> - <!-- tree 177 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 3 -1.</_> - <_> - 15 1 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-6.8977959454059601e-003</threshold> - <left_val>0.0718266069889069</left_val> - <right_val>-0.0386913307011127</right_val></_></_> + <internalNodes> + 0 -1 1107 -6.8977959454059601e-03</internalNodes> + <leafValues> + 7.1826606988906860e-02 -3.8691330701112747e-02</leafValues></_> <_> - <!-- tree 178 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 3 1 -1.</_> - <_> - 5 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1164099851157516e-004</threshold> - <left_val>0.0905596464872360</left_val> - <right_val>-0.0741757526993752</right_val></_></_> + <internalNodes> + 0 -1 1108 -1.1164099851157516e-04</internalNodes> + <leafValues> + 9.0559646487236023e-02 -7.4175752699375153e-02</leafValues></_> <_> - <!-- tree 179 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 0 3 1 -1.</_> - <_> - 12 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.6451061069965363e-003</threshold> - <left_val>-0.4649192988872528</left_val> - <right_val>0.0115801496431232</right_val></_></_> + <internalNodes> + 0 -1 1109 -8.6451061069965363e-03</internalNodes> + <leafValues> + -4.6491929888725281e-01 1.1580149643123150e-02</leafValues></_> <_> - <!-- tree 180 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 3 1 -1.</_> - <_> - 5 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1185959738213569e-004</threshold> - <left_val>-0.0782822594046593</left_val> - <right_val>0.0875569581985474</right_val></_></_> + <internalNodes> + 0 -1 1110 1.1185959738213569e-04</internalNodes> + <leafValues> + -7.8282259404659271e-02 8.7556958198547363e-02</leafValues></_> <_> - <!-- tree 181 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 4 2 6 -1.</_> - <_> - 16 4 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.3530138898640871e-003</threshold> - <left_val>0.0635970830917358</left_val> - <right_val>-0.0837680101394653</right_val></_></_> + <internalNodes> + 0 -1 1111 -3.3530138898640871e-03</internalNodes> + <leafValues> + 6.3597083091735840e-02 -8.3768010139465332e-02</leafValues></_> <_> - <!-- tree 182 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 10 8 2 -1.</_> - <_> - 7 10 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0439138188958168</threshold> - <left_val>-0.7485607862472534</left_val> - <right_val>8.7825870141386986e-003</right_val></_></_> + <internalNodes> + 0 -1 1112 -4.3913818895816803e-02</internalNodes> + <leafValues> + -7.4856078624725342e-01 8.7825870141386986e-03</leafValues></_> <_> - <!-- tree 183 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 6 2 2 -1.</_> - <_> - 9 6 1 1 2.</_> - <_> - 8 7 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.0952990055084229e-003</threshold> - <left_val>0.1695501953363419</left_val> - <right_val>-0.0391984507441521</right_val></_></_> + <internalNodes> + 0 -1 1113 -3.0952990055084229e-03</internalNodes> + <leafValues> + 1.6955019533634186e-01 -3.9198450744152069e-02</leafValues></_> <_> - <!-- tree 184 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 4 2 -1.</_> - <_> - 5 7 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.2301219180226326e-003</threshold> - <left_val>-0.1223801970481873</left_val> - <right_val>0.0610579289495945</right_val></_></_> + <internalNodes> + 0 -1 1114 3.2301219180226326e-03</internalNodes> + <leafValues> + -1.2238019704818726e-01 6.1057928949594498e-02</leafValues></_> <_> - <!-- tree 185 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 6 7 3 -1.</_> - <_> - 11 7 7 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0459457710385323</threshold> - <left_val>-0.3018592894077301</left_val> - <right_val>8.8831810280680656e-003</right_val></_></_> + <internalNodes> + 0 -1 1115 -4.5945771038532257e-02</internalNodes> + <leafValues> + -3.0185928940773010e-01 8.8831810280680656e-03</leafValues></_> <_> - <!-- tree 186 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 7 3 -1.</_> - <_> - 0 7 7 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0374681018292904</threshold> - <left_val>0.0152335502207279</left_val> - <right_val>-0.4443348050117493</right_val></_></_> + <internalNodes> + 0 -1 1116 3.7468101829290390e-02</internalNodes> + <leafValues> + 1.5233550220727921e-02 -4.4433480501174927e-01</leafValues></_> <_> - <!-- tree 187 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 9 2 2 -1.</_> - <_> - 16 9 1 1 2.</_> - <_> - 15 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.6279982244595885e-004</threshold> - <left_val>0.1455013006925583</left_val> - <right_val>-0.0553468391299248</right_val></_></_> + <internalNodes> + 0 -1 1117 -9.6279982244595885e-04</internalNodes> + <leafValues> + 1.4550130069255829e-01 -5.5346839129924774e-02</leafValues></_> <_> - <!-- tree 188 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 10 2 2 -1.</_> - <_> - 2 10 1 1 2.</_> - <_> - 3 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5942807092797011e-005</threshold> - <left_val>-0.0801405012607574</left_val> - <right_val>0.0842006430029869</right_val></_></_> + <internalNodes> + 0 -1 1118 9.5942807092797011e-05</internalNodes> + <leafValues> + -8.0140501260757446e-02 8.4200643002986908e-02</leafValues></_> <_> - <!-- tree 189 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 11 3 1 -1.</_> - <_> - 15 11 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2208779808133841e-003</threshold> - <left_val>-0.0608549490571022</left_val> - <right_val>0.1399298012256622</right_val></_></_> + <internalNodes> + 0 -1 1119 1.2208779808133841e-03</internalNodes> + <leafValues> + -6.0854949057102203e-02 1.3992980122566223e-01</leafValues></_> <_> - <!-- tree 190 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 11 3 1 -1.</_> - <_> - 2 11 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0304830357199535e-004</threshold> - <left_val>-0.0913908109068871</left_val> - <right_val>0.0906987562775612</right_val></_></_> + <internalNodes> + 0 -1 1120 1.0304830357199535e-04</internalNodes> + <leafValues> + -9.1390810906887054e-02 9.0698756277561188e-02</leafValues></_> <_> - <!-- tree 191 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 10 1 2 -1.</_> - <_> - 16 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.7147910594940186e-003</threshold> - <left_val>0.0170614607632160</left_val> - <right_val>-0.4784564971923828</right_val></_></_> + <internalNodes> + 0 -1 1121 6.7147910594940186e-03</internalNodes> + <leafValues> + 1.7061460763216019e-02 -4.7845649719238281e-01</leafValues></_> <_> - <!-- tree 192 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 1 2 -1.</_> - <_> - 1 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1389680003048852e-004</threshold> - <left_val>-0.1205118000507355</left_val> - <right_val>0.0615237914025784</right_val></_></_></trees> - <stage_threshold>-1.4360860586166382</stage_threshold> - <parent>10</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 1122 1.1389680003048852e-04</internalNodes> + <leafValues> + -1.2051180005073547e-01 6.1523791402578354e-02</leafValues></_></weakClassifiers></_> <_> - <!-- stage 12 --> - <trees> + <maxWeakCount>246</maxWeakCount> + <stageThreshold>-1.5257749557495117e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 3 3 -1.</_> - <_> - 6 4 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0248592402786016</threshold> - <left_val>0.3221296072006226</left_val> - <right_val>-0.1763000041246414</right_val></_></_> + <internalNodes> + 0 -1 1123 -2.4859240278601646e-02</internalNodes> + <leafValues> + 3.2212960720062256e-01 -1.7630000412464142e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 6 4 -1.</_> - <_> - 8 4 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0257150903344154</threshold> - <left_val>0.2164403051137924</left_val> - <right_val>-0.2033023983240128</right_val></_></_> + <internalNodes> + 0 -1 1124 -2.5715090334415436e-02</internalNodes> + <leafValues> + 2.1644030511379242e-01 -2.0330239832401276e-01</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 3 4 4 -1.</_> - <_> - 2 3 2 2 2.</_> - <_> - 4 5 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1058494970202446</threshold> - <left_val>1.0783869947772473e-004</left_val> - <right_val>552.5595092773437500</right_val></_></_> + <internalNodes> + 0 -1 1125 1.0584949702024460e-01</internalNodes> + <leafValues> + 1.0783869947772473e-04 5.5255950927734375e+02</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 6 2 2 -1.</_> - <_> - 15 6 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-8.6654294282197952e-003</threshold> - <left_val>0.0894027128815651</left_val> - <right_val>-0.0852057263255119</right_val></_></_> + <internalNodes> + 0 -1 1126 -8.6654294282197952e-03</internalNodes> + <leafValues> + 8.9402712881565094e-02 -8.5205726325511932e-02</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 6 2 2 -1.</_> - <_> - 3 6 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0113147599622607</threshold> - <left_val>0.1730434000492096</left_val> - <right_val>-0.1812659949064255</right_val></_></_> + <internalNodes> + 0 -1 1127 -1.1314759962260723e-02</internalNodes> + <leafValues> + 1.7304340004920959e-01 -1.8126599490642548e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 12 4 -1.</_> - <_> - 4 4 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0518665499985218</threshold> - <left_val>0.2489081025123596</left_val> - <right_val>-0.0862086564302444</right_val></_></_> + <internalNodes> + 0 -1 1128 -5.1866549998521805e-02</internalNodes> + <leafValues> + 2.4890810251235962e-01 -8.6208656430244446e-02</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 5 4 2 -1.</_> - <_> - 2 5 2 1 2.</_> - <_> - 4 6 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.5156660489737988e-003</threshold> - <left_val>0.2840644121170044</left_val> - <right_val>-0.1190735995769501</right_val></_></_> + <internalNodes> + 0 -1 1129 -4.5156660489737988e-03</internalNodes> + <leafValues> + 2.8406441211700439e-01 -1.1907359957695007e-01</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 4 3 2 -1.</_> - <_> - 11 5 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0150034101679921</threshold> - <left_val>0.1888998001813889</left_val> - <right_val>-0.0870354995131493</right_val></_></_> + <internalNodes> + 0 -1 1130 -1.5003410167992115e-02</internalNodes> + <leafValues> + 1.8889980018138885e-01 -8.7035499513149261e-02</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 5 4 3 -1.</_> - <_> - 6 5 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0101075097918510</threshold> - <left_val>0.2610797882080078</left_val> - <right_val>-0.0966798812150955</right_val></_></_> + <internalNodes> + 0 -1 1131 -1.0107509791851044e-02</internalNodes> + <leafValues> + 2.6107978820800781e-01 -9.6679881215095520e-02</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 6 0 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0345476903021336</threshold> - <left_val>0.1901452988386154</left_val> - <right_val>-0.0962559729814529</right_val></_></_> + <internalNodes> + 0 -1 1132 -3.4547690302133560e-02</internalNodes> + <leafValues> + 1.9014529883861542e-01 -9.6255972981452942e-02</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 10 4 -1.</_> - <_> - 3 3 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0448755994439125</threshold> - <left_val>0.2490932047367096</left_val> - <right_val>-0.0896699726581573</right_val></_></_> + <internalNodes> + 0 -1 1133 -4.4875599443912506e-02</internalNodes> + <leafValues> + 2.4909320473670959e-01 -8.9669972658157349e-02</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 6 6 6 -1.</_> - <_> - 12 9 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0210816301405430</threshold> - <left_val>-0.2106571048498154</left_val> - <right_val>0.0566333793103695</right_val></_></_> + <internalNodes> + 0 -1 1134 2.1081630140542984e-02</internalNodes> + <leafValues> + -2.1065710484981537e-01 5.6633379310369492e-02</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 6 3 2 -1.</_> - <_> - 5 6 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.0543689392507076e-003</threshold> - <left_val>0.2017161995172501</left_val> - <right_val>-0.0784827619791031</right_val></_></_> + <internalNodes> + 0 -1 1135 -4.0543689392507076e-03</internalNodes> + <leafValues> + 2.0171619951725006e-01 -7.8482761979103088e-02</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 8 1 2 -1.</_> - <_> - 16 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.4460731074213982e-003</threshold> - <left_val>-0.2765552103519440</left_val> - <right_val>0.0278910603374243</right_val></_></_> + <internalNodes> + 0 -1 1136 -2.4460731074213982e-03</internalNodes> + <leafValues> + -2.7655521035194397e-01 2.7891060337424278e-02</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 8 1 2 -1.</_> - <_> - 1 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0416610166430473e-004</threshold> - <left_val>-0.2172649055719376</left_val> - <right_val>0.0687249973416328</right_val></_></_> + <internalNodes> + 0 -1 1137 1.0416610166430473e-04</internalNodes> + <leafValues> + -2.1726490557193756e-01 6.8724997341632843e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 3 2 -1.</_> - <_> - 10 5 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-7.0905950851738453e-003</threshold> - <left_val>0.0391716100275517</left_val> - <right_val>-0.0722375586628914</right_val></_></_> + <internalNodes> + 0 -1 1138 -7.0905950851738453e-03</internalNodes> + <leafValues> + 3.9171610027551651e-02 -7.2237558662891388e-02</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 9 2 1 -1.</_> - <_> - 3 9 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.2705261148512363e-003</threshold> - <left_val>0.0344300605356693</left_val> - <right_val>-0.4514735043048859</right_val></_></_> + <internalNodes> + 0 -1 1139 4.2705261148512363e-03</internalNodes> + <leafValues> + 3.4430060535669327e-02 -4.5147350430488586e-01</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 6 4 -1.</_> - <_> - 11 0 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0212590694427490</threshold> - <left_val>0.0431625694036484</left_val> - <right_val>-0.4945267140865326</right_val></_></_> + <internalNodes> + 0 -1 1140 2.1259069442749023e-02</internalNodes> + <leafValues> + 4.3162569403648376e-02 -4.9452671408653259e-01</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 6 3 -1.</_> - <_> - 8 4 6 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0299579892307520</threshold> - <left_val>0.1630406975746155</left_val> - <right_val>-0.0900246426463127</right_val></_></_> + <internalNodes> + 0 -1 1141 -2.9957989230751991e-02</internalNodes> + <leafValues> + 1.6304069757461548e-01 -9.0024642646312714e-02</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 6 4 -1.</_> - <_> - 11 0 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0476755499839783</threshold> - <left_val>-0.5690860152244568</left_val> - <right_val>0.0310404300689697</right_val></_></_> + <internalNodes> + 0 -1 1142 -4.7675549983978271e-02</internalNodes> + <leafValues> + -5.6908601522445679e-01 3.1040430068969727e-02</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 12 -1.</_> - <_> - 0 6 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0213589593768120</threshold> - <left_val>-0.3672943115234375</left_val> - <right_val>0.0297099091112614</right_val></_></_> + <internalNodes> + 0 -1 1143 -2.1358959376811981e-02</internalNodes> + <leafValues> + -3.6729431152343750e-01 2.9709909111261368e-02</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 6 4 -1.</_> - <_> - 6 1 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0171300806105137</threshold> - <left_val>0.1996425986289978</left_val> - <right_val>-0.0617015808820724</right_val></_></_> + <internalNodes> + 0 -1 1144 -1.7130080610513687e-02</internalNodes> + <leafValues> + 1.9964259862899780e-01 -6.1701580882072449e-02</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 10 4 -1.</_> - <_> - 1 1 10 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0269737001508474</threshold> - <left_val>-0.0919989123940468</left_val> - <right_val>0.1496866047382355</right_val></_></_> + <internalNodes> + 0 -1 1145 2.6973700150847435e-02</internalNodes> + <leafValues> + -9.1998912394046783e-02 1.4968660473823547e-01</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 3 -1.</_> - <_> - 16 0 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0153952101245523</threshold> - <left_val>0.0589980594813824</left_val> - <right_val>-0.4031142890453339</right_val></_></_> + <internalNodes> + 0 -1 1146 1.5395210124552250e-02</internalNodes> + <leafValues> + 5.8998059481382370e-02 -4.0311428904533386e-01</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 2 4 -1.</_> - <_> - 0 4 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0136130396276712</threshold> - <left_val>-0.3953252136707306</left_val> - <right_val>0.0261617600917816</right_val></_></_> + <internalNodes> + 0 -1 1147 -1.3613039627671242e-02</internalNodes> + <leafValues> + -3.9532521367073059e-01 2.6161760091781616e-02</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 4 2 6 -1.</_> - <_> - 14 4 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1020691022276878</threshold> - <left_val>-0.1673035025596619</left_val> - <right_val>0.0269232895225286</right_val></_></_> + <internalNodes> + 0 -1 1148 -1.0206910222768784e-01</internalNodes> + <leafValues> + -1.6730350255966187e-01 2.6923289522528648e-02</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 3 6 -1.</_> - <_> - 6 5 1 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0458029210567474</threshold> - <left_val>0.1123092994093895</left_val> - <right_val>-0.0992796570062637</right_val></_></_> + <internalNodes> + 0 -1 1149 -4.5802921056747437e-02</internalNodes> + <leafValues> + 1.1230929940938950e-01 -9.9279657006263733e-02</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 6 6 -1.</_> - <_> - 7 2 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0519687794148922</threshold> - <left_val>0.1943228989839554</left_val> - <right_val>-0.0509295314550400</right_val></_></_> + <internalNodes> + 0 -1 1150 -5.1968779414892197e-02</internalNodes> + <leafValues> + 1.9432289898395538e-01 -5.0929531455039978e-02</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 16 7 -1.</_> - <_> - 8 4 8 7 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.4248760938644409</threshold> - <left_val>0.3588601052761078</left_val> - <right_val>-0.0349765606224537</right_val></_></_> + <internalNodes> + 0 -1 1151 -4.2487609386444092e-01</internalNodes> + <leafValues> + 3.5886010527610779e-01 -3.4976560622453690e-02</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 8 6 -1.</_> - <_> - 10 4 4 3 2.</_> - <_> - 6 7 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0795173794031143</threshold> - <left_val>0.0209766197949648</left_val> - <right_val>-0.1981060057878494</right_val></_></_> + <internalNodes> + 0 -1 1152 7.9517379403114319e-02</internalNodes> + <leafValues> + 2.0976619794964790e-02 -1.9810600578784943e-01</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 4 3 -1.</_> - <_> - 4 3 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0453098304569721</threshold> - <left_val>0.2517420947551727</left_val> - <right_val>-0.0471646413207054</right_val></_></_> + <internalNodes> + 0 -1 1153 -4.5309830456972122e-02</internalNodes> + <leafValues> + 2.5174209475517273e-01 -4.7164641320705414e-02</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 0 4 3 -1.</_> - <_> - 10 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0406000018119812</threshold> - <left_val>5.9903971850872040e-003</left_val> - <right_val>-0.5052418708801270</right_val></_></_> + <internalNodes> + 0 -1 1154 4.0600001811981201e-02</internalNodes> + <leafValues> + 5.9903971850872040e-03 -5.0524187088012695e-01</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 4 3 -1.</_> - <_> - 6 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0282763000577688</threshold> - <left_val>-0.4425860941410065</left_val> - <right_val>0.0249368306249380</right_val></_></_> + <internalNodes> + 0 -1 1155 -2.8276300057768822e-02</internalNodes> + <leafValues> + -4.4258609414100647e-01 2.4936830624938011e-02</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 4 2 6 -1.</_> - <_> - 15 4 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0938419625163078</threshold> - <left_val>1.7748980317264795e-003</left_val> - <right_val>-0.4398832023143768</right_val></_></_> + <internalNodes> + 0 -1 1156 9.3841962516307831e-02</internalNodes> + <leafValues> + 1.7748980317264795e-03 -4.3988320231437683e-01</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 6 2 -1.</_> - <_> - 3 4 3 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1179158985614777</threshold> - <left_val>-0.3441756069660187</left_val> - <right_val>0.0337243601679802</right_val></_></_> + <internalNodes> + 0 -1 1157 -1.1791589856147766e-01</internalNodes> + <leafValues> + -3.4417560696601868e-01 3.3724360167980194e-02</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 14 12 -1.</_> - <_> - 4 0 7 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1513931006193161</threshold> - <left_val>0.0604117698967457</left_val> - <right_val>-0.0532012209296227</right_val></_></_> + <internalNodes> + 0 -1 1158 -1.5139310061931610e-01</internalNodes> + <leafValues> + 6.0411769896745682e-02 -5.3201220929622650e-02</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 12 12 -1.</_> - <_> - 4 0 4 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2256264984607697</threshold> - <left_val>-0.3211907148361206</left_val> - <right_val>0.0354291014373302</right_val></_></_> + <internalNodes> + 0 -1 1159 -2.2562649846076965e-01</internalNodes> + <leafValues> + -3.2119071483612061e-01 3.5429101437330246e-02</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 2 3 3 -1.</_> - <_> - 15 3 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0129303503781557</threshold> - <left_val>0.0336119495332241</left_val> - <right_val>-0.3941226899623871</right_val></_></_> + <internalNodes> + 0 -1 1160 1.2930350378155708e-02</internalNodes> + <leafValues> + 3.3611949533224106e-02 -3.9412268996238708e-01</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 7 3 1 -1.</_> - <_> - 4 7 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.4919810239225626e-003</threshold> - <left_val>0.1706133037805557</left_val> - <right_val>-0.0628986880183220</right_val></_></_> + <internalNodes> + 0 -1 1161 -2.4919810239225626e-03</internalNodes> + <leafValues> + 1.7061330378055573e-01 -6.2898688018321991e-02</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 2 4 3 -1.</_> - <_> - 14 3 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0245599597692490</threshold> - <left_val>-0.4133710861206055</left_val> - <right_val>0.0176101606339216</right_val></_></_> + <internalNodes> + 0 -1 1162 -2.4559959769248962e-02</internalNodes> + <leafValues> + -4.1337108612060547e-01 1.7610160633921623e-02</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 15 6 -1.</_> - <_> - 5 2 5 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.4132049977779388</threshold> - <left_val>-0.0391267985105515</left_val> - <right_val>0.2658706009387970</right_val></_></_> + <internalNodes> + 0 -1 1163 4.1320499777793884e-01</internalNodes> + <leafValues> + -3.9126798510551453e-02 2.6587060093879700e-01</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 1 6 3 -1.</_> - <_> - 10 1 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0305228494107723</threshold> - <left_val>-0.3815810084342957</left_val> - <right_val>0.0362733714282513</right_val></_></_> + <internalNodes> + 0 -1 1164 -3.0522849410772324e-02</internalNodes> + <leafValues> + -3.8158100843429565e-01 3.6273371428251266e-02</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 14 8 -1.</_> - <_> - 0 2 7 4 2.</_> - <_> - 7 6 7 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0988608896732330</threshold> - <left_val>-0.2691383063793182</left_val> - <right_val>0.0392703898251057</right_val></_></_> + <internalNodes> + 0 -1 1165 -9.8860889673233032e-02</internalNodes> + <leafValues> + -2.6913830637931824e-01 3.9270389825105667e-02</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 10 1 2 -1.</_> - <_> - 11 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1311320122331381e-004</threshold> - <left_val>-0.1455477029085159</left_val> - <right_val>0.0564275011420250</right_val></_></_> + <internalNodes> + 0 -1 1166 1.1311320122331381e-04</internalNodes> + <leafValues> + -1.4554770290851593e-01 5.6427501142024994e-02</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 2 2 -1.</_> - <_> - 0 9 1 1 2.</_> - <_> - 1 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.7236247307155281e-005</threshold> - <left_val>-0.1034035980701447</left_val> - <right_val>0.0881672427058220</right_val></_></_> + <internalNodes> + 0 -1 1167 7.7236247307155281e-05</internalNodes> + <leafValues> + -1.0340359807014465e-01 8.8167242705821991e-02</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 9 3 3 -1.</_> - <_> - 13 10 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0199304390698671</threshold> - <left_val>8.3390101790428162e-003</left_val> - <right_val>-0.4172666966915131</right_val></_></_> + <internalNodes> + 0 -1 1168 1.9930439069867134e-02</internalNodes> + <leafValues> + 8.3390101790428162e-03 -4.1726669669151306e-01</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 3 3 -1.</_> - <_> - 7 5 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0339709594845772</threshold> - <left_val>0.2317533940076828</left_val> - <right_val>-0.0406417287886143</right_val></_></_> + <internalNodes> + 0 -1 1169 -3.3970959484577179e-02</internalNodes> + <leafValues> + 2.3175339400768280e-01 -4.0641728788614273e-02</leafValues></_> <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 9 6 2 -1.</_> - <_> - 10 9 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0286305397748947</threshold> - <left_val>-0.5550916790962219</left_val> - <right_val>0.0162575300782919</right_val></_></_> + <internalNodes> + 0 -1 1170 -2.8630539774894714e-02</internalNodes> + <leafValues> + -5.5509167909622192e-01 1.6257530078291893e-02</leafValues></_> <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 1 4 -1.</_> - <_> - 0 4 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.9788239412009716e-003</threshold> - <left_val>0.0314742811024189</left_val> - <right_val>-0.2887747883796692</right_val></_></_> + <internalNodes> + 0 -1 1171 4.9788239412009716e-03</internalNodes> + <leafValues> + 3.1474281102418900e-02 -2.8877478837966919e-01</leafValues></_> <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 2 2 -1.</_> - <_> - 10 6 1 1 2.</_> - <_> - 9 7 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.6940698996186256e-003</threshold> - <left_val>0.2303262054920197</left_val> - <right_val>-0.0201713293790817</right_val></_></_> + <internalNodes> + 0 -1 1172 -5.6940698996186256e-03</internalNodes> + <leafValues> + 2.3032620549201965e-01 -2.0171329379081726e-02</leafValues></_> <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 6 2 2 -1.</_> - <_> - 7 6 1 1 2.</_> - <_> - 8 7 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.9577480852603912e-003</threshold> - <left_val>-0.0561040714383125</left_val> - <right_val>0.1639074981212616</right_val></_></_> + <internalNodes> + 0 -1 1173 1.9577480852603912e-03</internalNodes> + <leafValues> + -5.6104071438312531e-02 1.6390749812126160e-01</leafValues></_> <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 5 2 -1.</_> - <_> - 7 1 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0107364300638437</threshold> - <left_val>0.1388199031352997</left_val> - <right_val>-0.0595018118619919</right_val></_></_> + <internalNodes> + 0 -1 1174 -1.0736430063843727e-02</internalNodes> + <leafValues> + 1.3881990313529968e-01 -5.9501811861991882e-02</leafValues></_> <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 3 12 -1.</_> - <_> - 4 0 1 12 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0394460782408714</threshold> - <left_val>-0.5339589118957520</left_val> - <right_val>0.0185448899865150</right_val></_></_> + <internalNodes> + 0 -1 1175 -3.9446078240871429e-02</internalNodes> + <leafValues> + -5.3395891189575195e-01 1.8544889986515045e-02</leafValues></_> <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 6 3 -1.</_> - <_> - 9 9 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0255900900810957</threshold> - <left_val>-0.3047420978546143</left_val> - <right_val>0.0205566901713610</right_val></_></_> + <internalNodes> + 0 -1 1176 -2.5590090081095695e-02</internalNodes> + <leafValues> + -3.0474209785461426e-01 2.0556690171360970e-02</leafValues></_> <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 9 6 3 -1.</_> - <_> - 7 9 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0297076292335987</threshold> - <left_val>-0.4385631978511810</left_val> - <right_val>0.0202575102448463</right_val></_></_> + <internalNodes> + 0 -1 1177 -2.9707629233598709e-02</internalNodes> + <leafValues> + -4.3856319785118103e-01 2.0257510244846344e-02</leafValues></_> <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 2 2 -1.</_> - <_> - 10 0 1 1 2.</_> - <_> - 9 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1870719754369929e-004</threshold> - <left_val>-0.0556060783565044</left_val> - <right_val>0.0558185391128063</right_val></_></_> + <internalNodes> + 0 -1 1178 1.1870719754369929e-04</internalNodes> + <leafValues> + -5.5606078356504440e-02 5.5818539112806320e-02</leafValues></_> <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 10 2 -1.</_> - <_> - 3 0 5 1 2.</_> - <_> - 8 1 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.0403849929571152e-003</threshold> - <left_val>-0.0625619515776634</left_val> - <right_val>0.1403312981128693</right_val></_></_> + <internalNodes> + 0 -1 1179 6.0403849929571152e-03</internalNodes> + <leafValues> + -6.2561951577663422e-02 1.4033129811286926e-01</leafValues></_> <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 3 1 -1.</_> - <_> - 10 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.3701060563325882e-003</threshold> - <left_val>0.1041181012988091</left_val> - <right_val>-0.0466375797986984</right_val></_></_> + <internalNodes> + 0 -1 1180 -2.3701060563325882e-03</internalNodes> + <leafValues> + 1.0411810129880905e-01 -4.6637579798698425e-02</leafValues></_> <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 18 2 -1.</_> - <_> - 6 10 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0568027310073376</threshold> - <left_val>0.1427363008260727</left_val> - <right_val>-0.0641383230686188</right_val></_></_> + <internalNodes> + 0 -1 1181 -5.6802731007337570e-02</internalNodes> + <leafValues> + 1.4273630082607269e-01 -6.4138323068618774e-02</leafValues></_> <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 11 16 1 -1.</_> - <_> - 6 11 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0121782803907990</threshold> - <left_val>-0.0576202385127544</left_val> - <right_val>0.1578823029994965</right_val></_></_> + <internalNodes> + 0 -1 1182 1.2178280390799046e-02</internalNodes> + <leafValues> + -5.7620238512754440e-02 1.5788230299949646e-01</leafValues></_> <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 10 4 1 -1.</_> - <_> - 5 10 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.0311398915946484e-003</threshold> - <left_val>-0.3279178142547607</left_val> - <right_val>0.0291632302105427</right_val></_></_> + <internalNodes> + 0 -1 1183 -4.0311398915946484e-03</internalNodes> + <leafValues> + -3.2791781425476074e-01 2.9163230210542679e-02</leafValues></_> <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 3 1 -1.</_> - <_> - 10 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.4544620215892792e-003</threshold> - <left_val>-0.0347655601799488</left_val> - <right_val>0.2265056073665619</right_val></_></_> + <internalNodes> + 0 -1 1184 5.4544620215892792e-03</internalNodes> + <leafValues> + -3.4765560179948807e-02 2.2650560736656189e-01</leafValues></_> <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 2 10 10 -1.</_> - <_> - 7 2 5 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1250523030757904</threshold> - <left_val>0.1168323010206223</left_val> - <right_val>-0.0734387263655663</right_val></_></_> + <internalNodes> + 0 -1 1185 -1.2505230307579041e-01</internalNodes> + <leafValues> + 1.1683230102062225e-01 -7.3438726365566254e-02</leafValues></_> <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 8 5 -1.</_> - <_> - 7 2 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1615020036697388</threshold> - <left_val>0.1432867050170898</left_val> - <right_val>-7.7370628714561462e-003</right_val></_></_> + <internalNodes> + 0 -1 1186 -1.6150200366973877e-01</internalNodes> + <leafValues> + 1.4328670501708984e-01 -7.7370628714561462e-03</leafValues></_> <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 8 5 -1.</_> - <_> - 7 2 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1536951065063477</threshold> - <left_val>-0.4040772914886475</left_val> - <right_val>0.0252533908933401</right_val></_></_> + <internalNodes> + 0 -1 1187 -1.5369510650634766e-01</internalNodes> + <leafValues> + -4.0407729148864746e-01 2.5253390893340111e-02</leafValues></_> <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 3 1 -1.</_> - <_> - 10 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0138324601575732</threshold> - <left_val>-9.6680596470832825e-003</left_val> - <right_val>0.2244905978441238</right_val></_></_> + <internalNodes> + 0 -1 1188 1.3832460157573223e-02</internalNodes> + <leafValues> + -9.6680596470832825e-03 2.2449059784412384e-01</leafValues></_> <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 4 2 -1.</_> - <_> - 2 0 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0197528004646301</threshold> - <left_val>-0.2725034952163696</left_val> - <right_val>0.0313505791127682</right_val></_></_> + <internalNodes> + 0 -1 1189 -1.9752800464630127e-02</internalNodes> + <leafValues> + -2.7250349521636963e-01 3.1350579112768173e-02</leafValues></_> <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 10 6 2 -1.</_> - <_> - 12 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0107629904523492</threshold> - <left_val>-0.3841069042682648</left_val> - <right_val>0.0130315795540810</right_val></_></_> + <internalNodes> + 0 -1 1190 -1.0762990452349186e-02</internalNodes> + <leafValues> + -3.8410690426826477e-01 1.3031579554080963e-02</leafValues></_> <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 3 2 -1.</_> - <_> - 2 0 3 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0212287604808807</threshold> - <left_val>0.0260584298521280</left_val> - <right_val>-0.3080273866653442</right_val></_></_> + <internalNodes> + 0 -1 1191 2.1228760480880737e-02</internalNodes> + <leafValues> + 2.6058429852128029e-02 -3.0802738666534424e-01</leafValues></_> <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 6 3 1 -1.</_> - <_> - 10 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.2247471911832690e-005</threshold> - <left_val>0.0456283912062645</left_val> - <right_val>-0.0560008101165295</right_val></_></_> + <internalNodes> + 0 -1 1192 -9.2247471911832690e-05</internalNodes> + <leafValues> + 4.5628391206264496e-02 -5.6000810116529465e-02</leafValues></_> <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 3 1 -1.</_> - <_> - 7 6 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.9652589689940214e-003</threshold> - <left_val>0.1338568031787872</left_val> - <right_val>-0.0641321912407875</right_val></_></_> + <internalNodes> + 0 -1 1193 -1.9652589689940214e-03</internalNodes> + <leafValues> + 1.3385680317878723e-01 -6.4132191240787506e-02</leafValues></_> <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 10 6 2 -1.</_> - <_> - 12 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0282155107706785</threshold> - <left_val>0.0153889097273350</left_val> - <right_val>-0.2187536954879761</right_val></_></_> + <internalNodes> + 0 -1 1194 2.8215510770678520e-02</internalNodes> + <leafValues> + 1.5388909727334976e-02 -2.1875369548797607e-01</leafValues></_> <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 10 1 2 -1.</_> - <_> - 6 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2585399963427335e-004</threshold> - <left_val>-0.1395611017942429</left_val> - <right_val>0.0592704601585865</right_val></_></_> + <internalNodes> + 0 -1 1195 1.2585399963427335e-04</internalNodes> + <leafValues> + -1.3956110179424286e-01 5.9270460158586502e-02</leafValues></_> <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 4 2 -1.</_> - <_> - 8 11 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.9362311623990536e-003</threshold> - <left_val>0.2181659936904907</left_val> - <right_val>-0.0202228892594576</right_val></_></_> + <internalNodes> + 0 -1 1196 -6.9362311623990536e-03</internalNodes> + <leafValues> + 2.1816599369049072e-01 -2.0222889259457588e-02</leafValues></_> <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 7 2 2 -1.</_> - <_> - 6 7 1 1 2.</_> - <_> - 7 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7958630342036486e-003</threshold> - <left_val>0.1587557941675186</left_val> - <right_val>-0.0463826395571232</right_val></_></_> + <internalNodes> + 0 -1 1197 -1.7958630342036486e-03</internalNodes> + <leafValues> + 1.5875579416751862e-01 -4.6382639557123184e-02</leafValues></_> <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 7 2 3 -1.</_> - <_> - 9 8 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5576168969273567e-003</threshold> - <left_val>-0.0390912294387817</left_val> - <right_val>0.1341481059789658</right_val></_></_> + <internalNodes> + 0 -1 1198 9.5576168969273567e-03</internalNodes> + <leafValues> + -3.9091229438781738e-02 1.3414810597896576e-01</leafValues></_> <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 9 3 -1.</_> - <_> - 0 7 9 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0623961500823498</threshold> - <left_val>-0.4675211906433106</left_val> - <right_val>0.0186740607023239</right_val></_></_> + <internalNodes> + 0 -1 1199 -6.2396150082349777e-02</internalNodes> + <leafValues> + -4.6752119064331055e-01 1.8674060702323914e-02</leafValues></_> <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 0 3 5 -1.</_> - <_> - 12 0 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0964560351567343e-004</threshold> - <left_val>0.0380669198930264</left_val> - <right_val>-0.0531279891729355</right_val></_></_> + <internalNodes> + 0 -1 1200 -1.0964560351567343e-04</internalNodes> + <leafValues> + 3.8066919893026352e-02 -5.3127989172935486e-02</leafValues></_> <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 3 5 -1.</_> - <_> - 5 0 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0193444695323706</threshold> - <left_val>-0.4780494868755341</left_val> - <right_val>0.0165918003767729</right_val></_></_> + <internalNodes> + 0 -1 1201 -1.9344469532370567e-02</internalNodes> + <leafValues> + -4.7804948687553406e-01 1.6591800376772881e-02</leafValues></_> <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 18 1 -1.</_> - <_> - 0 11 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0783272683620453</threshold> - <left_val>0.0181266497820616</left_val> - <right_val>-0.3980031013488770</right_val></_></_> + <internalNodes> + 0 -1 1202 7.8327268362045288e-02</internalNodes> + <leafValues> + 1.8126649782061577e-02 -3.9800310134887695e-01</leafValues></_> <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 14 11 -1.</_> - <_> - 7 1 7 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3698745965957642</threshold> - <left_val>0.1570519059896469</left_val> - <right_val>-0.0502885915338993</right_val></_></_> + <internalNodes> + 0 -1 1203 -3.6987459659576416e-01</internalNodes> + <leafValues> + 1.5705190598964691e-01 -5.0288591533899307e-02</leafValues></_> <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 0 0 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0466183982789516</threshold> - <left_val>0.1856203973293304</left_val> - <right_val>-0.0475008487701416</right_val></_></_> + <internalNodes> + 0 -1 1204 -4.6618398278951645e-02</internalNodes> + <leafValues> + 1.8562039732933044e-01 -4.7500848770141602e-02</leafValues></_> <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 1 9 6 -1.</_> - <_> - 3 3 9 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2217787057161331</threshold> - <left_val>0.3690327107906342</left_val> - <right_val>-0.0218913592398167</right_val></_></_> + <internalNodes> + 0 -1 1205 -2.2177870571613312e-01</internalNodes> + <leafValues> + 3.6903271079063416e-01 -2.1891359239816666e-02</leafValues></_> <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 4 2 1 -1.</_> - <_> - 11 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0101999398320913</threshold> - <left_val>-0.0200084596872330</left_val> - <right_val>0.1892008036375046</right_val></_></_> + <internalNodes> + 0 -1 1206 1.0199939832091331e-02</internalNodes> + <leafValues> + -2.0008459687232971e-02 1.8920080363750458e-01</leafValues></_> <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 2 2 -1.</_> - <_> - 8 7 1 1 2.</_> - <_> - 9 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3876829762011766e-003</threshold> - <left_val>0.1398168057203293</left_val> - <right_val>-0.0550622008740902</right_val></_></_> + <internalNodes> + 0 -1 1207 -1.3876829762011766e-03</internalNodes> + <leafValues> + 1.3981680572032928e-01 -5.5062200874090195e-02</leafValues></_> <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 9 1 2 -1.</_> - <_> - 17 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0204740101471543e-004</threshold> - <left_val>-0.1553916931152344</left_val> - <right_val>0.0912320986390114</right_val></_></_> + <internalNodes> + 0 -1 1208 1.0204740101471543e-04</internalNodes> + <leafValues> + -1.5539169311523438e-01 9.1232098639011383e-02</leafValues></_> <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 8 2 2 -1.</_> - <_> - 1 8 1 1 2.</_> - <_> - 2 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5603638328611851e-005</threshold> - <left_val>-0.0968784764409065</left_val> - <right_val>0.0802481397986412</right_val></_></_> + <internalNodes> + 0 -1 1209 9.5603638328611851e-05</internalNodes> + <leafValues> + -9.6878476440906525e-02 8.0248139798641205e-02</leafValues></_> <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 2 3 -1.</_> - <_> - 9 5 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3494791500270367e-003</threshold> - <left_val>0.0732097104191780</left_val> - <right_val>-0.0550112612545490</right_val></_></_> + <internalNodes> + 0 -1 1210 -5.3494791500270367e-03</internalNodes> + <leafValues> + 7.3209710419178009e-02 -5.5011261254549026e-02</leafValues></_> <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 9 3 3 -1.</_> - <_> - 2 10 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0130077200010419</threshold> - <left_val>0.0241031497716904</left_val> - <right_val>-0.3123658001422882</right_val></_></_> + <internalNodes> + 0 -1 1211 1.3007720001041889e-02</internalNodes> + <leafValues> + 2.4103149771690369e-02 -3.1236580014228821e-01</leafValues></_> <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 8 8 3 -1.</_> - <_> - 5 9 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0290700495243073</threshold> - <left_val>-0.0376428104937077</left_val> - <right_val>0.2087133973836899</right_val></_></_> + <internalNodes> + 0 -1 1212 2.9070049524307251e-02</internalNodes> + <leafValues> + -3.7642810493707657e-02 2.0871339738368988e-01</leafValues></_> <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 6 2 -1.</_> - <_> - 0 10 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1258399647194892e-004</threshold> - <left_val>-0.1939011961221695</left_val> - <right_val>0.0425931103527546</right_val></_></_> + <internalNodes> + 0 -1 1213 2.1258399647194892e-04</internalNodes> + <leafValues> + -1.9390119612216949e-01 4.2593110352754593e-02</leafValues></_> <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 3 2 -1.</_> - <_> - 16 1 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0127672497183084</threshold> - <left_val>0.0374682694673538</left_val> - <right_val>-0.3492408990859985</right_val></_></_> + <internalNodes> + 0 -1 1214 1.2767249718308449e-02</internalNodes> + <leafValues> + 3.7468269467353821e-02 -3.4924089908599854e-01</leafValues></_> <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 5 3 -1.</_> - <_> - 6 4 5 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0350760109722614</threshold> - <left_val>0.2350210994482040</left_val> - <right_val>-0.0361617095768452</right_val></_></_> + <internalNodes> + 0 -1 1215 -3.5076010972261429e-02</internalNodes> + <leafValues> + 2.3502109944820404e-01 -3.6161709576845169e-02</leafValues></_> <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 4 2 1 -1.</_> - <_> - 11 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>8.1403086369391531e-005</threshold> - <left_val>-0.0320670008659363</left_val> - <right_val>0.0504004210233688</right_val></_></_> + <internalNodes> + 0 -1 1216 8.1403086369391531e-05</internalNodes> + <leafValues> + -3.2067000865936279e-02 5.0400421023368835e-02</leafValues></_> <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 10 2 -1.</_> - <_> - 9 0 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0174106005579233</threshold> - <left_val>0.0994603335857391</left_val> - <right_val>-0.0751298069953918</right_val></_></_> + <internalNodes> + 0 -1 1217 -1.7410600557923317e-02</internalNodes> + <leafValues> + 9.9460333585739136e-02 -7.5129806995391846e-02</leafValues></_> <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 0 1 3 -1.</_> - <_> - 16 1 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-5.4158121347427368e-003</threshold> - <left_val>0.1544888019561768</left_val> - <right_val>-0.0595656000077724</right_val></_></_> + <internalNodes> + 0 -1 1218 -5.4158121347427368e-03</internalNodes> + <leafValues> + 1.5448880195617676e-01 -5.9565600007772446e-02</leafValues></_> <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 3 -1.</_> - <_> - 9 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0272476803511381</threshold> - <left_val>-0.3538259863853455</left_val> - <right_val>0.0242353100329638</right_val></_></_> + <internalNodes> + 0 -1 1219 -2.7247680351138115e-02</internalNodes> + <leafValues> + -3.5382598638534546e-01 2.4235310032963753e-02</leafValues></_> <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 2 3 2 -1.</_> - <_> - 15 3 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0221972595900297</threshold> - <left_val>-0.2972058951854706</left_val> - <right_val>0.0214165691286325</right_val></_></_> + <internalNodes> + 0 -1 1220 -2.2197259590029716e-02</internalNodes> + <leafValues> + -2.9720589518547058e-01 2.1416569128632545e-02</leafValues></_> <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 6 4 -1.</_> - <_> - 11 2 2 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0854537934064865</threshold> - <left_val>0.0739144384860992</left_val> - <right_val>-0.0981438010931015</right_val></_></_> + <internalNodes> + 0 -1 1221 -8.5453793406486511e-02</internalNodes> + <leafValues> + 7.3914438486099243e-02 -9.8143801093101501e-02</leafValues></_> <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 0 1 3 -1.</_> - <_> - 16 1 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0267432797700167</threshold> - <left_val>-0.3894031047821045</left_val> - <right_val>5.3767771460115910e-003</right_val></_></_> + <internalNodes> + 0 -1 1222 -2.6743279770016670e-02</internalNodes> + <leafValues> + -3.8940310478210449e-01 5.3767771460115910e-03</leafValues></_> <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 3 1 -1.</_> - <_> - 2 1 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-8.2498956471681595e-003</threshold> - <left_val>0.1986034065485001</left_val> - <right_val>-0.0395573712885380</right_val></_></_> + <internalNodes> + 0 -1 1223 -8.2498956471681595e-03</internalNodes> + <leafValues> + 1.9860340654850006e-01 -3.9557371288537979e-02</leafValues></_> <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 2 16 1 -1.</_> - <_> - 6 2 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0227975007146597</threshold> - <left_val>0.0996784120798111</left_val> - <right_val>-0.0626135766506195</right_val></_></_> + <internalNodes> + 0 -1 1224 -2.2797500714659691e-02</internalNodes> + <leafValues> + 9.9678412079811096e-02 -6.2613576650619507e-02</leafValues></_> <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 1 2 -1.</_> - <_> - 7 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>9.7113639640156180e-005</threshold> - <left_val>-0.0841882526874542</left_val> - <right_val>0.0938660800457001</right_val></_></_> + <internalNodes> + 0 -1 1225 9.7113639640156180e-05</internalNodes> + <leafValues> + -8.4188252687454224e-02 9.3866080045700073e-02</leafValues></_> <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 4 5 3 -1.</_> - <_> - 12 5 5 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0298844296485186</threshold> - <left_val>-0.0233569294214249</left_val> - <right_val>0.1461814045906067</right_val></_></_> + <internalNodes> + 0 -1 1226 2.9884429648518562e-02</internalNodes> + <leafValues> + -2.3356929421424866e-02 1.4618140459060669e-01</leafValues></_> <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 4 4 -1.</_> - <_> - 5 2 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0268038399517536</threshold> - <left_val>0.1417839974164963</left_val> - <right_val>-0.0625500604510307</right_val></_></_> + <internalNodes> + 0 -1 1227 -2.6803839951753616e-02</internalNodes> + <leafValues> + 1.4178399741649628e-01 -6.2550060451030731e-02</leafValues></_> <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 4 3 2 -1.</_> - <_> - 15 5 3 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0194113999605179</threshold> - <left_val>-0.6338275074958801</left_val> - <right_val>0.0161495897918940</right_val></_></_> + <internalNodes> + 0 -1 1228 -1.9411399960517883e-02</internalNodes> + <leafValues> + -6.3382750749588013e-01 1.6149589791893959e-02</leafValues></_> <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 18 4 -1.</_> - <_> - 0 2 9 2 2.</_> - <_> - 9 4 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1211021989583969</threshold> - <left_val>0.0232389997690916</left_val> - <right_val>-0.3470253050327301</right_val></_></_> + <internalNodes> + 0 -1 1229 1.2110219895839691e-01</internalNodes> + <leafValues> + 2.3238999769091606e-02 -3.4702530503273010e-01</leafValues></_> <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 3 2 1 -1.</_> - <_> - 10 3 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>9.2202579253353179e-005</threshold> - <left_val>-0.0784215033054352</left_val> - <right_val>0.0439592488110065</right_val></_></_> + <internalNodes> + 0 -1 1230 9.2202579253353179e-05</internalNodes> + <leafValues> + -7.8421503305435181e-02 4.3959248811006546e-02</leafValues></_> <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 2 2 -1.</_> - <_> - 5 3 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0172425899654627</threshold> - <left_val>0.0262610707432032</left_val> - <right_val>-0.2994464933872223</right_val></_></_> + <internalNodes> + 0 -1 1231 1.7242589965462685e-02</internalNodes> + <leafValues> + 2.6261070743203163e-02 -2.9944649338722229e-01</leafValues></_> <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 7 1 4 -1.</_> - <_> - 17 9 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0114207100123167</threshold> - <left_val>-0.3652296960353851</left_val> - <right_val>7.9645831137895584e-003</right_val></_></_> + <internalNodes> + 0 -1 1232 -1.1420710012316704e-02</internalNodes> + <leafValues> + -3.6522969603538513e-01 7.9645831137895584e-03</leafValues></_> <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 3 3 -1.</_> - <_> - 8 5 1 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0208100695163012</threshold> - <left_val>0.1363833993673325</left_val> - <right_val>-0.0540330484509468</right_val></_></_> + <internalNodes> + 0 -1 1233 -2.0810069516301155e-02</internalNodes> + <leafValues> + 1.3638339936733246e-01 -5.4033048450946808e-02</leafValues></_> <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 6 2 3 -1.</_> - <_> - 16 7 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0141034796833992</threshold> - <left_val>-0.3789392113685608</left_val> - <right_val>0.0133940102532506</right_val></_></_> + <internalNodes> + 0 -1 1234 -1.4103479683399200e-02</internalNodes> + <leafValues> + -3.7893921136856079e-01 1.3394010253250599e-02</leafValues></_> <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 7 1 4 -1.</_> - <_> - 0 9 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.7581768594682217e-003</threshold> - <left_val>-0.3374806046485901</left_val> - <right_val>0.0207511596381664</right_val></_></_> + <internalNodes> + 0 -1 1235 -4.7581768594682217e-03</internalNodes> + <leafValues> + -3.3748060464859009e-01 2.0751159638166428e-02</leafValues></_> <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 10 8 2 -1.</_> - <_> - 10 10 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0167098306119442</threshold> - <left_val>-0.0281252600252628</left_val> - <right_val>0.0791175812482834</right_val></_></_> + <internalNodes> + 0 -1 1236 1.6709830611944199e-02</internalNodes> + <leafValues> + -2.8125260025262833e-02 7.9117581248283386e-02</leafValues></_> <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 3 1 6 -1.</_> - <_> - 8 3 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0754440724849701</threshold> - <left_val>0.3508261144161224</left_val> - <right_val>-0.0194447692483664</right_val></_></_> + <internalNodes> + 0 -1 1237 -7.5444072484970093e-02</internalNodes> + <leafValues> + 3.5082611441612244e-01 -1.9444769248366356e-02</leafValues></_> <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 8 5 -1.</_> - <_> - 9 4 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1733821034431458</threshold> - <left_val>-3.3310770522803068e-003</left_val> - <right_val>0.4480153024196625</right_val></_></_> + <internalNodes> + 0 -1 1238 1.7338210344314575e-01</internalNodes> + <leafValues> + -3.3310770522803068e-03 4.4801530241966248e-01</leafValues></_> <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 4 8 5 -1.</_> - <_> - 5 4 4 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1423203945159912</threshold> - <left_val>-0.2275786995887756</left_val> - <right_val>0.0330730602145195</right_val></_></_> + <internalNodes> + 0 -1 1239 -1.4232039451599121e-01</internalNodes> + <leafValues> + -2.2757869958877563e-01 3.3073060214519501e-02</leafValues></_> <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 4 1 -1.</_> - <_> - 10 5 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.2956749889999628e-003</threshold> - <left_val>0.0636061728000641</left_val> - <right_val>-0.0339367985725403</right_val></_></_> + <internalNodes> + 0 -1 1240 -2.2956749889999628e-03</internalNodes> + <leafValues> + 6.3606172800064087e-02 -3.3936798572540283e-02</leafValues></_> <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 5 4 1 -1.</_> - <_> - 6 5 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0921280045295134e-004</threshold> - <left_val>0.0879561677575111</left_val> - <right_val>-0.0945142135024071</right_val></_></_> + <internalNodes> + 0 -1 1241 -1.0921280045295134e-04</internalNodes> + <leafValues> + 8.7956167757511139e-02 -9.4514213502407074e-02</leafValues></_> <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 6 4 6 -1.</_> - <_> - 15 6 2 3 2.</_> - <_> - 13 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0151237202808261</threshold> - <left_val>0.1107197999954224</left_val> - <right_val>-0.0274874195456505</right_val></_></_> + <internalNodes> + 0 -1 1242 -1.5123720280826092e-02</internalNodes> + <leafValues> + 1.1071979999542236e-01 -2.7487419545650482e-02</leafValues></_> <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 6 4 6 -1.</_> - <_> - 1 6 2 3 2.</_> - <_> - 3 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0218355506658554</threshold> - <left_val>-0.0483124591410160</left_val> - <right_val>0.1472904980182648</right_val></_></_> + <internalNodes> + 0 -1 1243 2.1835550665855408e-02</internalNodes> + <leafValues> + -4.8312459141016006e-02 1.4729049801826477e-01</leafValues></_> <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 10 4 -1.</_> - <_> - 10 6 5 2 2.</_> - <_> - 5 8 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0837960764765739</threshold> - <left_val>0.0168791599571705</left_val> - <right_val>-0.2214743047952652</right_val></_></_> + <internalNodes> + 0 -1 1244 8.3796076476573944e-02</internalNodes> + <leafValues> + 1.6879159957170486e-02 -2.2147430479526520e-01</leafValues></_> <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 3 3 7 -1.</_> - <_> - 3 3 1 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0383711792528629</threshold> - <left_val>-0.5215274095535278</left_val> - <right_val>0.0143043296411633</right_val></_></_> + <internalNodes> + 0 -1 1245 -3.8371179252862930e-02</internalNodes> + <leafValues> + -5.2152740955352783e-01 1.4304329641163349e-02</leafValues></_> <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 7 2 3 -1.</_> - <_> - 9 8 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.7588760238140821e-003</threshold> - <left_val>-0.0432747118175030</left_val> - <right_val>0.0401504114270210</right_val></_></_> + <internalNodes> + 0 -1 1246 1.7588760238140821e-03</internalNodes> + <leafValues> + -4.3274711817502975e-02 4.0150411427021027e-02</leafValues></_> <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 11 6 1 -1.</_> - <_> - 8 11 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0164226293563843</threshold> - <left_val>-0.5844146013259888</left_val> - <right_val>0.0105171399191022</right_val></_></_> + <internalNodes> + 0 -1 1247 -1.6422629356384277e-02</internalNodes> + <leafValues> + -5.8441460132598877e-01 1.0517139919102192e-02</leafValues></_> <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 1 2 9 -1.</_> - <_> - 13 4 2 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.1224516034126282</threshold> - <left_val>-9.6191419288516045e-003</left_val> - <right_val>0.1829015016555786</right_val></_></_> + <internalNodes> + 0 -1 1248 1.2245160341262817e-01</internalNodes> + <leafValues> + -9.6191419288516045e-03 1.8290150165557861e-01</leafValues></_> <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 3 3 -1.</_> - <_> - 0 1 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0275712199509144</threshold> - <left_val>-0.5160552263259888</left_val> - <right_val>0.0126475701108575</right_val></_></_> + <internalNodes> + 0 -1 1249 -2.7571219950914383e-02</internalNodes> + <leafValues> + -5.1605522632598877e-01 1.2647570110857487e-02</leafValues></_> <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 9 6 -1.</_> - <_> - 6 6 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2223629057407379</threshold> - <left_val>0.3475607931613922</left_val> - <right_val>-0.0100844902917743</right_val></_></_> + <internalNodes> + 0 -1 1250 -2.2236290574073792e-01</internalNodes> + <leafValues> + 3.4756079316139221e-01 -1.0084490291774273e-02</leafValues></_> <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 2 2 -1.</_> - <_> - 7 8 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0220033302903175</threshold> - <left_val>-0.2813464105129242</left_val> - <right_val>0.0227720607072115</right_val></_></_> + <internalNodes> + 0 -1 1251 -2.2003330290317535e-02</internalNodes> + <leafValues> + -2.8134641051292419e-01 2.2772060707211494e-02</leafValues></_> <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 6 10 6 -1.</_> - <_> - 4 9 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0429128892719746</threshold> - <left_val>-0.4784662127494812</left_val> - <right_val>0.0125529700890183</right_val></_></_> + <internalNodes> + 0 -1 1252 -4.2912889271974564e-02</internalNodes> + <leafValues> + -4.7846621274948120e-01 1.2552970089018345e-02</leafValues></_> <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 2 4 -1.</_> - <_> - 4 7 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0143522303551435</threshold> - <left_val>0.1664205044507980</left_val> - <right_val>-0.0464727096259594</right_val></_></_> + <internalNodes> + 0 -1 1253 -1.4352230355143547e-02</internalNodes> + <leafValues> + 1.6642050445079803e-01 -4.6472709625959396e-02</leafValues></_> <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 2 2 -1.</_> - <_> - 17 9 1 1 2.</_> - <_> - 16 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1513590258546174e-004</threshold> - <left_val>-0.2572231888771057</left_val> - <right_val>0.0778907462954521</right_val></_></_> + <internalNodes> + 0 -1 1254 -4.1513590258546174e-04</internalNodes> + <leafValues> + -2.5722318887710571e-01 7.7890746295452118e-02</leafValues></_> <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 8 1 2 -1.</_> - <_> - 2 8 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>1.2504369951784611e-003</threshold> - <left_val>-0.0447785295546055</left_val> - <right_val>0.1667868047952652</right_val></_></_> + <internalNodes> + 0 -1 1255 1.2504369951784611e-03</internalNodes> + <leafValues> + -4.4778529554605484e-02 1.6678680479526520e-01</leafValues></_> <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 6 2 3 -1.</_> - <_> - 16 7 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0176474805921316</threshold> - <left_val>7.0636598393321037e-003</left_val> - <right_val>-0.3373652994632721</right_val></_></_> + <internalNodes> + 0 -1 1256 1.7647480592131615e-02</internalNodes> + <leafValues> + 7.0636598393321037e-03 -3.3736529946327209e-01</leafValues></_> <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 3 2 9 -1.</_> - <_> - 1 3 1 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.4471070393919945e-003</threshold> - <left_val>0.0751723274588585</left_val> - <right_val>-0.0881242603063583</right_val></_></_> + <internalNodes> + 0 -1 1257 -3.4471070393919945e-03</internalNodes> + <leafValues> + 7.5172327458858490e-02 -8.8124260306358337e-02</leafValues></_> <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 4 3 2 -1.</_> - <_> - 16 5 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-5.0494200550019741e-003</threshold> - <left_val>0.1057507023215294</left_val> - <right_val>-0.0872371271252632</right_val></_></_> + <internalNodes> + 0 -1 1258 -5.0494200550019741e-03</internalNodes> + <leafValues> + 1.0575070232152939e-01 -8.7237127125263214e-02</leafValues></_> <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 2 3 -1.</_> - <_> - 2 5 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0349593013525009</threshold> - <left_val>-0.4684984982013702</left_val> - <right_val>0.0152084501460195</right_val></_></_> + <internalNodes> + 0 -1 1259 -3.4959301352500916e-02</internalNodes> + <leafValues> + -4.6849849820137024e-01 1.5208450146019459e-02</leafValues></_> <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 12 4 -1.</_> - <_> - 6 2 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0131617197766900</threshold> - <left_val>-0.0586476512253284</left_val> - <right_val>0.0702482163906097</right_val></_></_> + <internalNodes> + 0 -1 1260 1.3161719776690006e-02</internalNodes> + <leafValues> + -5.8647651225328445e-02 7.0248216390609741e-02</leafValues></_> <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 8 3 -1.</_> - <_> - 5 3 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0305601190775633</threshold> - <left_val>0.2317059040069580</left_val> - <right_val>-0.0432553105056286</right_val></_></_> + <internalNodes> + 0 -1 1261 -3.0560119077563286e-02</internalNodes> + <leafValues> + 2.3170590400695801e-01 -4.3255310505628586e-02</leafValues></_> <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 1 2 1 -1.</_> - <_> - 12 1 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0102389100939035</threshold> - <left_val>0.0315257795155048</left_val> - <right_val>-0.2387672066688538</right_val></_></_> + <internalNodes> + 0 -1 1262 1.0238910093903542e-02</internalNodes> + <leafValues> + 3.1525779515504837e-02 -2.3876720666885376e-01</leafValues></_> <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 2 2 -1.</_> - <_> - 6 1 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0249655991792679</threshold> - <left_val>0.0187940504401922</left_val> - <right_val>-0.3663749098777771</right_val></_></_> + <internalNodes> + 0 -1 1263 2.4965599179267883e-02</internalNodes> + <leafValues> + 1.8794050440192223e-02 -3.6637490987777710e-01</leafValues></_> <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 1 10 1 -1.</_> - <_> - 8 1 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0322535000741482</threshold> - <left_val>0.1127064973115921</left_val> - <right_val>-0.0292131006717682</right_val></_></_> + <internalNodes> + 0 -1 1264 -3.2253500074148178e-02</internalNodes> + <leafValues> + 1.1270649731159210e-01 -2.9213100671768188e-02</leafValues></_> <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 10 1 -1.</_> - <_> - 5 1 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.8411642462015152e-003</threshold> - <left_val>-0.0724216327071190</left_val> - <right_val>0.1406634002923966</right_val></_></_> + <internalNodes> + 0 -1 1265 7.8411642462015152e-03</internalNodes> + <leafValues> + -7.2421632707118988e-02 1.4066340029239655e-01</leafValues></_> <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 2 2 -1.</_> - <_> - 14 7 1 1 2.</_> - <_> - 13 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4276880538091063e-003</threshold> - <left_val>0.1580734997987747</left_val> - <right_val>-0.0664499625563622</right_val></_></_> + <internalNodes> + 0 -1 1266 -1.4276880538091063e-03</internalNodes> + <leafValues> + 1.5807349979877472e-01 -6.6449962556362152e-02</leafValues></_> <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 2 2 -1.</_> - <_> - 0 9 1 1 2.</_> - <_> - 1 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1470150202512741e-003</threshold> - <left_val>0.0495738312602043</left_val> - <right_val>-0.1430808007717133</right_val></_></_> + <internalNodes> + 0 -1 1267 1.1470150202512741e-03</internalNodes> + <leafValues> + 4.9573831260204315e-02 -1.4308080077171326e-01</leafValues></_> <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 1 2 4 -1.</_> - <_> - 15 2 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-8.6412113159894943e-003</threshold> - <left_val>0.0729138031601906</left_val> - <right_val>-0.0539435297250748</right_val></_></_> + <internalNodes> + 0 -1 1268 -8.6412113159894943e-03</internalNodes> + <leafValues> + 7.2913803160190582e-02 -5.3943529725074768e-02</leafValues></_> <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 3 1 -1.</_> - <_> - 1 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1576799442991614e-003</threshold> - <left_val>-0.0549531504511833</left_val> - <right_val>0.1243522018194199</right_val></_></_> + <internalNodes> + 0 -1 1269 1.1576799442991614e-03</internalNodes> + <leafValues> + -5.4953150451183319e-02 1.2435220181941986e-01</leafValues></_> <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 10 2 1 -1.</_> - <_> - 9 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1792180157499388e-004</threshold> - <left_val>-0.0482707992196083</left_val> - <right_val>0.0590828806161880</right_val></_></_> + <internalNodes> + 0 -1 1270 1.1792180157499388e-04</internalNodes> + <leafValues> + -4.8270799219608307e-02 5.9082880616188049e-02</leafValues></_> <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 4 3 -1.</_> - <_> - 8 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.5883439965546131e-003</threshold> - <left_val>0.0262306500226259</left_val> - <right_val>-0.2602672874927521</right_val></_></_> + <internalNodes> + 0 -1 1271 6.5883439965546131e-03</internalNodes> + <leafValues> + 2.6230650022625923e-02 -2.6026728749275208e-01</leafValues></_> <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 2 2 -1.</_> - <_> - 14 7 1 1 2.</_> - <_> - 13 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1313619799911976e-003</threshold> - <left_val>-0.0568075403571129</left_val> - <right_val>0.2505536079406738</right_val></_></_> + <internalNodes> + 0 -1 1272 2.1313619799911976e-03</internalNodes> + <leafValues> + -5.6807540357112885e-02 2.5055360794067383e-01</leafValues></_> <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 6 1 -1.</_> - <_> - 5 0 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0110359499230981</threshold> - <left_val>0.0289262104779482</left_val> - <right_val>-0.2402517050504684</right_val></_></_> + <internalNodes> + 0 -1 1273 1.1035949923098087e-02</internalNodes> + <leafValues> + 2.8926210477948189e-02 -2.4025170505046844e-01</leafValues></_> <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 1 2 4 -1.</_> - <_> - 15 2 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0983377024531364</threshold> - <left_val>-1.6552689485251904e-003</left_val> - <right_val>0.9984146952629089</right_val></_></_> + <internalNodes> + 0 -1 1274 9.8337702453136444e-02</internalNodes> + <leafValues> + -1.6552689485251904e-03 9.9841469526290894e-01</leafValues></_> <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 4 2 -1.</_> - <_> - 3 2 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0368679203093052</threshold> - <left_val>0.3011547923088074</left_val> - <right_val>-0.0193358901888132</right_val></_></_> + <internalNodes> + 0 -1 1275 -3.6867920309305191e-02</internalNodes> + <leafValues> + 3.0115479230880737e-01 -1.9335890188813210e-02</leafValues></_> <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 4 1 2 -1.</_> - <_> - 15 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0224313102662563</threshold> - <left_val>0.3668003976345062</left_val> - <right_val>-8.6105773225426674e-003</right_val></_></_> + <internalNodes> + 0 -1 1276 -2.2431310266256332e-02</internalNodes> + <leafValues> + 3.6680039763450623e-01 -8.6105773225426674e-03</leafValues></_> <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 2 1 -1.</_> - <_> - 3 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>9.2809292254969478e-005</threshold> - <left_val>-0.1185168027877808</left_val> - <right_val>0.0700090304017067</right_val></_></_> + <internalNodes> + 0 -1 1277 9.2809292254969478e-05</internalNodes> + <leafValues> + -1.1851680278778076e-01 7.0009030401706696e-02</leafValues></_> <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 3 1 -1.</_> - <_> - 16 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.0986801981925964e-003</threshold> - <left_val>0.0198251102119684</left_val> - <right_val>-0.5105975866317749</right_val></_></_> + <internalNodes> + 0 -1 1278 6.0986801981925964e-03</internalNodes> + <leafValues> + 1.9825110211968422e-02 -5.1059758663177490e-01</leafValues></_> <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 3 1 -1.</_> - <_> - 1 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0700259736040607e-004</threshold> - <left_val>0.0869450569152832</left_val> - <right_val>-0.0790398493409157</right_val></_></_> + <internalNodes> + 0 -1 1279 -1.0700259736040607e-04</internalNodes> + <leafValues> + 8.6945056915283203e-02 -7.9039849340915680e-02</leafValues></_> <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 0 3 1 -1.</_> - <_> - 16 1 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0118503598496318</threshold> - <left_val>-0.3488636016845703</left_val> - <right_val>0.0284637305885553</right_val></_></_> + <internalNodes> + 0 -1 1280 -1.1850359849631786e-02</internalNodes> + <leafValues> + -3.4886360168457031e-01 2.8463730588555336e-02</leafValues></_> <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 11 3 1 -1.</_> - <_> - 7 11 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0024739895015955e-003</threshold> - <left_val>0.1231055036187172</left_val> - <right_val>-0.0563023500144482</right_val></_></_> + <internalNodes> + 0 -1 1281 -1.0024739895015955e-03</internalNodes> + <leafValues> + 1.2310550361871719e-01 -5.6302350014448166e-02</leafValues></_> <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 9 2 2 -1.</_> - <_> - 12 9 1 1 2.</_> - <_> - 11 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.6648662292864174e-005</threshold> - <left_val>0.0594199188053608</left_val> - <right_val>-0.0505116507411003</right_val></_></_> + <internalNodes> + 0 -1 1282 -9.6648662292864174e-05</internalNodes> + <leafValues> + 5.9419918805360794e-02 -5.0511650741100311e-02</leafValues></_> <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 8 6 3 -1.</_> - <_> - 6 9 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0126873599365354</threshold> - <left_val>0.1612392067909241</left_val> - <right_val>-0.0419987291097641</right_val></_></_> + <internalNodes> + 0 -1 1283 -1.2687359936535358e-02</internalNodes> + <leafValues> + 1.6123920679092407e-01 -4.1998729109764099e-02</leafValues></_> <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 6 2 -1.</_> - <_> - 10 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0209341403096914</threshold> - <left_val>0.0132924700155854</left_val> - <right_val>-0.2538459002971649</right_val></_></_> + <internalNodes> + 0 -1 1284 2.0934140309691429e-02</internalNodes> + <leafValues> + 1.3292470015585423e-02 -2.5384590029716492e-01</leafValues></_> <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 1 3 -1.</_> - <_> - 2 1 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-8.7683666497468948e-003</threshold> - <left_val>-0.2235475927591324</left_val> - <right_val>0.0272311903536320</right_val></_></_> + <internalNodes> + 0 -1 1285 -8.7683666497468948e-03</internalNodes> + <leafValues> + -2.2354759275913239e-01 2.7231190353631973e-02</leafValues></_> <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 2 2 -1.</_> - <_> - 10 8 1 1 2.</_> - <_> - 9 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.8724078775849193e-005</threshold> - <left_val>0.0516533590853214</left_val> - <right_val>-0.0349236987531185</right_val></_></_> + <internalNodes> + 0 -1 1286 -7.8724078775849193e-05</internalNodes> + <leafValues> + 5.1653359085321426e-02 -3.4923698753118515e-02</leafValues></_> <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 1 3 -1.</_> - <_> - 8 8 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.5617809519171715e-003</threshold> - <left_val>0.1884590983390808</left_val> - <right_val>-0.0362181998789310</right_val></_></_> + <internalNodes> + 0 -1 1287 -4.5617809519171715e-03</internalNodes> + <leafValues> + 1.8845909833908081e-01 -3.6218199878931046e-02</leafValues></_> <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 2 6 -1.</_> - <_> - 8 7 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0201015695929527</threshold> - <left_val>-0.1227046027779579</left_val> - <right_val>0.0588310696184635</right_val></_></_> + <internalNodes> + 0 -1 1288 2.0101569592952728e-02</internalNodes> + <leafValues> + -1.2270460277795792e-01 5.8831069618463516e-02</leafValues></_> <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 6 1 3 -1.</_> - <_> - 8 7 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.1801089644432068e-003</threshold> - <left_val>0.1296007037162781</left_val> - <right_val>-0.0679206773638725</right_val></_></_> + <internalNodes> + 0 -1 1289 -3.1801089644432068e-03</internalNodes> + <leafValues> + 1.2960070371627808e-01 -6.7920677363872528e-02</leafValues></_> <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 8 1 3 -1.</_> - <_> - 14 9 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.7645021006464958e-003</threshold> - <left_val>0.0183514803647995</left_val> - <right_val>-0.2490340024232864</right_val></_></_> + <internalNodes> + 0 -1 1290 5.7645021006464958e-03</internalNodes> + <leafValues> + 1.8351480364799500e-02 -2.4903400242328644e-01</leafValues></_> <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 8 1 3 -1.</_> - <_> - 3 9 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0106930797919631</threshold> - <left_val>9.6924025565385818e-003</left_val> - <right_val>-0.5950452089309692</right_val></_></_> + <internalNodes> + 0 -1 1291 1.0693079791963100e-02</internalNodes> + <leafValues> + 9.6924025565385818e-03 -5.9504520893096924e-01</leafValues></_> <_> - <!-- tree 169 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 2 4 3 -1.</_> - <_> - 14 3 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>2.8986420948058367e-003</threshold> - <left_val>0.0517189912497997</left_val> - <right_val>-0.1046859994530678</right_val></_></_> + <internalNodes> + 0 -1 1292 2.8986420948058367e-03</internalNodes> + <leafValues> + 5.1718991249799728e-02 -1.0468599945306778e-01</leafValues></_> <_> - <!-- tree 170 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 6 8 -1.</_> - <_> - 9 4 3 8 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1392966061830521</threshold> - <left_val>-0.0176745392382145</left_val> - <right_val>0.3972356021404266</right_val></_></_> + <internalNodes> + 0 -1 1293 1.3929660618305206e-01</internalNodes> + <leafValues> + -1.7674539238214493e-02 3.9723560214042664e-01</leafValues></_> <_> - <!-- tree 171 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 11 2 1 -1.</_> - <_> - 9 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1850619921460748e-004</threshold> - <left_val>-0.0445570796728134</left_val> - <right_val>0.0569949001073837</right_val></_></_> + <internalNodes> + 0 -1 1294 1.1850619921460748e-04</internalNodes> + <leafValues> + -4.4557079672813416e-02 5.6994900107383728e-02</leafValues></_> <_> - <!-- tree 172 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 9 2 -1.</_> - <_> - 5 4 3 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1898158043622971</threshold> - <left_val>-0.2177318930625916</left_val> - <right_val>0.0291348900645971</right_val></_></_> + <internalNodes> + 0 -1 1295 -1.8981580436229706e-01</internalNodes> + <leafValues> + -2.1773189306259155e-01 2.9134890064597130e-02</leafValues></_> <_> - <!-- tree 173 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 8 3 -1.</_> - <_> - 10 6 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0553892813622952</threshold> - <left_val>-0.2526654005050659</left_val> - <right_val>0.0107985101640224</right_val></_></_> + <internalNodes> + 0 -1 1296 -5.5389281362295151e-02</internalNodes> + <leafValues> + -2.5266540050506592e-01 1.0798510164022446e-02</leafValues></_> <_> - <!-- tree 174 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 5 1 2 -1.</_> - <_> - 3 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0122820094693452e-004</threshold> - <left_val>0.0827616900205612</left_val> - <right_val>-0.0744562670588493</right_val></_></_> + <internalNodes> + 0 -1 1297 -1.0122820094693452e-04</internalNodes> + <leafValues> + 8.2761690020561218e-02 -7.4456267058849335e-02</leafValues></_> <_> - <!-- tree 175 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 1 4 2 -1.</_> - <_> - 11 2 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.2048019133508205e-003</threshold> - <left_val>-0.0261818505823612</left_val> - <right_val>0.0788949802517891</right_val></_></_> + <internalNodes> + 0 -1 1298 5.2048019133508205e-03</internalNodes> + <leafValues> + -2.6181850582361221e-02 7.8894980251789093e-02</leafValues></_> <_> - <!-- tree 176 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 4 2 -1.</_> - <_> - 4 2 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.3310650400817394e-003</threshold> - <left_val>0.1074334979057312</left_val> - <right_val>-0.0730788037180901</right_val></_></_> + <internalNodes> + 0 -1 1299 -5.3310650400817394e-03</internalNodes> + <leafValues> + 1.0743349790573120e-01 -7.3078803718090057e-02</leafValues></_> <_> - <!-- tree 177 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 3 3 1 -1.</_> - <_> - 13 4 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0319863595068455</threshold> - <left_val>-4.6606259420514107e-003</left_val> - <right_val>0.3684920072555542</right_val></_></_> + <internalNodes> + 0 -1 1300 3.1986359506845474e-02</internalNodes> + <leafValues> + -4.6606259420514107e-03 3.6849200725555420e-01</leafValues></_> <_> - <!-- tree 178 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 1 3 -1.</_> - <_> - 5 4 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>6.1502759344875813e-003</threshold> - <left_val>0.0351634211838245</left_val> - <right_val>-0.1980329006910324</right_val></_></_> + <internalNodes> + 0 -1 1301 6.1502759344875813e-03</internalNodes> + <leafValues> + 3.5163421183824539e-02 -1.9803290069103241e-01</leafValues></_> <_> - <!-- tree 179 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 4 5 3 -1.</_> - <_> - 12 5 5 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-7.9923700541257858e-003</threshold> - <left_val>0.0496804490685463</left_val> - <right_val>-0.0438471511006355</right_val></_></_> + <internalNodes> + 0 -1 1302 -7.9923700541257858e-03</internalNodes> + <leafValues> + 4.9680449068546295e-02 -4.3847151100635529e-02</leafValues></_> <_> - <!-- tree 180 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 3 5 -1.</_> - <_> - 6 5 1 5 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.9515464603900909e-003</threshold> - <left_val>-0.0503920204937458</left_val> - <right_val>0.1366129070520401</right_val></_></_> + <internalNodes> + 0 -1 1303 7.9515464603900909e-03</internalNodes> + <leafValues> + -5.0392020493745804e-02 1.3661290705204010e-01</leafValues></_> <_> - <!-- tree 181 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 1 4 3 -1.</_> - <_> - 12 2 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0699777528643608</threshold> - <left_val>-8.1138126552104950e-003</left_val> - <right_val>0.3419423103332520</right_val></_></_> + <internalNodes> + 0 -1 1304 6.9977752864360809e-02</internalNodes> + <leafValues> + -8.1138126552104950e-03 3.4194231033325195e-01</leafValues></_> <_> - <!-- tree 182 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 2 2 -1.</_> - <_> - 9 7 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.3981081582605839e-003</threshold> - <left_val>0.0349396392703056</left_val> - <right_val>-0.1821928024291992</right_val></_></_> + <internalNodes> + 0 -1 1305 5.3981081582605839e-03</internalNodes> + <leafValues> + 3.4939639270305634e-02 -1.8219280242919922e-01</leafValues></_> <_> - <!-- tree 183 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 18 4 -1.</_> - <_> - 9 4 9 2 2.</_> - <_> - 0 6 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0793964788317680</threshold> - <left_val>0.0246036890894175</left_val> - <right_val>-0.2849290072917938</right_val></_></_> + <internalNodes> + 0 -1 1306 7.9396478831768036e-02</internalNodes> + <leafValues> + 2.4603689089417458e-02 -2.8492900729179382e-01</leafValues></_> <_> - <!-- tree 184 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 2 2 -1.</_> - <_> - 7 2 1 1 2.</_> - <_> - 8 3 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.5731830392032862e-003</threshold> - <left_val>-0.0337860099971294</left_val> - <right_val>0.1911884993314743</right_val></_></_> + <internalNodes> + 0 -1 1307 2.5731830392032862e-03</internalNodes> + <leafValues> + -3.3786009997129440e-02 1.9118849933147430e-01</leafValues></_> <_> - <!-- tree 185 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 6 1 -1.</_> - <_> - 8 0 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0150553397834301</threshold> - <left_val>0.0153282200917602</left_val> - <right_val>-0.4006636142730713</right_val></_></_> + <internalNodes> + 0 -1 1308 1.5055339783430099e-02</internalNodes> + <leafValues> + 1.5328220091760159e-02 -4.0066361427307129e-01</leafValues></_> <_> - <!-- tree 186 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 4 3 -1.</_> - <_> - 6 1 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.9386271536350250e-003</threshold> - <left_val>0.1250725984573364</left_val> - <right_val>-0.0473169796168804</right_val></_></_> + <internalNodes> + 0 -1 1309 -7.9386271536350250e-03</internalNodes> + <leafValues> + 1.2507259845733643e-01 -4.7316979616880417e-02</leafValues></_> <_> - <!-- tree 187 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 11 2 1 -1.</_> - <_> - 9 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1256839934503660e-004</threshold> - <left_val>0.0824937224388123</left_val> - <right_val>-0.0687459930777550</right_val></_></_> + <internalNodes> + 0 -1 1310 -1.1256839934503660e-04</internalNodes> + <leafValues> + 8.2493722438812256e-02 -6.8745993077754974e-02</leafValues></_> <_> - <!-- tree 188 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 11 2 1 -1.</_> - <_> - 8 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0478479816811159e-004</threshold> - <left_val>0.0849223434925079</left_val> - <right_val>-0.0794655531644821</right_val></_></_> + <internalNodes> + 0 -1 1311 -1.0478479816811159e-04</internalNodes> + <leafValues> + 8.4922343492507935e-02 -7.9465553164482117e-02</leafValues></_> <_> - <!-- tree 189 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 11 2 1 -1.</_> - <_> - 9 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0192309855483472e-004</threshold> - <left_val>-0.0510621182620525</left_val> - <right_val>0.0627532824873924</right_val></_></_> + <internalNodes> + 0 -1 1312 1.0192309855483472e-04</internalNodes> + <leafValues> + -5.1062118262052536e-02 6.2753282487392426e-02</leafValues></_> <_> - <!-- tree 190 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 11 2 1 -1.</_> - <_> - 8 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2042010348523036e-004</threshold> - <left_val>-0.0798903778195381</left_val> - <right_val>0.1079823970794678</right_val></_></_> + <internalNodes> + 0 -1 1313 1.2042010348523036e-04</internalNodes> + <leafValues> + -7.9890377819538116e-02 1.0798239707946777e-01</leafValues></_> <_> - <!-- tree 191 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 6 2 -1.</_> - <_> - 10 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0305393394082785</threshold> - <left_val>-0.4662235081195831</left_val> - <right_val>8.6310431361198425e-003</right_val></_></_> + <internalNodes> + 0 -1 1314 -3.0539339408278465e-02</internalNodes> + <leafValues> + -4.6622350811958313e-01 8.6310431361198425e-03</leafValues></_> <_> - <!-- tree 192 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 10 6 2 -1.</_> - <_> - 6 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0144495498389006</threshold> - <left_val>-0.2342748045921326</left_val> - <right_val>0.0266673006117344</right_val></_></_> + <internalNodes> + 0 -1 1315 -1.4449549838900566e-02</internalNodes> + <leafValues> + -2.3427480459213257e-01 2.6667300611734390e-02</leafValues></_> <_> - <!-- tree 193 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 2 4 3 -1.</_> - <_> - 14 3 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0558374412357807</threshold> - <left_val>1.5657029580324888e-003</left_val> - <right_val>-0.5954551100730896</right_val></_></_> + <internalNodes> + 0 -1 1316 5.5837441235780716e-02</internalNodes> + <leafValues> + 1.5657029580324888e-03 -5.9545511007308960e-01</leafValues></_> <_> - <!-- tree 194 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 6 11 3 -1.</_> - <_> - 3 7 11 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0118985604494810</threshold> - <left_val>-0.0483787991106510</left_val> - <right_val>0.1172066032886505</right_val></_></_> + <internalNodes> + 0 -1 1317 1.1898560449481010e-02</internalNodes> + <leafValues> + -4.8378799110651016e-02 1.1720660328865051e-01</leafValues></_> <_> - <!-- tree 195 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 7 2 3 -1.</_> - <_> - 9 7 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0232967808842659</threshold> - <left_val>3.9587449282407761e-003</left_val> - <right_val>-0.2459778040647507</right_val></_></_> + <internalNodes> + 0 -1 1318 2.3296780884265900e-02</internalNodes> + <leafValues> + 3.9587449282407761e-03 -2.4597780406475067e-01</leafValues></_> <_> - <!-- tree 196 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 18 7 -1.</_> - <_> - 6 2 6 7 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0946263968944550</threshold> - <left_val>0.0516698993742466</left_val> - <right_val>-0.1265788972377777</right_val></_></_> + <internalNodes> + 0 -1 1319 -9.4626396894454956e-02</internalNodes> + <leafValues> + 5.1669899374246597e-02 -1.2657889723777771e-01</leafValues></_> <_> - <!-- tree 197 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 1 6 4 -1.</_> - <_> - 12 1 3 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0119962897151709</threshold> - <left_val>0.0570973381400108</left_val> - <right_val>-0.1079069003462791</right_val></_></_> + <internalNodes> + 0 -1 1320 -1.1996289715170860e-02</internalNodes> + <leafValues> + 5.7097338140010834e-02 -1.0790690034627914e-01</leafValues></_> <_> - <!-- tree 198 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 6 4 -1.</_> - <_> - 3 1 3 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0330587811768055</threshold> - <left_val>-0.0440202616155148</left_val> - <right_val>0.2216335982084274</right_val></_></_> + <internalNodes> + 0 -1 1321 3.3058781176805496e-02</internalNodes> + <leafValues> + -4.4020261615514755e-02 2.2163359820842743e-01</leafValues></_> <_> - <!-- tree 199 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 1 2 7 -1.</_> - <_> - 11 1 1 7 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0612877309322357</threshold> - <left_val>0.0138207497075200</left_val> - <right_val>-0.3803952932357788</right_val></_></_> + <internalNodes> + 0 -1 1322 6.1287730932235718e-02</internalNodes> + <leafValues> + 1.3820749707520008e-02 -3.8039529323577881e-01</leafValues></_> <_> - <!-- tree 200 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 4 9 4 -1.</_> - <_> - 2 6 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0808761268854141</threshold> - <left_val>0.2156231999397278</left_val> - <right_val>-0.0343904495239258</right_val></_></_> + <internalNodes> + 0 -1 1323 -8.0876126885414124e-02</internalNodes> + <leafValues> + 2.1562319993972778e-01 -3.4390449523925781e-02</leafValues></_> <_> - <!-- tree 201 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 3 1 -1.</_> - <_> - 10 3 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1805639951489866e-004</threshold> - <left_val>0.0383309014141560</left_val> - <right_val>-0.0370746590197086</right_val></_></_> + <internalNodes> + 0 -1 1324 -1.1805639951489866e-04</internalNodes> + <leafValues> + 3.8330901414155960e-02 -3.7074659019708633e-02</leafValues></_> <_> - <!-- tree 202 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 6 10 -1.</_> - <_> - 2 0 2 10 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.8057601824402809e-003</threshold> - <left_val>0.0789597034454346</left_val> - <right_val>-0.0796236172318459</right_val></_></_> + <internalNodes> + 0 -1 1325 -8.8057601824402809e-03</internalNodes> + <leafValues> + 7.8959703445434570e-02 -7.9623617231845856e-02</leafValues></_> <_> - <!-- tree 203 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 4 4 6 -1.</_> - <_> - 11 4 2 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0237250495702028</threshold> - <left_val>-0.0264001805335283</left_val> - <right_val>0.1383392065763474</right_val></_></_> + <internalNodes> + 0 -1 1326 2.3725049570202827e-02</internalNodes> + <leafValues> + -2.6400180533528328e-02 1.3833920657634735e-01</leafValues></_> <_> - <!-- tree 204 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 4 4 6 -1.</_> - <_> - 5 4 2 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0138499997556210</threshold> - <left_val>0.1863771975040436</left_val> - <right_val>-0.0465360693633556</right_val></_></_> + <internalNodes> + 0 -1 1327 -1.3849999755620956e-02</internalNodes> + <leafValues> + 1.8637719750404358e-01 -4.6536069363355637e-02</leafValues></_> <_> - <!-- tree 205 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 0 4 3 -1.</_> - <_> - 12 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0164783298969269</threshold> - <left_val>-0.4737412035465241</left_val> - <right_val>0.0202428791671991</right_val></_></_> + <internalNodes> + 0 -1 1328 -1.6478329896926880e-02</internalNodes> + <leafValues> + -4.7374120354652405e-01 2.0242879167199135e-02</leafValues></_> <_> - <!-- tree 206 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 6 4 -1.</_> - <_> - 4 0 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0493974015116692</threshold> - <left_val>0.0147041296586394</left_val> - <right_val>-0.4025551974773407</right_val></_></_> + <internalNodes> + 0 -1 1329 4.9397401511669159e-02</internalNodes> + <leafValues> + 1.4704129658639431e-02 -4.0255519747734070e-01</leafValues></_> <_> - <!-- tree 207 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 3 3 5 -1.</_> - <_> - 9 3 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.9877286702394485e-003</threshold> - <left_val>0.0661891773343086</left_val> - <right_val>-0.0258490201085806</right_val></_></_> + <internalNodes> + 0 -1 1330 -9.9877286702394485e-03</internalNodes> + <leafValues> + 6.6189177334308624e-02 -2.5849020108580589e-02</leafValues></_> <_> - <!-- tree 208 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 3 3 5 -1.</_> - <_> - 8 3 1 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.5243981294333935e-003</threshold> - <left_val>0.0973625928163528</left_val> - <right_val>-0.0685955733060837</right_val></_></_> + <internalNodes> + 0 -1 1331 -4.5243981294333935e-03</internalNodes> + <leafValues> + 9.7362592816352844e-02 -6.8595573306083679e-02</leafValues></_> <_> - <!-- tree 209 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 6 4 -1.</_> - <_> - 8 4 2 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0254425797611475</threshold> - <left_val>-0.1006214991211891</left_val> - <right_val>0.0721366927027702</right_val></_></_> + <internalNodes> + 0 -1 1332 -2.5442579761147499e-02</internalNodes> + <leafValues> + -1.0062149912118912e-01 7.2136692702770233e-02</leafValues></_> <_> - <!-- tree 210 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 2 2 -1.</_> - <_> - 8 5 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0199797898530960</threshold> - <left_val>0.1233422979712486</left_val> - <right_val>-0.0486902482807636</right_val></_></_> + <internalNodes> + 0 -1 1333 -1.9979789853096008e-02</internalNodes> + <leafValues> + 1.2334229797124863e-01 -4.8690248280763626e-02</leafValues></_> <_> - <!-- tree 211 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 8 6 -1.</_> - <_> - 13 4 4 3 2.</_> - <_> - 9 7 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0859075188636780</threshold> - <left_val>0.0178996492177248</left_val> - <right_val>-0.1291702985763550</right_val></_></_> + <internalNodes> + 0 -1 1334 8.5907518863677979e-02</internalNodes> + <leafValues> + 1.7899649217724800e-02 -1.2917029857635498e-01</leafValues></_> <_> - <!-- tree 212 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 10 2 2 -1.</_> - <_> - 5 10 1 1 2.</_> - <_> - 6 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.4627919774502516e-003</threshold> - <left_val>0.0215225107967854</left_val> - <right_val>-0.2741050124168396</right_val></_></_> + <internalNodes> + 0 -1 1335 2.4627919774502516e-03</internalNodes> + <leafValues> + 2.1522510796785355e-02 -2.7410501241683960e-01</leafValues></_> <_> - <!-- tree 213 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 1 -1.</_> - <_> - 16 0 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.7198048024438322e-005</threshold> - <left_val>0.1800117045640945</left_val> - <right_val>-0.3015021085739136</right_val></_></_> + <internalNodes> + 0 -1 1336 -9.7198048024438322e-05</internalNodes> + <leafValues> + 1.8001170456409454e-01 -3.0150210857391357e-01</leafValues></_> <_> - <!-- tree 214 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 16 1 -1.</_> - <_> - 4 11 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0104239201173186</threshold> - <left_val>-0.0540018491446972</left_val> - <right_val>0.1207280978560448</right_val></_></_> + <internalNodes> + 0 -1 1337 1.0423920117318630e-02</internalNodes> + <leafValues> + -5.4001849144697189e-02 1.2072809785604477e-01</leafValues></_> <_> - <!-- tree 215 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 9 1 2 -1.</_> - <_> - 14 9 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0135430600494146</threshold> - <left_val>-0.4493210911750794</left_val> - <right_val>0.0218673702329397</right_val></_></_> + <internalNodes> + 0 -1 1338 -1.3543060049414635e-02</internalNodes> + <leafValues> + -4.4932109117507935e-01 2.1867370232939720e-02</leafValues></_> <_> - <!-- tree 216 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 12 2 -1.</_> - <_> - 5 10 4 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0122252302244306</threshold> - <left_val>0.1030898019671440</left_val> - <right_val>-0.0681838691234589</right_val></_></_> + <internalNodes> + 0 -1 1339 -1.2225230224430561e-02</internalNodes> + <leafValues> + 1.0308980196714401e-01 -6.8183869123458862e-02</leafValues></_> <_> - <!-- tree 217 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 11 16 1 -1.</_> - <_> - 1 11 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0545085892081261</threshold> - <left_val>-0.3195317089557648</left_val> - <right_val>0.0183145105838776</right_val></_></_> + <internalNodes> + 0 -1 1340 -5.4508589208126068e-02</internalNodes> + <leafValues> + -3.1953170895576477e-01 1.8314510583877563e-02</leafValues></_> <_> - <!-- tree 218 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 1 -1.</_> - <_> - 1 0 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1417720088502392e-004</threshold> - <left_val>-0.0720256865024567</left_val> - <right_val>0.0840362012386322</right_val></_></_> + <internalNodes> + 0 -1 1341 1.1417720088502392e-04</internalNodes> + <leafValues> + -7.2025686502456665e-02 8.4036201238632202e-02</leafValues></_> <_> - <!-- tree 219 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 18 2 -1.</_> - <_> - 9 10 9 1 2.</_> - <_> - 0 11 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0336737893521786</threshold> - <left_val>0.0172971803694963</left_val> - <right_val>-0.3483636975288391</right_val></_></_> + <internalNodes> + 0 -1 1342 3.3673789352178574e-02</internalNodes> + <leafValues> + 1.7297180369496346e-02 -3.4836369752883911e-01</leafValues></_> <_> - <!-- tree 220 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 2 2 -1.</_> - <_> - 7 10 1 1 2.</_> - <_> - 8 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6943500377237797e-003</threshold> - <left_val>0.1911813020706177</left_val> - <right_val>-0.0381691195070744</right_val></_></_> + <internalNodes> + 0 -1 1343 -1.6943500377237797e-03</internalNodes> + <leafValues> + 1.9118130207061768e-01 -3.8169119507074356e-02</leafValues></_> <_> - <!-- tree 221 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 4 4 -1.</_> - <_> - 10 4 2 2 2.</_> - <_> - 8 6 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0435684099793434</threshold> - <left_val>3.3935939427465200e-003</left_val> - <right_val>-0.2254254966974258</right_val></_></_> + <internalNodes> + 0 -1 1344 4.3568409979343414e-02</internalNodes> + <leafValues> + 3.3935939427465200e-03 -2.2542549669742584e-01</leafValues></_> <_> - <!-- tree 222 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 4 4 -1.</_> - <_> - 6 4 2 2 2.</_> - <_> - 8 6 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0159789901226759</threshold> - <left_val>-0.1744381040334702</left_val> - <right_val>0.0332464203238487</right_val></_></_> + <internalNodes> + 0 -1 1345 -1.5978990122675896e-02</internalNodes> + <leafValues> + -1.7443810403347015e-01 3.3246420323848724e-02</leafValues></_> <_> - <!-- tree 223 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 3 1 -1.</_> - <_> - 9 4 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7225230112671852e-003</threshold> - <left_val>0.0641593784093857</left_val> - <right_val>-0.0286883991211653</right_val></_></_> + <internalNodes> + 0 -1 1346 -1.7225230112671852e-03</internalNodes> + <leafValues> + 6.4159378409385681e-02 -2.8688399121165276e-02</leafValues></_> <_> - <!-- tree 224 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 4 3 -1.</_> - <_> - 8 2 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0115620298311114</threshold> - <left_val>-0.2579245865345001</left_val> - <right_val>0.0261554904282093</right_val></_></_> + <internalNodes> + 0 -1 1347 -1.1562029831111431e-02</internalNodes> + <leafValues> + -2.5792458653450012e-01 2.6155490428209305e-02</leafValues></_> <_> - <!-- tree 225 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 2 2 -1.</_> - <_> - 10 3 1 1 2.</_> - <_> - 9 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.8590721134096384e-005</threshold> - <left_val>-0.0595007799565792</left_val> - <right_val>0.0870544835925102</right_val></_></_> + <internalNodes> + 0 -1 1348 8.8590721134096384e-05</internalNodes> + <leafValues> + -5.9500779956579208e-02 8.7054483592510223e-02</leafValues></_> <_> - <!-- tree 226 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 3 3 1 -1.</_> - <_> - 7 3 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.8556630238890648e-003</threshold> - <left_val>-0.0454976111650467</left_val> - <right_val>0.1441427022218704</right_val></_></_> + <internalNodes> + 0 -1 1349 1.8556630238890648e-03</internalNodes> + <leafValues> + -4.5497611165046692e-02 1.4414270222187042e-01</leafValues></_> <_> - <!-- tree 227 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 3 1 2 -1.</_> - <_> - 12 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1980470299022272e-004</threshold> - <left_val>0.0445301085710526</left_val> - <right_val>-0.0600783415138721</right_val></_></_> + <internalNodes> + 0 -1 1350 -1.1980470299022272e-04</internalNodes> + <leafValues> + 4.4530108571052551e-02 -6.0078341513872147e-02</leafValues></_> <_> - <!-- tree 228 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 2 2 -1.</_> - <_> - 8 0 1 1 2.</_> - <_> - 9 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.8948839877266437e-005</threshold> - <left_val>0.0809909999370575</left_val> - <right_val>-0.0747398510575294</right_val></_></_> + <internalNodes> + 0 -1 1351 -9.8948839877266437e-05</internalNodes> + <leafValues> + 8.0990999937057495e-02 -7.4739851057529449e-02</leafValues></_> <_> - <!-- tree 229 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 2 2 -1.</_> - <_> - 9 0 1 1 2.</_> - <_> - 8 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.8720411187969148e-005</threshold> - <left_val>0.1056438013911247</left_val> - <right_val>-0.0818213969469070</right_val></_></_> + <internalNodes> + 0 -1 1352 -9.8720411187969148e-05</internalNodes> + <leafValues> + 1.0564380139112473e-01 -8.1821396946907043e-02</leafValues></_> <_> - <!-- tree 230 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 2 1 3 -1.</_> - <_> - 2 3 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>8.2602314651012421e-003</threshold> - <left_val>0.0249921903014183</left_val> - <right_val>-0.2478290945291519</right_val></_></_> + <internalNodes> + 0 -1 1353 8.2602314651012421e-03</internalNodes> + <leafValues> + 2.4992190301418304e-02 -2.4782909452915192e-01</leafValues></_> <_> - <!-- tree 231 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 2 2 -1.</_> - <_> - 9 0 1 1 2.</_> - <_> - 8 1 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.8948839877266437e-005</threshold> - <left_val>-0.0750294923782349</left_val> - <right_val>0.0795079320669174</right_val></_></_> + <internalNodes> + 0 -1 1354 9.8948839877266437e-05</internalNodes> + <leafValues> + -7.5029492378234863e-02 7.9507932066917419e-02</leafValues></_> <_> - <!-- tree 232 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 8 2 4 -1.</_> - <_> - 1 9 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.7536417841911316e-003</threshold> - <left_val>0.0439062006771564</left_val> - <right_val>-0.1266759037971497</right_val></_></_> + <internalNodes> + 0 -1 1355 4.7536417841911316e-03</internalNodes> + <leafValues> + 4.3906200677156448e-02 -1.2667590379714966e-01</leafValues></_> <_> - <!-- tree 233 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 9 6 3 -1.</_> - <_> - 10 10 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0717668011784554</threshold> - <left_val>-0.7341526746749878</left_val> - <right_val>2.7243639342486858e-003</right_val></_></_> + <internalNodes> + 0 -1 1356 -7.1766801178455353e-02</internalNodes> + <leafValues> + -7.3415267467498779e-01 2.7243639342486858e-03</leafValues></_> <_> - <!-- tree 234 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 9 6 3 -1.</_> - <_> - 2 10 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.7130648959428072e-003</threshold> - <left_val>-0.0751707628369331</left_val> - <right_val>0.0756500512361526</right_val></_></_> + <internalNodes> + 0 -1 1357 2.7130648959428072e-03</internalNodes> + <leafValues> + -7.5170762836933136e-02 7.5650051236152649e-02</leafValues></_> <_> - <!-- tree 235 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 9 10 3 -1.</_> - <_> - 6 10 10 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0252480302006006</threshold> - <left_val>0.2079502940177918</left_val> - <right_val>-0.0295440293848515</right_val></_></_> + <internalNodes> + 0 -1 1358 -2.5248030200600624e-02</internalNodes> + <leafValues> + 2.0795029401779175e-01 -2.9544029384851456e-02</leafValues></_> <_> - <!-- tree 236 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 3 1 -1.</_> - <_> - 8 5 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.2913060858845711e-003</threshold> - <left_val>0.1370705068111420</left_val> - <right_val>-0.0409450307488441</right_val></_></_> + <internalNodes> + 0 -1 1359 -3.2913060858845711e-03</internalNodes> + <leafValues> + 1.3707050681114197e-01 -4.0945030748844147e-02</leafValues></_> <_> - <!-- tree 237 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 3 -1.</_> - <_> - 16 0 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1903030099347234e-004</threshold> - <left_val>0.0775482878088951</left_val> - <right_val>-0.1795118004083633</right_val></_></_> + <internalNodes> + 0 -1 1360 -1.1903030099347234e-04</internalNodes> + <leafValues> + 7.7548287808895111e-02 -1.7951180040836334e-01</leafValues></_> <_> - <!-- tree 238 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 2 -1.</_> - <_> - 7 5 1 1 2.</_> - <_> - 8 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7214129911735654e-003</threshold> - <left_val>0.1235081031918526</left_val> - <right_val>-0.0479168817400932</right_val></_></_> + <internalNodes> + 0 -1 1361 -1.7214129911735654e-03</internalNodes> + <leafValues> + 1.2350810319185257e-01 -4.7916881740093231e-02</leafValues></_> <_> - <!-- tree 239 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 7 3 1 -1.</_> - <_> - 10 7 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0192371606826782</threshold> - <left_val>-6.1758807860314846e-003</left_val> - <right_val>0.4059542119503021</right_val></_></_> + <internalNodes> + 0 -1 1362 1.9237160682678223e-02</internalNodes> + <leafValues> + -6.1758807860314846e-03 4.0595421195030212e-01</leafValues></_> <_> - <!-- tree 240 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 9 2 2 -1.</_> - <_> - 8 9 1 1 2.</_> - <_> - 9 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6620019450783730e-003</threshold> - <left_val>-0.1858322024345398</left_val> - <right_val>0.0337677896022797</right_val></_></_> + <internalNodes> + 0 -1 1363 -1.6620019450783730e-03</internalNodes> + <leafValues> + -1.8583220243453979e-01 3.3767789602279663e-02</leafValues></_> <_> - <!-- tree 241 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 7 3 1 -1.</_> - <_> - 10 7 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.1353819221258163e-003</threshold> - <left_val>0.1621769964694977</left_val> - <right_val>-0.0149949397891760</right_val></_></_> + <internalNodes> + 0 -1 1364 -7.1353819221258163e-03</internalNodes> + <leafValues> + 1.6217699646949768e-01 -1.4994939789175987e-02</leafValues></_> <_> - <!-- tree 242 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 7 3 1 -1.</_> - <_> - 7 7 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0784330079331994e-003</threshold> - <left_val>0.1059558019042015</left_val> - <right_val>-0.0680274367332459</right_val></_></_> + <internalNodes> + 0 -1 1365 -1.0784330079331994e-03</internalNodes> + <leafValues> + 1.0595580190420151e-01 -6.8027436733245850e-02</leafValues></_> <_> - <!-- tree 243 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 4 5 -1.</_> - <_> - 8 1 2 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0131684402003884</threshold> - <left_val>0.0252569299191237</left_val> - <right_val>-0.2468155026435852</right_val></_></_> + <internalNodes> + 0 -1 1366 1.3168440200388432e-02</internalNodes> + <leafValues> + 2.5256929919123650e-02 -2.4681550264358521e-01</leafValues></_> <_> - <!-- tree 244 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 6 3 -1.</_> - <_> - 0 7 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0437662191689014</threshold> - <left_val>8.1717539578676224e-003</left_val> - <right_val>-0.6821336746215820</right_val></_></_> + <internalNodes> + 0 -1 1367 4.3766219168901443e-02</internalNodes> + <leafValues> + 8.1717539578676224e-03 -6.8213367462158203e-01</leafValues></_> <_> - <!-- tree 245 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 3 1 2 -1.</_> - <_> - 12 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.7744129598140717e-003</threshold> - <left_val>-8.9659281075000763e-003</left_val> - <right_val>0.3316135108470917</right_val></_></_></trees> - <stage_threshold>-1.5257749557495117</stage_threshold> - <parent>11</parent> - <next>-1</next></_> + <internalNodes> + 0 -1 1368 9.7744129598140717e-03</internalNodes> + <leafValues> + -8.9659281075000763e-03 3.3161351084709167e-01</leafValues></_></weakClassifiers></_> <_> - <!-- stage 13 --> - <trees> + <maxWeakCount>279</maxWeakCount> + <stageThreshold>-1.4309279918670654e+00</stageThreshold> + <weakClassifiers> <_> - <!-- tree 0 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 3 4 -1.</_> - <_> - 5 4 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0187129899859428</threshold> - <left_val>0.3169975876808167</left_val> - <right_val>-0.1719827055931091</right_val></_></_> + <internalNodes> + 0 -1 1369 -1.8712989985942841e-02</internalNodes> + <leafValues> + 3.1699758768081665e-01 -1.7198270559310913e-01</leafValues></_> <_> - <!-- tree 1 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 1 2 3 -1.</_> - <_> - 11 1 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>1.3795300037600100e-004</threshold> - <left_val>-0.2154099047183991</left_val> - <right_val>0.0661365911364555</right_val></_></_> + <internalNodes> + 0 -1 1370 1.3795300037600100e-04</internalNodes> + <leafValues> + -2.1540990471839905e-01 6.6136591136455536e-02</leafValues></_> <_> - <!-- tree 2 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 6 2 6 -1.</_> - <_> - 9 6 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0674285963177681</threshold> - <left_val>-5.2226951811462641e-004</left_val> - <right_val>-3.5010319824218750e+003</right_val></_></_> + <internalNodes> + 0 -1 1371 6.7428596317768097e-02</internalNodes> + <leafValues> + -5.2226951811462641e-04 -3.5010319824218750e+03</leafValues></_> <_> - <!-- tree 3 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 6 -1.</_> - <_> - 9 0 9 3 2.</_> - <_> - 0 3 9 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2496598064899445</threshold> - <left_val>-0.2778427004814148</left_val> - <right_val>5.9022889472544193e-003</right_val></_></_> + <internalNodes> + 0 -1 1372 -2.4965980648994446e-01</internalNodes> + <leafValues> + -2.7784270048141479e-01 5.9022889472544193e-03</leafValues></_> <_> - <!-- tree 4 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 6 6 2 -1.</_> - <_> - 8 6 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0266050491482019</threshold> - <left_val>0.2668417096138001</left_val> - <right_val>-0.1390440016984940</right_val></_></_> + <internalNodes> + 0 -1 1373 -2.6605049148201942e-02</internalNodes> + <leafValues> + 2.6684170961380005e-01 -1.3904400169849396e-01</leafValues></_> <_> - <!-- tree 5 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 5 4 6 -1.</_> - <_> - 14 5 2 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0231734402477741</threshold> - <left_val>0.1360118985176086</left_val> - <right_val>-0.1087158992886543</right_val></_></_> + <internalNodes> + 0 -1 1374 -2.3173440247774124e-02</internalNodes> + <leafValues> + 1.3601189851760864e-01 -1.0871589928865433e-01</leafValues></_> <_> - <!-- tree 6 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 1 4 -1.</_> - <_> - 5 5 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-5.5514220148324966e-003</threshold> - <left_val>0.1947388947010040</left_val> - <right_val>-0.1455153971910477</right_val></_></_> + <internalNodes> + 0 -1 1375 -5.5514220148324966e-03</internalNodes> + <leafValues> + 1.9473889470100403e-01 -1.4551539719104767e-01</leafValues></_> <_> - <!-- tree 7 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 10 12 -1.</_> - <_> - 4 6 10 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0708251595497131</threshold> - <left_val>-0.2606320977210999</left_val> - <right_val>0.0790214613080025</right_val></_></_> + <internalNodes> + 0 -1 1376 7.0825159549713135e-02</internalNodes> + <leafValues> + -2.6063209772109985e-01 7.9021461308002472e-02</leafValues></_> <_> - <!-- tree 8 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 4 2 3 -1.</_> - <_> - 7 5 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0235545095056295</threshold> - <left_val>0.2902652025222778</left_val> - <right_val>-0.0783984586596489</right_val></_></_> + <internalNodes> + 0 -1 1377 -2.3554509505629539e-02</internalNodes> + <leafValues> + 2.9026520252227783e-01 -7.8398458659648895e-02</leafValues></_> <_> - <!-- tree 9 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 8 4 -1.</_> - <_> - 7 1 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0433964505791664</threshold> - <left_val>0.2480234056711197</left_val> - <right_val>-0.0418625101447105</right_val></_></_> + <internalNodes> + 0 -1 1378 -4.3396450579166412e-02</internalNodes> + <leafValues> + 2.4802340567111969e-01 -4.1862510144710541e-02</leafValues></_> <_> - <!-- tree 10 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 9 4 -1.</_> - <_> - 2 1 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0397554486989975</threshold> - <left_val>-0.0823832079768181</left_val> - <right_val>0.2556500136852264</right_val></_></_> + <internalNodes> + 0 -1 1379 3.9755448698997498e-02</internalNodes> + <leafValues> + -8.2383207976818085e-02 2.5565001368522644e-01</leafValues></_> <_> - <!-- tree 11 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 5 2 4 -1.</_> - <_> - 16 5 1 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.7884290106594563e-003</threshold> - <left_val>0.0915648564696312</left_val> - <right_val>-0.0889971032738686</right_val></_></_> + <internalNodes> + 0 -1 1380 -4.7884290106594563e-03</internalNodes> + <leafValues> + 9.1564856469631195e-02 -8.8997103273868561e-02</leafValues></_> <_> - <!-- tree 12 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 2 6 -1.</_> - <_> - 0 6 1 3 2.</_> - <_> - 1 9 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1186640040250495e-004</threshold> - <left_val>-0.1787616014480591</left_val> - <right_val>0.0934264212846756</right_val></_></_> + <internalNodes> + 0 -1 1381 1.1186640040250495e-04</internalNodes> + <leafValues> + -1.7876160144805908e-01 9.3426421284675598e-02</leafValues></_> <_> - <!-- tree 13 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 5 3 3 -1.</_> - <_> - 12 5 1 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0186534207314253</threshold> - <left_val>-0.0642055869102478</left_val> - <right_val>0.3711349070072174</right_val></_></_> + <internalNodes> + 0 -1 1382 1.8653420731425285e-02</internalNodes> + <leafValues> + -6.4205586910247803e-02 3.7113490700721741e-01</leafValues></_> <_> - <!-- tree 14 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 1 10 -1.</_> - <_> - 0 7 1 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.3760719709098339e-003</threshold> - <left_val>-0.1995479017496109</left_val> - <right_val>0.0762146711349487</right_val></_></_> + <internalNodes> + 0 -1 1383 4.3760719709098339e-03</internalNodes> + <leafValues> + -1.9954790174961090e-01 7.6214671134948730e-02</leafValues></_> <_> - <!-- tree 15 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 5 1 2 -1.</_> - <_> - 13 5 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0149964597076178</threshold> - <left_val>0.1893073022365570</left_val> - <right_val>-0.0224247798323631</right_val></_></_> + <internalNodes> + 0 -1 1384 -1.4996459707617760e-02</internalNodes> + <leafValues> + 1.8930730223655701e-01 -2.2424779832363129e-02</leafValues></_> <_> - <!-- tree 16 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 5 2 1 -1.</_> - <_> - 5 5 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>5.5244299583137035e-003</threshold> - <left_val>-0.0741441026329994</left_val> - <right_val>0.2531807124614716</right_val></_></_> + <internalNodes> + 0 -1 1385 5.5244299583137035e-03</internalNodes> + <leafValues> + -7.4144102632999420e-02 2.5318071246147156e-01</leafValues></_> <_> - <!-- tree 17 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 10 6 2 -1.</_> - <_> - 12 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.6609991006553173e-003</threshold> - <left_val>-0.3397732973098755</left_val> - <right_val>0.0311144795268774</right_val></_></_> + <internalNodes> + 0 -1 1386 -5.6609991006553173e-03</internalNodes> + <leafValues> + -3.3977329730987549e-01 3.1114479526877403e-02</leafValues></_> <_> - <!-- tree 18 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 6 2 -1.</_> - <_> - 8 0 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.7609830982983112e-003</threshold> - <left_val>0.1164833977818489</left_val> - <right_val>-0.1157424002885819</right_val></_></_> + <internalNodes> + 0 -1 1387 -5.7609830982983112e-03</internalNodes> + <leafValues> + 1.1648339778184891e-01 -1.1574240028858185e-01</leafValues></_> <_> - <!-- tree 19 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 11 -1.</_> - <_> - 0 0 9 11 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.2648009061813355</threshold> - <left_val>0.1816468983888626</left_val> - <right_val>-0.0764482319355011</right_val></_></_> + <internalNodes> + 0 -1 1388 -2.6480090618133545e-01</internalNodes> + <leafValues> + 1.8164689838886261e-01 -7.6448231935501099e-02</leafValues></_> <_> - <!-- tree 20 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 3 4 2 -1.</_> - <_> - 8 3 4 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0320549011230469</threshold> - <left_val>0.2739225924015045</left_val> - <right_val>-0.0465570017695427</right_val></_></_> + <internalNodes> + 0 -1 1389 -3.2054901123046875e-02</internalNodes> + <leafValues> + 2.7392259240150452e-01 -4.6557001769542694e-02</leafValues></_> <_> - <!-- tree 21 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 4 2 6 -1.</_> - <_> - 15 4 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.6860670447349548e-003</threshold> - <left_val>-0.0255370903760195</left_val> - <right_val>0.1257251054048538</right_val></_></_> + <internalNodes> + 0 -1 1390 5.6860670447349548e-03</internalNodes> + <leafValues> + -2.5537090376019478e-02 1.2572510540485382e-01</leafValues></_> <_> - <!-- tree 22 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 4 2 6 -1.</_> - <_> - 2 4 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1426587849855423e-003</threshold> - <left_val>0.0999652668833733</left_val> - <right_val>-0.1371494978666306</right_val></_></_> + <internalNodes> + 0 -1 1391 -4.1426587849855423e-03</internalNodes> + <leafValues> + 9.9965266883373260e-02 -1.3714949786663055e-01</leafValues></_> <_> - <!-- tree 23 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 7 1 4 -1.</_> - <_> - 17 7 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0252228304743767</threshold> - <left_val>-0.2159041017293930</left_val> - <right_val>0.0333611182868481</right_val></_></_> + <internalNodes> + 0 -1 1392 -2.5222830474376678e-02</internalNodes> + <leafValues> + -2.1590410172939301e-01 3.3361118286848068e-02</leafValues></_> <_> - <!-- tree 24 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 7 4 1 -1.</_> - <_> - 1 7 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-1.0513579763937742e-004</threshold> - <left_val>0.0599936395883560</left_val> - <right_val>-0.2243296951055527</right_val></_></_> + <internalNodes> + 0 -1 1393 -1.0513579763937742e-04</internalNodes> + <leafValues> + 5.9993639588356018e-02 -2.2432969510555267e-01</leafValues></_> <_> - <!-- tree 25 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 8 3 -1.</_> - <_> - 5 4 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0321081615984440</threshold> - <left_val>-0.0458225198090076</left_val> - <right_val>0.2678138017654419</right_val></_></_> + <internalNodes> + 0 -1 1394 3.2108161598443985e-02</internalNodes> + <leafValues> + -4.5822519809007645e-02 2.6781380176544189e-01</leafValues></_> <_> - <!-- tree 26 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 2 4 -1.</_> - <_> - 0 3 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0108736101537943</threshold> - <left_val>-0.3429633975028992</left_val> - <right_val>0.0370439216494560</right_val></_></_> + <internalNodes> + 0 -1 1395 -1.0873610153794289e-02</internalNodes> + <leafValues> + -3.4296339750289917e-01 3.7043921649456024e-02</leafValues></_> <_> - <!-- tree 27 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 4 2 6 -1.</_> - <_> - 14 4 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1067221015691757</threshold> - <left_val>-0.1824861019849777</left_val> - <right_val>0.0230518095195293</right_val></_></_> + <internalNodes> + 0 -1 1396 -1.0672210156917572e-01</internalNodes> + <leafValues> + -1.8248610198497772e-01 2.3051809519529343e-02</leafValues></_> <_> - <!-- tree 28 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 4 3 -1.</_> - <_> - 4 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5376763492822647e-003</threshold> - <left_val>0.0331780202686787</left_val> - <right_val>-0.3144476115703583</right_val></_></_> + <internalNodes> + 0 -1 1397 9.5376763492822647e-03</internalNodes> + <leafValues> + 3.3178020268678665e-02 -3.1444761157035828e-01</leafValues></_> <_> - <!-- tree 29 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 4 4 -1.</_> - <_> - 10 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0153979696333408</threshold> - <left_val>-0.4494292140007019</left_val> - <right_val>0.0255548395216465</right_val></_></_> + <internalNodes> + 0 -1 1398 -1.5397969633340836e-02</internalNodes> + <leafValues> + -4.4942921400070190e-01 2.5554839521646500e-02</leafValues></_> <_> - <!-- tree 30 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 2 10 3 -1.</_> - <_> - 7 2 5 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0188742391765118</threshold> - <left_val>0.0897385105490685</left_val> - <right_val>-0.1181861013174057</right_val></_></_> + <internalNodes> + 0 -1 1399 -1.8874239176511765e-02</internalNodes> + <leafValues> + 8.9738510549068451e-02 -1.1818610131740570e-01</leafValues></_> <_> - <!-- tree 31 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 10 6 2 -1.</_> - <_> - 12 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0138073395937681</threshold> - <left_val>-0.4017077088356018</left_val> - <right_val>3.7115719169378281e-003</right_val></_></_> + <internalNodes> + 0 -1 1400 -1.3807339593768120e-02</internalNodes> + <leafValues> + -4.0170770883560181e-01 3.7115719169378281e-03</leafValues></_> <_> - <!-- tree 32 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 6 2 -1.</_> - <_> - 0 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.8676962032914162e-003</threshold> - <left_val>-0.3639518916606903</left_val> - <right_val>0.0286557506769896</right_val></_></_> + <internalNodes> + 0 -1 1401 -4.8676962032914162e-03</internalNodes> + <leafValues> + -3.6395189166069031e-01 2.8655750676989555e-02</leafValues></_> <_> - <!-- tree 33 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 8 2 3 -1.</_> - <_> - 8 9 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0115470895543695</threshold> - <left_val>-0.0434625707566738</left_val> - <right_val>0.2495341002941132</right_val></_></_> + <internalNodes> + 0 -1 1402 1.1547089554369450e-02</internalNodes> + <leafValues> + -4.3462570756673813e-02 2.4953410029411316e-01</leafValues></_> <_> - <!-- tree 34 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 7 4 3 -1.</_> - <_> - 7 8 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0186315197497606</threshold> - <left_val>-0.0519451610743999</left_val> - <right_val>0.2012677043676376</right_val></_></_> + <internalNodes> + 0 -1 1403 1.8631519749760628e-02</internalNodes> + <leafValues> + -5.1945161074399948e-02 2.0126770436763763e-01</leafValues></_> <_> - <!-- tree 35 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 7 2 -1.</_> - <_> - 7 5 7 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0221620593219996</threshold> - <left_val>-0.0283674690872431</left_val> - <right_val>0.1812507063150406</right_val></_></_> + <internalNodes> + 0 -1 1404 2.2162059321999550e-02</internalNodes> + <leafValues> + -2.8367469087243080e-02 1.8125070631504059e-01</leafValues></_> <_> - <!-- tree 36 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 0 4 4 -1.</_> - <_> - 8 0 2 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0132822804152966</threshold> - <left_val>-0.4396710991859436</left_val> - <right_val>0.0231541302055120</right_val></_></_> + <internalNodes> + 0 -1 1405 -1.3282280415296555e-02</internalNodes> + <leafValues> + -4.3967109918594360e-01 2.3154130205512047e-02</leafValues></_> <_> - <!-- tree 37 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 1 -1.</_> - <_> - 6 0 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0478182286024094</threshold> - <left_val>0.1527013927698135</left_val> - <right_val>-0.0647646263241768</right_val></_></_> + <internalNodes> + 0 -1 1406 -4.7818228602409363e-02</internalNodes> + <leafValues> + 1.5270139276981354e-01 -6.4764626324176788e-02</leafValues></_> <_> - <!-- tree 38 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 7 6 -1.</_> - <_> - 3 2 7 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0707686468958855</threshold> - <left_val>0.2255931049585342</left_val> - <right_val>-0.0463837198913097</right_val></_></_> + <internalNodes> + 0 -1 1407 -7.0768646895885468e-02</internalNodes> + <leafValues> + 2.2559310495853424e-01 -4.6383719891309738e-02</leafValues></_> <_> - <!-- tree 39 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 12 4 -1.</_> - <_> - 4 2 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0245879907160997</threshold> - <left_val>-0.0798009634017944</left_val> - <right_val>0.1226278021931648</right_val></_></_> + <internalNodes> + 0 -1 1408 2.4587990716099739e-02</internalNodes> + <leafValues> + -7.9800963401794434e-02 1.2262780219316483e-01</leafValues></_> <_> - <!-- tree 40 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 1 4 -1.</_> - <_> - 0 9 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.9572639614343643e-003</threshold> - <left_val>-0.2540132105350494</left_val> - <right_val>0.0371098108589649</right_val></_></_> + <internalNodes> + 0 -1 1409 -2.9572639614343643e-03</internalNodes> + <leafValues> + -2.5401321053504944e-01 3.7109810858964920e-02</leafValues></_> <_> - <!-- tree 41 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 6 8 -1.</_> - <_> - 6 6 6 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0771641880273819</threshold> - <left_val>0.0317316912114620</left_val> - <right_val>-0.2723929882049561</right_val></_></_> + <internalNodes> + 0 -1 1410 7.7164188027381897e-02</internalNodes> + <leafValues> + 3.1731691211462021e-02 -2.7239298820495605e-01</leafValues></_> <_> - <!-- tree 42 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 3 4 -1.</_> - <_> - 3 6 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0355004407465458</threshold> - <left_val>-0.0477378703653812</left_val> - <right_val>0.2348039001226425</right_val></_></_> + <internalNodes> + 0 -1 1411 3.5500440746545792e-02</internalNodes> + <leafValues> + -4.7737870365381241e-02 2.3480390012264252e-01</leafValues></_> <_> - <!-- tree 43 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 2 4 3 -1.</_> - <_> - 13 3 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0244868192821741</threshold> - <left_val>-0.0221184995025396</left_val> - <right_val>0.1614083051681519</right_val></_></_> + <internalNodes> + 0 -1 1412 2.4486819282174110e-02</internalNodes> + <leafValues> + -2.2118499502539635e-02 1.6140830516815186e-01</leafValues></_> <_> - <!-- tree 44 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 3 4 -1.</_> - <_> - 5 3 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0226265992969275</threshold> - <left_val>-0.0505031906068325</left_val> - <right_val>0.2056812942028046</right_val></_></_> + <internalNodes> + 0 -1 1413 2.2626599296927452e-02</internalNodes> + <leafValues> + -5.0503190606832504e-02 2.0568129420280457e-01</leafValues></_> <_> - <!-- tree 45 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 3 3 1 -1.</_> - <_> - 14 4 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.3773749172687531e-003</threshold> - <left_val>0.0319384485483170</left_val> - <right_val>-0.1698261946439743</right_val></_></_> + <internalNodes> + 0 -1 1414 7.3773749172687531e-03</internalNodes> + <leafValues> + 3.1938448548316956e-02 -1.6982619464397430e-01</leafValues></_> <_> - <!-- tree 46 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 6 4 -1.</_> - <_> - 0 0 3 2 2.</_> - <_> - 3 2 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0125159500166774</threshold> - <left_val>0.1257700026035309</left_val> - <right_val>-0.0738597363233566</right_val></_></_> + <internalNodes> + 0 -1 1415 -1.2515950016677380e-02</internalNodes> + <leafValues> + 1.2577000260353088e-01 -7.3859736323356628e-02</leafValues></_> <_> - <!-- tree 47 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 0 6 5 -1.</_> - <_> - 11 0 2 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.1496510598808527e-003</threshold> - <left_val>0.0664999634027481</left_val> - <right_val>-0.1594870984554291</right_val></_></_> + <internalNodes> + 0 -1 1416 2.1496510598808527e-03</internalNodes> + <leafValues> + 6.6499963402748108e-02 -1.5948709845542908e-01</leafValues></_> <_> - <!-- tree 48 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 14 12 -1.</_> - <_> - 7 0 7 12 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.3278386890888214</threshold> - <left_val>-0.0353878512978554</left_val> - <right_val>0.2995929121971130</right_val></_></_> + <internalNodes> + 0 -1 1417 3.2783868908882141e-01</internalNodes> + <leafValues> + -3.5387851297855377e-02 2.9959291219711304e-01</leafValues></_> <_> - <!-- tree 49 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 9 4 3 -1.</_> - <_> - 10 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0129288099706173</threshold> - <left_val>-0.4243718087673187</left_val> - <right_val>0.0149258198216558</right_val></_></_> + <internalNodes> + 0 -1 1418 -1.2928809970617294e-02</internalNodes> + <leafValues> + -4.2437180876731873e-01 1.4925819821655750e-02</leafValues></_> <_> - <!-- tree 50 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 6 5 -1.</_> - <_> - 5 0 2 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0295433104038239</threshold> - <left_val>-0.2596887052059174</left_val> - <right_val>0.0306726302951574</right_val></_></_> + <internalNodes> + 0 -1 1419 -2.9543310403823853e-02</internalNodes> + <leafValues> + -2.5968870520591736e-01 3.0672630295157433e-02</leafValues></_> <_> - <!-- tree 51 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 4 2 -1.</_> - <_> - 12 6 2 1 2.</_> - <_> - 10 7 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0138885397464037</threshold> - <left_val>-0.0291917603462934</left_val> - <right_val>0.2665095925331116</right_val></_></_> + <internalNodes> + 0 -1 1420 1.3888539746403694e-02</internalNodes> + <leafValues> + -2.9191760346293449e-02 2.6650959253311157e-01</leafValues></_> <_> - <!-- tree 52 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 9 12 2 -1.</_> - <_> - 6 9 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0142434099689126</threshold> - <left_val>0.1141939014196396</left_val> - <right_val>-0.0750029236078262</right_val></_></_> + <internalNodes> + 0 -1 1421 -1.4243409968912601e-02</internalNodes> + <leafValues> + 1.1419390141963959e-01 -7.5002923607826233e-02</leafValues></_> <_> - <!-- tree 53 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 6 2 -1.</_> - <_> - 9 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0249509606510401</threshold> - <left_val>-0.4417090117931366</left_val> - <right_val>0.0120464395731688</right_val></_></_> + <internalNodes> + 0 -1 1422 -2.4950960651040077e-02</internalNodes> + <leafValues> + -4.4170901179313660e-01 1.2046439573168755e-02</leafValues></_> <_> - <!-- tree 54 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 10 6 2 -1.</_> - <_> - 7 10 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0139082102105021</threshold> - <left_val>-0.2965297102928162</left_val> - <right_val>0.0349816605448723</right_val></_></_> + <internalNodes> + 0 -1 1423 -1.3908210210502148e-02</internalNodes> + <leafValues> + -2.9652971029281616e-01 3.4981660544872284e-02</leafValues></_> <_> - <!-- tree 55 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 1 3 2 -1.</_> - <_> - 15 2 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0126208495348692</threshold> - <left_val>0.0384497605264187</left_val> - <right_val>-0.3253388106822968</right_val></_></_> + <internalNodes> + 0 -1 1424 1.2620849534869194e-02</internalNodes> + <leafValues> + 3.8449760526418686e-02 -3.2533881068229675e-01</leafValues></_> <_> - <!-- tree 56 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 3 3 -1.</_> - <_> - 5 1 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.8615900129079819e-003</threshold> - <left_val>0.1639689952135086</left_val> - <right_val>-0.0502812713384628</right_val></_></_> + <internalNodes> + 0 -1 1425 -7.8615900129079819e-03</internalNodes> + <leafValues> + 1.6396899521350861e-01 -5.0281271338462830e-02</leafValues></_> <_> - <!-- tree 57 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 6 3 -1.</_> - <_> - 8 1 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0132478503510356</threshold> - <left_val>-0.0481717512011528</left_val> - <right_val>0.1309133023023605</right_val></_></_> + <internalNodes> + 0 -1 1426 1.3247850351035595e-02</internalNodes> + <leafValues> + -4.8171751201152802e-02 1.3091330230236053e-01</leafValues></_> <_> - <!-- tree 58 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 2 3 -1.</_> - <_> - 3 2 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0196284297853708</threshold> - <left_val>-0.3082844018936157</left_val> - <right_val>0.0261054299771786</right_val></_></_> + <internalNodes> + 0 -1 1427 -1.9628429785370827e-02</internalNodes> + <leafValues> + -3.0828440189361572e-01 2.6105429977178574e-02</leafValues></_> <_> - <!-- tree 59 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 3 1 -1.</_> - <_> - 9 5 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1116229870822281e-004</threshold> - <left_val>0.0494998097419739</left_val> - <right_val>-0.0699484497308731</right_val></_></_> + <internalNodes> + 0 -1 1428 -1.1116229870822281e-04</internalNodes> + <leafValues> + 4.9499809741973877e-02 -6.9948449730873108e-02</leafValues></_> <_> - <!-- tree 60 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 3 1 -1.</_> - <_> - 8 5 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2212720513343811e-003</threshold> - <left_val>0.2500143051147461</left_val> - <right_val>-0.0391675196588039</right_val></_></_> + <internalNodes> + 0 -1 1429 -6.2212720513343811e-03</internalNodes> + <leafValues> + 2.5001430511474609e-01 -3.9167519658803940e-02</leafValues></_> <_> - <!-- tree 61 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 3 1 -1.</_> - <_> - 10 5 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.5383752118796110e-005</threshold> - <left_val>0.0610463283956051</left_val> - <right_val>-0.0727398172020912</right_val></_></_> + <internalNodes> + 0 -1 1430 -7.5383752118796110e-05</internalNodes> + <leafValues> + 6.1046328395605087e-02 -7.2739817202091217e-02</leafValues></_> <_> - <!-- tree 62 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 5 3 1 -1.</_> - <_> - 7 5 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.9724968373775482e-003</threshold> - <left_val>0.1830147057771683</left_val> - <right_val>-0.0444073900580406</right_val></_></_> + <internalNodes> + 0 -1 1431 -3.9724968373775482e-03</internalNodes> + <leafValues> + 1.8301470577716827e-01 -4.4407390058040619e-02</leafValues></_> <_> - <!-- tree 63 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 0 4 4 -1.</_> - <_> - 14 1 2 4 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0499811917543411</threshold> - <left_val>-0.0891634970903397</left_val> - <right_val>0.0143880601972342</right_val></_></_> + <internalNodes> + 0 -1 1432 -4.9981191754341125e-02</internalNodes> + <leafValues> + -8.9163497090339661e-02 1.4388060197234154e-02</leafValues></_> <_> - <!-- tree 64 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 4 4 -1.</_> - <_> - 4 1 4 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0296290908008814</threshold> - <left_val>0.0262519307434559</left_val> - <right_val>-0.3254190087318420</right_val></_></_> + <internalNodes> + 0 -1 1433 2.9629090800881386e-02</internalNodes> + <leafValues> + 2.6251930743455887e-02 -3.2541900873184204e-01</leafValues></_> <_> - <!-- tree 65 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 7 6 1 -1.</_> - <_> - 12 7 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0311100594699383</threshold> - <left_val>-0.0335757881402969</left_val> - <right_val>0.4515709877014160</right_val></_></_> + <internalNodes> + 0 -1 1434 3.1110059469938278e-02</internalNodes> + <leafValues> + -3.3575788140296936e-02 4.5157098770141602e-01</leafValues></_> <_> - <!-- tree 66 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 3 -1.</_> - <_> - 6 0 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0741986781358719</threshold> - <left_val>0.1032688990235329</left_val> - <right_val>-0.0769387409090996</right_val></_></_> + <internalNodes> + 0 -1 1435 -7.4198678135871887e-02</internalNodes> + <leafValues> + 1.0326889902353287e-01 -7.6938740909099579e-02</leafValues></_> <_> - <!-- tree 67 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 16 2 -1.</_> - <_> - 6 1 8 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0398988984525204</threshold> - <left_val>-0.0258397292345762</left_val> - <right_val>0.1543582975864410</right_val></_></_> + <internalNodes> + 0 -1 1436 3.9898898452520370e-02</internalNodes> + <leafValues> + -2.5839729234576225e-02 1.5435829758644104e-01</leafValues></_> <_> - <!-- tree 68 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 0 4 2 -1.</_> - <_> - 7 0 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.2805712223052979e-003</threshold> - <left_val>-0.2619506120681763</left_val> - <right_val>0.0273570101708174</right_val></_></_> + <internalNodes> + 0 -1 1437 -6.2805712223052979e-03</internalNodes> + <leafValues> + -2.6195061206817627e-01 2.7357010170817375e-02</leafValues></_> <_> - <!-- tree 69 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 3 2 -1.</_> - <_> - 11 6 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.1073351167142391e-003</threshold> - <left_val>0.1470880061388016</left_val> - <right_val>-0.0503268390893936</right_val></_></_> + <internalNodes> + 0 -1 1438 -4.1073351167142391e-03</internalNodes> + <leafValues> + 1.4708800613880157e-01 -5.0326839089393616e-02</leafValues></_> <_> - <!-- tree 70 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 2 6 -1.</_> - <_> - 1 4 1 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9765571020543575e-003</threshold> - <left_val>0.0866565704345703</left_val> - <right_val>-0.0833212807774544</right_val></_></_> + <internalNodes> + 0 -1 1439 -4.9765571020543575e-03</internalNodes> + <leafValues> + 8.6656570434570312e-02 -8.3321280777454376e-02</leafValues></_> <_> - <!-- tree 71 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 2 4 -1.</_> - <_> - 9 3 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0562253110110760</threshold> - <left_val>-9.0561211109161377e-003</left_val> - <right_val>0.1364547014236450</right_val></_></_> + <internalNodes> + 0 -1 1440 5.6225311011075974e-02</internalNodes> + <leafValues> + -9.0561211109161377e-03 1.3645470142364502e-01</leafValues></_> <_> - <!-- tree 72 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 4 2 -1.</_> - <_> - 9 3 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0679563283920288</threshold> - <left_val>0.2271303981542587</left_val> - <right_val>-0.0332352407276630</right_val></_></_> + <internalNodes> + 0 -1 1441 -6.7956328392028809e-02</internalNodes> + <leafValues> + 2.2713039815425873e-01 -3.3235240727663040e-02</leafValues></_> <_> - <!-- tree 73 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 7 18 4 -1.</_> - <_> - 9 7 9 2 2.</_> - <_> - 0 9 9 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0857317522168159</threshold> - <left_val>0.0334422811865807</left_val> - <right_val>-0.2316354960203171</right_val></_></_> + <internalNodes> + 0 -1 1442 8.5731752216815948e-02</internalNodes> + <leafValues> + 3.3442281186580658e-02 -2.3163549602031708e-01</leafValues></_> <_> - <!-- tree 74 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 6 4 -1.</_> - <_> - 0 6 3 2 2.</_> - <_> - 3 8 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0175412092357874</threshold> - <left_val>-0.0695120915770531</left_val> - <right_val>0.1189955025911331</right_val></_></_> + <internalNodes> + 0 -1 1443 1.7541209235787392e-02</internalNodes> + <leafValues> + -6.9512091577053070e-02 1.1899550259113312e-01</leafValues></_> <_> - <!-- tree 75 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 0 1 12 -1.</_> - <_> - 17 4 1 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7374299932271242e-003</threshold> - <left_val>0.0921720936894417</left_val> - <right_val>-0.2266921997070313</right_val></_></_> + <internalNodes> + 0 -1 1444 -1.7374299932271242e-03</internalNodes> + <leafValues> + 9.2172093689441681e-02 -2.2669219970703125e-01</leafValues></_> <_> - <!-- tree 76 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 3 5 -1.</_> - <_> - 6 5 1 5 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0219108797609806</threshold> - <left_val>-0.0436043590307236</left_val> - <right_val>0.2050873935222626</right_val></_></_> + <internalNodes> + 0 -1 1445 2.1910879760980606e-02</internalNodes> + <leafValues> + -4.3604359030723572e-02 2.0508739352226257e-01</leafValues></_> <_> - <!-- tree 77 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 1 3 4 -1.</_> - <_> - 14 2 3 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0775934234261513</threshold> - <left_val>-0.3196151852607727</left_val> - <right_val>7.1907751262187958e-003</right_val></_></_> + <internalNodes> + 0 -1 1446 -7.7593423426151276e-02</internalNodes> + <leafValues> + -3.1961518526077271e-01 7.1907751262187958e-03</leafValues></_> <_> - <!-- tree 78 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 1 4 3 -1.</_> - <_> - 4 2 2 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>9.2180138453841209e-003</threshold> - <left_val>-0.0750737786293030</left_val> - <right_val>0.1025044992566109</right_val></_></_> + <internalNodes> + 0 -1 1447 9.2180138453841209e-03</internalNodes> + <leafValues> + -7.5073778629302979e-02 1.0250449925661087e-01</leafValues></_> <_> - <!-- tree 79 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 17 0 1 12 -1.</_> - <_> - 17 4 1 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0260558295994997</threshold> - <left_val>0.0133810797706246</left_val> - <right_val>-0.2585015892982483</right_val></_></_> + <internalNodes> + 0 -1 1448 2.6055829599499702e-02</internalNodes> + <leafValues> + 1.3381079770624638e-02 -2.5850158929824829e-01</leafValues></_> <_> - <!-- tree 80 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 1 12 -1.</_> - <_> - 0 4 1 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0282786805182695</threshold> - <left_val>0.0243920907378197</left_val> - <right_val>-0.3464938998222351</right_val></_></_> + <internalNodes> + 0 -1 1449 2.8278680518269539e-02</internalNodes> + <leafValues> + 2.4392090737819672e-02 -3.4649389982223511e-01</leafValues></_> <_> - <!-- tree 81 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 9 6 3 -1.</_> - <_> - 11 9 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.8839879669249058e-003</threshold> - <left_val>0.0463073104619980</left_val> - <right_val>-0.0398905314505100</right_val></_></_> + <internalNodes> + 0 -1 1450 -2.8839879669249058e-03</internalNodes> + <leafValues> + 4.6307310461997986e-02 -3.9890531450510025e-02</leafValues></_> <_> - <!-- tree 82 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 9 6 3 -1.</_> - <_> - 5 9 2 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0320219099521637</threshold> - <left_val>-0.4223451912403107</left_val> - <right_val>0.0160141196101904</right_val></_></_> + <internalNodes> + 0 -1 1451 -3.2021909952163696e-02</internalNodes> + <leafValues> + -4.2234519124031067e-01 1.6014119610190392e-02</leafValues></_> <_> - <!-- tree 83 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 5 12 4 -1.</_> - <_> - 9 5 6 2 2.</_> - <_> - 3 7 6 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0821020230650902</threshold> - <left_val>0.0188119504600763</left_val> - <right_val>-0.3567441999912262</right_val></_></_> + <internalNodes> + 0 -1 1452 8.2102023065090179e-02</internalNodes> + <leafValues> + 1.8811950460076332e-02 -3.5674419999122620e-01</leafValues></_> <_> - <!-- tree 84 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 9 9 3 -1.</_> - <_> - 3 10 9 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0168902408331633</threshold> - <left_val>0.1805537045001984</left_val> - <right_val>-0.0396057404577732</right_val></_></_> + <internalNodes> + 0 -1 1453 -1.6890240833163261e-02</internalNodes> + <leafValues> + 1.8055370450019836e-01 -3.9605740457773209e-02</leafValues></_> <_> - <!-- tree 85 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 18 2 -1.</_> - <_> - 6 10 6 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0394227318465710</threshold> - <left_val>-0.0472475700080395</left_val> - <right_val>0.1564801037311554</right_val></_></_> + <internalNodes> + 0 -1 1454 3.9422731846570969e-02</internalNodes> + <leafValues> + -4.7247570008039474e-02 1.5648010373115540e-01</leafValues></_> <_> - <!-- tree 86 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 11 12 1 -1.</_> - <_> - 5 11 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.4644010011106730e-003</threshold> - <left_val>0.1040505021810532</left_val> - <right_val>-0.0834775865077972</right_val></_></_> + <internalNodes> + 0 -1 1455 -3.4644010011106730e-03</internalNodes> + <leafValues> + 1.0405050218105316e-01 -8.3477586507797241e-02</leafValues></_> <_> - <!-- tree 87 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 9 1 3 -1.</_> - <_> - 13 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.5640960605815053e-005</threshold> - <left_val>-0.0675658807158470</left_val> - <right_val>0.0669310018420219</right_val></_></_> + <internalNodes> + 0 -1 1456 8.5640960605815053e-05</internalNodes> + <leafValues> + -6.7565880715847015e-02 6.6931001842021942e-02</leafValues></_> <_> - <!-- tree 88 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 6 3 -1.</_> - <_> - 5 3 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0238890703767538</threshold> - <left_val>0.1907691061496735</left_val> - <right_val>-0.0388089008629322</right_val></_></_> + <internalNodes> + 0 -1 1457 -2.3889070376753807e-02</internalNodes> + <leafValues> + 1.9076910614967346e-01 -3.8808900862932205e-02</leafValues></_> <_> - <!-- tree 89 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 2 6 3 -1.</_> - <_> - 6 3 6 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0106528801843524</threshold> - <left_val>-0.0686725974082947</left_val> - <right_val>0.1151766031980515</right_val></_></_> + <internalNodes> + 0 -1 1458 1.0652880184352398e-02</internalNodes> + <leafValues> + -6.8672597408294678e-02 1.1517660319805145e-01</leafValues></_> <_> - <!-- tree 90 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 1 4 -1.</_> - <_> - 4 3 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>4.0198648348450661e-003</threshold> - <left_val>0.0437452308833599</left_val> - <right_val>-0.1759776026010513</right_val></_></_> + <internalNodes> + 0 -1 1459 4.0198648348450661e-03</internalNodes> + <leafValues> + 4.3745230883359909e-02 -1.7597760260105133e-01</leafValues></_> <_> - <!-- tree 91 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 1 3 -1.</_> - <_> - 16 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.8608399443328381e-003</threshold> - <left_val>0.0422608293592930</left_val> - <right_val>-0.2983069121837616</right_val></_></_> + <internalNodes> + 0 -1 1460 2.8608399443328381e-03</internalNodes> + <leafValues> + 4.2260829359292984e-02 -2.9830691218376160e-01</leafValues></_> <_> - <!-- tree 92 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 4 6 2 -1.</_> - <_> - 4 4 3 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1306439042091370</threshold> - <left_val>-0.3377709090709686</left_val> - <right_val>0.0190815906971693</right_val></_></_> + <internalNodes> + 0 -1 1461 -1.3064390420913696e-01</internalNodes> + <leafValues> + -3.3777090907096863e-01 1.9081590697169304e-02</leafValues></_> <_> - <!-- tree 93 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 8 3 -1.</_> - <_> - 10 6 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0847005397081375</threshold> - <left_val>2.7477950789034367e-003</left_val> - <right_val>-0.6289582252502441</right_val></_></_> + <internalNodes> + 0 -1 1462 8.4700539708137512e-02</internalNodes> + <leafValues> + 2.7477950789034367e-03 -6.2895822525024414e-01</leafValues></_> <_> - <!-- tree 94 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 9 1 3 -1.</_> - <_> - 4 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0658860264811665e-004</threshold> - <left_val>-0.0933497101068497</left_val> - <right_val>0.0758618563413620</right_val></_></_> + <internalNodes> + 0 -1 1463 1.0658860264811665e-04</internalNodes> + <leafValues> + -9.3349710106849670e-02 7.5861856341362000e-02</leafValues></_> <_> - <!-- tree 95 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 8 3 -1.</_> - <_> - 10 6 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0602904781699181</threshold> - <left_val>-0.2099086046218872</left_val> - <right_val>5.9476150199770927e-003</right_val></_></_> + <internalNodes> + 0 -1 1464 -6.0290478169918060e-02</internalNodes> + <leafValues> + -2.0990860462188721e-01 5.9476150199770927e-03</leafValues></_> <_> - <!-- tree 96 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 8 3 -1.</_> - <_> - 0 6 8 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0256990306079388</threshold> - <left_val>0.0220300499349833</left_val> - <right_val>-0.3111168146133423</right_val></_></_> + <internalNodes> + 0 -1 1465 2.5699030607938766e-02</internalNodes> + <leafValues> + 2.2030049934983253e-02 -3.1111681461334229e-01</leafValues></_> <_> - <!-- tree 97 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 10 2 2 -1.</_> - <_> - 11 10 1 1 2.</_> - <_> - 10 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.2062582552898675e-005</threshold> - <left_val>0.0509819313883781</left_val> - <right_val>-0.0439709611237049</right_val></_></_> + <internalNodes> + 0 -1 1466 -9.2062582552898675e-05</internalNodes> + <leafValues> + 5.0981931388378143e-02 -4.3970961123704910e-02</leafValues></_> <_> - <!-- tree 98 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 1 2 -1.</_> - <_> - 0 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6737770056352019e-003</threshold> - <left_val>-0.2601720988750458</left_val> - <right_val>0.0243080891668797</right_val></_></_> + <internalNodes> + 0 -1 1467 -1.6737770056352019e-03</internalNodes> + <leafValues> + -2.6017209887504578e-01 2.4308089166879654e-02</leafValues></_> <_> - <!-- tree 99 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 3 4 3 -1.</_> - <_> - 13 4 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0211783908307552</threshold> - <left_val>0.1514627039432526</left_val> - <right_val>-0.0653895214200020</right_val></_></_> + <internalNodes> + 0 -1 1468 -2.1178390830755234e-02</internalNodes> + <leafValues> + 1.5146270394325256e-01 -6.5389521420001984e-02</leafValues></_> <_> - <!-- tree 100 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 10 2 2 -1.</_> - <_> - 6 10 1 1 2.</_> - <_> - 7 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.3533850908279419e-003</threshold> - <left_val>0.0229101795703173</left_val> - <right_val>-0.2828744947910309</right_val></_></_> + <internalNodes> + 0 -1 1469 2.3533850908279419e-03</internalNodes> + <leafValues> + 2.2910179570317268e-02 -2.8287449479103088e-01</leafValues></_> <_> - <!-- tree 101 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 3 4 3 -1.</_> - <_> - 13 4 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0530839897692204</threshold> - <left_val>-0.0163848996162415</left_val> - <right_val>0.3809770941734314</right_val></_></_> + <internalNodes> + 0 -1 1470 5.3083989769220352e-02</internalNodes> + <leafValues> + -1.6384899616241455e-02 3.8097709417343140e-01</leafValues></_> <_> - <!-- tree 102 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 3 4 -1.</_> - <_> - 5 4 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0399893596768379</threshold> - <left_val>-0.0218689702451229</left_val> - <right_val>0.3182365894317627</right_val></_></_> + <internalNodes> + 0 -1 1471 3.9989359676837921e-02</internalNodes> + <leafValues> + -2.1868970245122910e-02 3.1823658943176270e-01</leafValues></_> <_> - <!-- tree 103 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 4 2 -1.</_> - <_> - 12 6 2 1 2.</_> - <_> - 10 7 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.6623869352042675e-003</threshold> - <left_val>0.1521764993667603</left_val> - <right_val>-0.0212885607033968</right_val></_></_> + <internalNodes> + 0 -1 1472 -6.6623869352042675e-03</internalNodes> + <leafValues> + 1.5217649936676025e-01 -2.1288560703396797e-02</leafValues></_> <_> - <!-- tree 104 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 5 3 4 -1.</_> - <_> - 5 5 1 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0455563589930534</threshold> - <left_val>-0.7785742878913879</left_val> - <right_val>8.6588803678750992e-003</right_val></_></_> + <internalNodes> + 0 -1 1473 -4.5556358993053436e-02</internalNodes> + <leafValues> + -7.7857428789138794e-01 8.6588803678750992e-03</leafValues></_> <_> - <!-- tree 105 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 4 2 -1.</_> - <_> - 12 6 2 1 2.</_> - <_> - 10 7 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0047509353607893e-003</threshold> - <left_val>-0.0521698184311390</left_val> - <right_val>0.0708812475204468</right_val></_></_> + <internalNodes> + 0 -1 1474 3.0047509353607893e-03</internalNodes> + <leafValues> + -5.2169818431138992e-02 7.0881247520446777e-02</leafValues></_> <_> - <!-- tree 106 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 6 4 2 -1.</_> - <_> - 4 6 2 1 2.</_> - <_> - 6 7 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.3779281228780746e-003</threshold> - <left_val>0.1926591992378235</left_val> - <right_val>-0.0355221889913082</right_val></_></_> + <internalNodes> + 0 -1 1475 -7.3779281228780746e-03</internalNodes> + <leafValues> + 1.9265919923782349e-01 -3.5522188991308212e-02</leafValues></_> <_> - <!-- tree 107 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 2 2 -1.</_> - <_> - 15 10 1 1 2.</_> - <_> - 14 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5453477115370333e-005</threshold> - <left_val>-0.0974663197994232</left_val> - <right_val>0.0964550524950027</right_val></_></_> + <internalNodes> + 0 -1 1476 9.5453477115370333e-05</internalNodes> + <leafValues> + -9.7466319799423218e-02 9.6455052495002747e-02</leafValues></_> <_> - <!-- tree 108 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 2 3 -1.</_> - <_> - 8 5 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0109679903835058</threshold> - <left_val>0.0882787927985191</left_val> - <right_val>-0.0739552006125450</right_val></_></_> + <internalNodes> + 0 -1 1477 -1.0967990383505821e-02</internalNodes> + <leafValues> + 8.8278792798519135e-02 -7.3955200612545013e-02</leafValues></_> <_> - <!-- tree 109 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 15 6 -1.</_> - <_> - 8 6 5 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.8916041254997253</threshold> - <left_val>-0.3586379885673523</left_val> - <right_val>3.7620719522237778e-003</right_val></_></_> + <internalNodes> + 0 -1 1478 -8.9160412549972534e-01</internalNodes> + <leafValues> + -3.5863798856735229e-01 3.7620719522237778e-03</leafValues></_> <_> - <!-- tree 110 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 6 12 2 -1.</_> - <_> - 4 6 4 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1084647029638290</threshold> - <left_val>-0.3363158106803894</left_val> - <right_val>0.0197248999029398</right_val></_></_> + <internalNodes> + 0 -1 1479 -1.0846470296382904e-01</internalNodes> + <leafValues> + -3.3631581068038940e-01 1.9724899902939796e-02</leafValues></_> <_> - <!-- tree 111 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 2 2 -1.</_> - <_> - 15 10 1 1 2.</_> - <_> - 14 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0542329982854426e-004</threshold> - <left_val>0.0979688018560410</left_val> - <right_val>-0.0642571598291397</right_val></_></_> + <internalNodes> + 0 -1 1480 -1.0542329982854426e-04</internalNodes> + <leafValues> + 9.7968801856040955e-02 -6.4257159829139709e-02</leafValues></_> <_> - <!-- tree 112 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 2 18 3 -1.</_> - <_> - 6 2 6 3 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0938909202814102</threshold> - <left_val>0.0870824009180069</left_val> - <right_val>-0.0789611935615540</right_val></_></_> + <internalNodes> + 0 -1 1481 -9.3890920281410217e-02</internalNodes> + <leafValues> + 8.7082400918006897e-02 -7.8961193561553955e-02</leafValues></_> <_> - <!-- tree 113 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 2 2 -1.</_> - <_> - 15 10 1 1 2.</_> - <_> - 14 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5453477115370333e-005</threshold> - <left_val>-0.0598228089511395</left_val> - <right_val>0.0568231381475925</right_val></_></_> + <internalNodes> + 0 -1 1482 9.5453477115370333e-05</internalNodes> + <leafValues> + -5.9822808951139450e-02 5.6823138147592545e-02</leafValues></_> <_> - <!-- tree 114 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 7 6 1 -1.</_> - <_> - 4 7 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.8177138715982437e-003</threshold> - <left_val>0.1636597961187363</left_val> - <right_val>-0.0444577299058437</right_val></_></_> + <internalNodes> + 0 -1 1483 -9.8177138715982437e-03</internalNodes> + <leafValues> + 1.6365979611873627e-01 -4.4457729905843735e-02</leafValues></_> <_> - <!-- tree 115 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 10 2 2 -1.</_> - <_> - 15 10 1 1 2.</_> - <_> - 14 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3185197329148650e-005</threshold> - <left_val>0.0564174503087997</left_val> - <right_val>-0.0367961004376411</right_val></_></_> + <internalNodes> + 0 -1 1484 -9.3185197329148650e-05</internalNodes> + <leafValues> + 5.6417450308799744e-02 -3.6796100437641144e-02</leafValues></_> <_> - <!-- tree 116 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 10 2 2 -1.</_> - <_> - 2 10 1 1 2.</_> - <_> - 3 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.4171933596953750e-005</threshold> - <left_val>-0.0805424079298973</left_val> - <right_val>0.0838058590888977</right_val></_></_> + <internalNodes> + 0 -1 1485 9.4171933596953750e-05</internalNodes> + <leafValues> + -8.0542407929897308e-02 8.3805859088897705e-02</leafValues></_> <_> - <!-- tree 117 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 2 2 -1.</_> - <_> - 10 5 1 1 2.</_> - <_> - 9 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.7554886704310775e-005</threshold> - <left_val>-0.0404281616210938</left_val> - <right_val>0.0564757399260998</right_val></_></_> + <internalNodes> + 0 -1 1486 8.7554886704310775e-05</internalNodes> + <leafValues> + -4.0428161621093750e-02 5.6475739926099777e-02</leafValues></_> <_> - <!-- tree 118 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 4 1 3 -1.</_> - <_> - 3 5 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0279500000178814</threshold> - <left_val>-0.6422001719474793</left_val> - <right_val>9.8489876836538315e-003</right_val></_></_> + <internalNodes> + 0 -1 1487 -2.7950000017881393e-02</internalNodes> + <leafValues> + -6.4220017194747925e-01 9.8489876836538315e-03</leafValues></_> <_> - <!-- tree 119 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 5 6 5 -1.</_> - <_> - 14 5 2 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0222079399973154</threshold> - <left_val>0.1138591021299362</left_val> - <right_val>-0.0748235136270523</right_val></_></_> + <internalNodes> + 0 -1 1488 -2.2207939997315407e-02</internalNodes> + <leafValues> + 1.1385910212993622e-01 -7.4823513627052307e-02</leafValues></_> <_> - <!-- tree 120 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 2 2 -1.</_> - <_> - 9 8 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-3.5269840154796839e-003</threshold> - <left_val>0.0563133507966995</left_val> - <right_val>-0.1128031983971596</right_val></_></_> + <internalNodes> + 0 -1 1489 -3.5269840154796839e-03</internalNodes> + <leafValues> + 5.6313350796699524e-02 -1.1280319839715958e-01</leafValues></_> <_> - <!-- tree 121 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 9 4 3 -1.</_> - <_> - 10 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.3353092670440674e-003</threshold> - <left_val>0.0151762701570988</left_val> - <right_val>-0.1791055053472519</right_val></_></_> + <internalNodes> + 0 -1 1490 9.3353092670440674e-03</internalNodes> + <leafValues> + 1.5176270157098770e-02 -1.7910550534725189e-01</leafValues></_> <_> - <!-- tree 122 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 2 6 10 -1.</_> - <_> - 9 2 3 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0794987976551056</threshold> - <left_val>-0.0411159992218018</left_val> - <right_val>0.2083195000886917</right_val></_></_> + <internalNodes> + 0 -1 1491 7.9498797655105591e-02</internalNodes> + <leafValues> + -4.1115999221801758e-02 2.0831950008869171e-01</leafValues></_> <_> - <!-- tree 123 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 12 9 -1.</_> - <_> - 8 3 6 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0647451728582382</threshold> - <left_val>0.0590191707015038</left_val> - <right_val>-0.0591640993952751</right_val></_></_> + <internalNodes> + 0 -1 1492 -6.4745172858238220e-02</internalNodes> + <leafValues> + 5.9019170701503754e-02 -5.9164099395275116e-02</leafValues></_> <_> - <!-- tree 124 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 16 9 -1.</_> - <_> - 4 1 8 9 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3745405077934265</threshold> - <left_val>-0.3110379874706268</left_val> - <right_val>0.0250506605952978</right_val></_></_> + <internalNodes> + 0 -1 1493 -3.7454050779342651e-01</internalNodes> + <leafValues> + -3.1103798747062683e-01 2.5050660595297813e-02</leafValues></_> <_> - <!-- tree 125 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 9 4 3 -1.</_> - <_> - 10 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.4513680071104318e-004</threshold> - <left_val>0.0366916283965111</left_val> - <right_val>-0.0409143306314945</right_val></_></_> + <internalNodes> + 0 -1 1494 -1.4513680071104318e-04</internalNodes> + <leafValues> + 3.6691628396511078e-02 -4.0914330631494522e-02</leafValues></_> <_> - <!-- tree 126 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 9 4 3 -1.</_> - <_> - 6 9 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.7395797707140446e-003</threshold> - <left_val>0.0251941792666912</left_val> - <right_val>-0.2829059958457947</right_val></_></_> + <internalNodes> + 0 -1 1495 7.7395797707140446e-03</internalNodes> + <leafValues> + 2.5194179266691208e-02 -2.8290599584579468e-01</leafValues></_> <_> - <!-- tree 127 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 11 16 1 -1.</_> - <_> - 5 11 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.1609802283346653e-003</threshold> - <left_val>-0.0672304183244705</left_val> - <right_val>0.1104023009538651</right_val></_></_> + <internalNodes> + 0 -1 1496 4.1609802283346653e-03</internalNodes> + <leafValues> + -6.7230418324470520e-02 1.1040230095386505e-01</leafValues></_> <_> - <!-- tree 128 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 9 2 1 -1.</_> - <_> - 4 9 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0109944995492697</threshold> - <left_val>-0.2706933021545410</left_val> - <right_val>0.0252016205340624</right_val></_></_> + <internalNodes> + 0 -1 1497 -1.0994499549269676e-02</internalNodes> + <leafValues> + -2.7069330215454102e-01 2.5201620534062386e-02</leafValues></_> <_> - <!-- tree 129 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 5 6 5 -1.</_> - <_> - 14 5 2 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0767591297626495</threshold> - <left_val>-0.1789443045854569</left_val> - <right_val>0.0157413203269243</right_val></_></_> + <internalNodes> + 0 -1 1498 -7.6759129762649536e-02</internalNodes> + <leafValues> + -1.7894430458545685e-01 1.5741320326924324e-02</leafValues></_> <_> - <!-- tree 130 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 5 6 5 -1.</_> - <_> - 2 5 2 5 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0294161904603243</threshold> - <left_val>0.1477895975112915</left_val> - <right_val>-0.0616287589073181</right_val></_></_> + <internalNodes> + 0 -1 1499 -2.9416190460324287e-02</internalNodes> + <leafValues> + 1.4778959751129150e-01 -6.1628758907318115e-02</leafValues></_> <_> - <!-- tree 131 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 18 10 -1.</_> - <_> - 9 1 9 5 2.</_> - <_> - 0 6 9 5 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2879092991352081</threshold> - <left_val>0.0151456203311682</left_val> - <right_val>-0.4049035906791687</right_val></_></_> + <internalNodes> + 0 -1 1500 2.8790929913520813e-01</internalNodes> + <leafValues> + 1.5145620331168175e-02 -4.0490359067916870e-01</leafValues></_> <_> - <!-- tree 132 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 10 2 1 -1.</_> - <_> - 7 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0059560008812696e-004</threshold> - <left_val>0.0768325403332710</left_val> - <right_val>-0.0835646986961365</right_val></_></_> + <internalNodes> + 0 -1 1501 -1.0059560008812696e-04</internalNodes> + <leafValues> + 7.6832540333271027e-02 -8.3564698696136475e-02</leafValues></_> <_> - <!-- tree 133 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 7 3 1 -1.</_> - <_> - 11 7 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.2243651114404202e-003</threshold> - <left_val>-0.0292564108967781</left_val> - <right_val>0.1202225014567375</right_val></_></_> + <internalNodes> + 0 -1 1502 4.2243651114404202e-03</internalNodes> + <leafValues> + -2.9256410896778107e-02 1.2022250145673752e-01</leafValues></_> <_> - <!-- tree 134 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 4 6 -1.</_> - <_> - 3 1 2 6 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0252593904733658</threshold> - <left_val>-0.2860428094863892</left_val> - <right_val>0.0219927895814180</right_val></_></_> + <internalNodes> + 0 -1 1503 -2.5259390473365784e-02</internalNodes> + <leafValues> + -2.8604280948638916e-01 2.1992789581418037e-02</leafValues></_> <_> - <!-- tree 135 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 2 6 1 -1.</_> - <_> - 12 2 3 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0640388280153275</threshold> - <left_val>-0.2189117968082428</left_val> - <right_val>0.0108436597511172</right_val></_></_> + <internalNodes> + 0 -1 1504 -6.4038828015327454e-02</internalNodes> + <leafValues> + -2.1891179680824280e-01 1.0843659751117229e-02</leafValues></_> <_> - <!-- tree 136 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 2 1 6 -1.</_> - <_> - 6 2 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0705188810825348</threshold> - <left_val>0.4570961892604828</left_val> - <right_val>-0.0163921993225813</right_val></_></_> + <internalNodes> + 0 -1 1505 -7.0518881082534790e-02</internalNodes> + <leafValues> + 4.5709618926048279e-01 -1.6392199322581291e-02</leafValues></_> <_> - <!-- tree 137 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 5 2 2 -1.</_> - <_> - 10 5 1 1 2.</_> - <_> - 9 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-7.0195732405409217e-005</threshold> - <left_val>0.0369329117238522</left_val> - <right_val>-0.0370640791952610</right_val></_></_> + <internalNodes> + 0 -1 1506 -7.0195732405409217e-05</internalNodes> + <leafValues> + 3.6932911723852158e-02 -3.7064079195261002e-02</leafValues></_> <_> - <!-- tree 138 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 2 -1.</_> - <_> - 7 5 1 1 2.</_> - <_> - 8 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.9889319557696581e-003</threshold> - <left_val>-0.0375480800867081</left_val> - <right_val>0.1839154064655304</right_val></_></_> + <internalNodes> + 0 -1 1507 2.9889319557696581e-03</internalNodes> + <leafValues> + -3.7548080086708069e-02 1.8391540646553040e-01</leafValues></_> <_> - <!-- tree 139 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 2 3 -1.</_> - <_> - 8 1 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.4994310699403286e-003</threshold> - <left_val>0.1126992031931877</left_val> - <right_val>-0.0513408407568932</right_val></_></_> + <internalNodes> + 0 -1 1508 -3.4994310699403286e-03</internalNodes> + <leafValues> + 1.1269920319318771e-01 -5.1340840756893158e-02</leafValues></_> <_> - <!-- tree 140 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 16 1 -1.</_> - <_> - 4 1 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0241271108388901</threshold> - <left_val>-0.0414990000426769</left_val> - <right_val>0.1732669025659561</right_val></_></_> + <internalNodes> + 0 -1 1509 2.4127110838890076e-02</internalNodes> + <leafValues> + -4.1499000042676926e-02 1.7326690256595612e-01</leafValues></_> <_> - <!-- tree 141 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 2 1 -1.</_> - <_> - 8 0 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.6061740033328533e-003</threshold> - <left_val>0.0125992596149445</left_val> - <right_val>-0.4937610030174255</right_val></_></_> + <internalNodes> + 0 -1 1510 5.6061740033328533e-03</internalNodes> + <leafValues> + 1.2599259614944458e-02 -4.9376100301742554e-01</leafValues></_> <_> - <!-- tree 142 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 4 3 -1.</_> - <_> - 6 2 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.8790130317211151e-003</threshold> - <left_val>0.1268852055072784</left_val> - <right_val>-0.0479303598403931</right_val></_></_> + <internalNodes> + 0 -1 1511 -6.8790130317211151e-03</internalNodes> + <leafValues> + 1.2688520550727844e-01 -4.7930359840393066e-02</leafValues></_> <_> - <!-- tree 143 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 3 1 -1.</_> - <_> - 15 1 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-9.9475309252738953e-003</threshold> - <left_val>-0.3053337037563324</left_val> - <right_val>0.0356682091951370</right_val></_></_> + <internalNodes> + 0 -1 1512 -9.9475309252738953e-03</internalNodes> + <leafValues> + -3.0533370375633240e-01 3.5668209195137024e-02</leafValues></_> <_> - <!-- tree 144 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 12 1 -1.</_> - <_> - 3 0 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.0581211000680923e-003</threshold> - <left_val>0.1099371984601021</left_val> - <right_val>-0.0551374815404415</right_val></_></_> + <internalNodes> + 0 -1 1513 -6.0581211000680923e-03</internalNodes> + <leafValues> + 1.0993719846010208e-01 -5.5137481540441513e-02</leafValues></_> <_> - <!-- tree 145 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 9 8 -1.</_> - <_> - 6 3 9 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0867693275213242</threshold> - <left_val>0.0561109595000744</left_val> - <right_val>-0.0937650129199028</right_val></_></_> + <internalNodes> + 0 -1 1514 -8.6769327521324158e-02</internalNodes> + <leafValues> + 5.6110959500074387e-02 -9.3765012919902802e-02</leafValues></_> <_> - <!-- tree 146 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 5 7 4 -1.</_> - <_> - 3 7 7 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1019223034381867</threshold> - <left_val>0.5962210893630981</left_val> - <right_val>-0.0114242602139711</right_val></_></_> + <internalNodes> + 0 -1 1515 -1.0192230343818665e-01</internalNodes> + <leafValues> + 5.9622108936309814e-01 -1.1424260213971138e-02</leafValues></_> <_> - <!-- tree 147 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 8 6 -1.</_> - <_> - 13 4 4 3 2.</_> - <_> - 9 7 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1600401997566223</threshold> - <left_val>7.1362429298460484e-003</left_val> - <right_val>-0.4457210898399353</right_val></_></_> + <internalNodes> + 0 -1 1516 1.6004019975662231e-01</internalNodes> + <leafValues> + 7.1362429298460484e-03 -4.4572108983993530e-01</leafValues></_> <_> - <!-- tree 148 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 1 4 1 -1.</_> - <_> - 2 1 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.9025470614433289e-003</threshold> - <left_val>-0.0459995791316032</left_val> - <right_val>0.1221468001604080</right_val></_></_> + <internalNodes> + 0 -1 1517 3.9025470614433289e-03</internalNodes> + <leafValues> + -4.5999579131603241e-02 1.2214680016040802e-01</leafValues></_> <_> - <!-- tree 149 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 4 1 -1.</_> - <_> - 15 1 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0114250397309661</threshold> - <left_val>0.0357276499271393</left_val> - <right_val>-0.4246379137039185</right_val></_></_> + <internalNodes> + 0 -1 1518 1.1425039730966091e-02</internalNodes> + <leafValues> + 3.5727649927139282e-02 -4.2463791370391846e-01</leafValues></_> <_> - <!-- tree 150 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 1 9 3 -1.</_> - <_> - 4 2 9 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0489798896014690</threshold> - <left_val>-0.0314897783100605</left_val> - <right_val>0.2036231011152268</right_val></_></_> + <internalNodes> + 0 -1 1519 4.8979889601469040e-02</internalNodes> + <leafValues> + -3.1489778310060501e-02 2.0362310111522675e-01</leafValues></_> <_> - <!-- tree 151 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 4 1 -1.</_> - <_> - 15 1 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0134696504101157</threshold> - <left_val>-0.1755945980548859</left_val> - <right_val>0.0198173895478249</right_val></_></_> + <internalNodes> + 0 -1 1520 -1.3469650410115719e-02</internalNodes> + <leafValues> + -1.7559459805488586e-01 1.9817389547824860e-02</leafValues></_> <_> - <!-- tree 152 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 0 1 4 -1.</_> - <_> - 3 1 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0102756395936012</threshold> - <left_val>0.0270387604832649</left_val> - <right_val>-0.2331099063158035</right_val></_></_> + <internalNodes> + 0 -1 1521 1.0275639593601227e-02</internalNodes> + <leafValues> + 2.7038760483264923e-02 -2.3310990631580353e-01</leafValues></_> <_> - <!-- tree 153 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 0 4 2 -1.</_> - <_> - 13 0 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.2424209900200367e-003</threshold> - <left_val>0.0342171601951122</left_val> - <right_val>-0.3356071114540100</right_val></_></_> + <internalNodes> + 0 -1 1522 6.2424209900200367e-03</internalNodes> + <leafValues> + 3.4217160195112228e-02 -3.3560711145401001e-01</leafValues></_> <_> - <!-- tree 154 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 2 -1.</_> - <_> - 0 0 9 1 2.</_> - <_> - 9 1 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0189317800104618</threshold> - <left_val>0.1223035007715225</left_val> - <right_val>-0.0508136488497257</right_val></_></_> + <internalNodes> + 0 -1 1523 -1.8931780010461807e-02</internalNodes> + <leafValues> + 1.2230350077152252e-01 -5.0813648849725723e-02</leafValues></_> <_> - <!-- tree 155 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 3 10 6 -1.</_> - <_> - 12 3 5 3 2.</_> - <_> - 7 6 5 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1967200040817261</threshold> - <left_val>2.1031980868428946e-003</left_val> - <right_val>-0.3780081868171692</right_val></_></_> + <internalNodes> + 0 -1 1524 1.9672000408172607e-01</internalNodes> + <leafValues> + 2.1031980868428946e-03 -3.7800818681716919e-01</leafValues></_> <_> - <!-- tree 156 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 4 3 -1.</_> - <_> - 3 0 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0134580899029970</threshold> - <left_val>0.0180429704487324</left_val> - <right_val>-0.3095062971115112</right_val></_></_> + <internalNodes> + 0 -1 1525 1.3458089902997017e-02</internalNodes> + <leafValues> + 1.8042970448732376e-02 -3.0950629711151123e-01</leafValues></_> <_> - <!-- tree 157 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 2 2 1 -1.</_> - <_> - 12 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0042759822681546e-004</threshold> - <left_val>0.0340725816786289</left_val> - <right_val>-0.0409777685999870</right_val></_></_> + <internalNodes> + 0 -1 1526 -1.0042759822681546e-04</internalNodes> + <leafValues> + 3.4072581678628922e-02 -4.0977768599987030e-02</leafValues></_> <_> - <!-- tree 158 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 2 2 1 -1.</_> - <_> - 5 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0216310329269618e-004</threshold> - <left_val>0.0738993883132935</left_val> - <right_val>-0.0752342268824577</right_val></_></_> + <internalNodes> + 0 -1 1527 -1.0216310329269618e-04</internalNodes> + <leafValues> + 7.3899388313293457e-02 -7.5234226882457733e-02</leafValues></_> <_> - <!-- tree 159 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 3 -1.</_> - <_> - 15 1 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0121406195685267</threshold> - <left_val>0.1263242065906525</left_val> - <right_val>-0.0378410182893276</right_val></_></_> + <internalNodes> + 0 -1 1528 -1.2140619568526745e-02</internalNodes> + <leafValues> + 1.2632420659065247e-01 -3.7841018289327621e-02</leafValues></_> <_> - <!-- tree 160 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 3 2 -1.</_> - <_> - 3 1 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0111898398026824</threshold> - <left_val>0.1634252965450287</left_val> - <right_val>-0.0359924808144569</right_val></_></_> + <internalNodes> + 0 -1 1529 -1.1189839802682400e-02</internalNodes> + <leafValues> + 1.6342529654502869e-01 -3.5992480814456940e-02</leafValues></_> <_> - <!-- tree 161 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 3 3 3 -1.</_> - <_> - 10 4 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-8.0074174329638481e-003</threshold> - <left_val>0.0303945709019899</left_val> - <right_val>-0.0463669188320637</right_val></_></_> + <internalNodes> + 0 -1 1530 -8.0074174329638481e-03</internalNodes> + <leafValues> + 3.0394570901989937e-02 -4.6366918832063675e-02</leafValues></_> <_> - <!-- tree 162 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 5 2 2 -1.</_> - <_> - 7 5 1 1 2.</_> - <_> - 8 6 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.3145169941708446e-003</threshold> - <left_val>0.1130667030811310</left_val> - <right_val>-0.0566126704216003</right_val></_></_> + <internalNodes> + 0 -1 1531 -1.3145169941708446e-03</internalNodes> + <leafValues> + 1.1306670308113098e-01 -5.6612670421600342e-02</leafValues></_> <_> - <!-- tree 163 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 8 6 -1.</_> - <_> - 13 4 4 3 2.</_> - <_> - 9 7 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0115750199183822</threshold> - <left_val>-0.0709848776459694</left_val> - <right_val>0.0232840292155743</right_val></_></_> + <internalNodes> + 0 -1 1532 -1.1575019918382168e-02</internalNodes> + <leafValues> + -7.0984877645969391e-02 2.3284029215574265e-02</leafValues></_> <_> - <!-- tree 164 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 4 8 6 -1.</_> - <_> - 1 4 4 3 2.</_> - <_> - 5 7 4 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1362794935703278</threshold> - <left_val>0.0124136796221137</left_val> - <right_val>-0.5066723227500916</right_val></_></_> + <internalNodes> + 0 -1 1533 1.3627949357032776e-01</internalNodes> + <leafValues> + 1.2413679622113705e-02 -5.0667232275009155e-01</leafValues></_> <_> - <!-- tree 165 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 5 4 3 -1.</_> - <_> - 9 6 4 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0395890884101391</threshold> - <left_val>-0.0957747474312782</left_val> - <right_val>8.6489180102944374e-003</right_val></_></_> + <internalNodes> + 0 -1 1534 -3.9589088410139084e-02</internalNodes> + <leafValues> + -9.5774747431278229e-02 8.6489180102944374e-03</leafValues></_> <_> - <!-- tree 166 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 2 3 -1.</_> - <_> - 2 1 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0167511291801929</threshold> - <left_val>-0.2523334026336670</left_val> - <right_val>0.0228890907019377</right_val></_></_> + <internalNodes> + 0 -1 1535 -1.6751129180192947e-02</internalNodes> + <leafValues> + -2.5233340263366699e-01 2.2889090701937675e-02</leafValues></_> <_> - <!-- tree 167 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 8 2 2 -1.</_> - <_> - 9 8 1 1 2.</_> - <_> - 8 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3176960945129395e-005</threshold> - <left_val>0.0870768800377846</left_val> - <right_val>-0.0675204992294312</right_val></_></_> + <internalNodes> + 0 -1 1536 -9.3176960945129395e-05</internalNodes> + <leafValues> + 8.7076880037784576e-02 -6.7520499229431152e-02</leafValues></_> <_> - <!-- tree 168 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 6 3 2 -1.</_> - <_> - 6 6 1 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.8843290638178587e-003</threshold> - <left_val>0.1129027977585793</left_val> - <right_val>-0.0522808395326138</right_val></_></_> + <internalNodes> + 0 -1 1537 -2.8843290638178587e-03</internalNodes> + <leafValues> + 1.1290279775857925e-01 -5.2280839532613754e-02</leafValues></_> <_> - <!-- tree 169 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 10 1 2 -1.</_> - <_> - 16 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>3.0579629819840193e-003</threshold> - <left_val>0.0358746610581875</left_val> - <right_val>-0.1865649968385696</right_val></_></_> + <internalNodes> + 0 -1 1538 3.0579629819840193e-03</internalNodes> + <leafValues> + 3.5874661058187485e-02 -1.8656499683856964e-01</leafValues></_> <_> - <!-- tree 170 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 1 2 -1.</_> - <_> - 1 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.7428957815282047e-005</threshold> - <left_val>-0.1145483031868935</left_val> - <right_val>0.0550135709345341</right_val></_></_> + <internalNodes> + 0 -1 1539 9.7428957815282047e-05</internalNodes> + <leafValues> + -1.1454830318689346e-01 5.5013570934534073e-02</leafValues></_> <_> - <!-- tree 171 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 10 2 2 -1.</_> - <_> - 16 10 1 1 2.</_> - <_> - 15 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.2528899824246764e-003</threshold> - <left_val>-0.0554887205362320</left_val> - <right_val>0.1423428058624268</right_val></_></_> + <internalNodes> + 0 -1 1540 1.2528899824246764e-03</internalNodes> + <leafValues> + -5.5488720536231995e-02 1.4234280586242676e-01</leafValues></_> <_> - <!-- tree 172 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 10 2 2 -1.</_> - <_> - 1 10 1 1 2.</_> - <_> - 2 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0249209590256214e-003</threshold> - <left_val>-0.1732176989316940</left_val> - <right_val>0.0386059209704399</right_val></_></_> + <internalNodes> + 0 -1 1541 -1.0249209590256214e-03</internalNodes> + <leafValues> + -1.7321769893169403e-01 3.8605920970439911e-02</leafValues></_> <_> - <!-- tree 173 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 11 8 -1.</_> - <_> - 5 8 11 4 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0931619629263878</threshold> - <left_val>-0.5708081722259522</left_val> - <right_val>7.1864281781017780e-003</right_val></_></_> + <internalNodes> + 0 -1 1542 -9.3161962926387787e-02</internalNodes> + <leafValues> + -5.7080817222595215e-01 7.1864281781017780e-03</leafValues></_> <_> - <!-- tree 174 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 2 1 -1.</_> - <_> - 8 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1855579941766337e-004</threshold> - <left_val>0.0736410915851593</left_val> - <right_val>-0.0777508765459061</right_val></_></_> + <internalNodes> + 0 -1 1543 -1.1855579941766337e-04</internalNodes> + <leafValues> + 7.3641091585159302e-02 -7.7750876545906067e-02</leafValues></_> <_> - <!-- tree 175 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 10 2 1 -1.</_> - <_> - 9 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0393650154583156e-004</threshold> - <left_val>0.0420400910079479</left_val> - <right_val>-0.0343947894871235</right_val></_></_> + <internalNodes> + 0 -1 1544 -1.0393650154583156e-04</internalNodes> + <leafValues> + 4.2040091007947922e-02 -3.4394789487123489e-02</leafValues></_> <_> - <!-- tree 176 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 10 2 1 -1.</_> - <_> - 8 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.0028410179074854e-004</threshold> - <left_val>-0.0701517164707184</left_val> - <right_val>0.1005510017275810</right_val></_></_> + <internalNodes> + 0 -1 1545 1.0028410179074854e-04</internalNodes> + <leafValues> + -7.0151716470718384e-02 1.0055100172758102e-01</leafValues></_> <_> - <!-- tree 177 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 9 6 2 -1.</_> - <_> - 6 9 3 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.8116062581539154e-003</threshold> - <left_val>-0.0575862191617489</left_val> - <right_val>0.1254398971796036</right_val></_></_> + <internalNodes> + 0 -1 1546 9.8116062581539154e-03</internalNodes> + <leafValues> + -5.7586219161748886e-02 1.2543989717960358e-01</leafValues></_> <_> - <!-- tree 178 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 2 4 2 -1.</_> - <_> - 8 2 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0161872506141663</threshold> - <left_val>-0.2105884999036789</left_val> - <right_val>0.0296801291406155</right_val></_></_> + <internalNodes> + 0 -1 1547 -1.6187250614166260e-02</internalNodes> + <leafValues> + -2.1058849990367889e-01 2.9680129140615463e-02</leafValues></_> <_> - <!-- tree 179 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 2 4 -1.</_> - <_> - 9 2 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0795798301696777</threshold> - <left_val>0.2710951864719391</left_val> - <right_val>-8.4382239729166031e-003</right_val></_></_> + <internalNodes> + 0 -1 1548 -7.9579830169677734e-02</internalNodes> + <leafValues> + 2.7109518647193909e-01 -8.4382239729166031e-03</leafValues></_> <_> - <!-- tree 180 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 3 1 2 -1.</_> - <_> - 7 3 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-1.1105289449915290e-003</threshold> - <left_val>-0.1055269986391068</left_val> - <right_val>0.0527812093496323</right_val></_></_> + <internalNodes> + 0 -1 1549 -1.1105289449915290e-03</internalNodes> + <leafValues> + -1.0552699863910675e-01 5.2781209349632263e-02</leafValues></_> <_> - <!-- tree 181 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 1 2 4 -1.</_> - <_> - 15 2 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0141785396263003</threshold> - <left_val>0.0748763382434845</left_val> - <right_val>-0.0377887599170208</right_val></_></_> + <internalNodes> + 0 -1 1550 -1.4178539626300335e-02</internalNodes> + <leafValues> + 7.4876338243484497e-02 -3.7788759917020798e-02</leafValues></_> <_> - <!-- tree 182 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 1 4 2 -1.</_> - <_> - 3 2 2 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0376082807779312</threshold> - <left_val>0.3101431131362915</left_val> - <right_val>-0.0192220509052277</right_val></_></_> + <internalNodes> + 0 -1 1551 -3.7608280777931213e-02</internalNodes> + <leafValues> + 3.1014311313629150e-01 -1.9222050905227661e-02</leafValues></_> <_> - <!-- tree 183 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 6 2 3 -1.</_> - <_> - 16 7 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.7960239723324776e-003</threshold> - <left_val>0.0206596199423075</left_val> - <right_val>-0.2029390931129456</right_val></_></_> + <internalNodes> + 0 -1 1552 7.7960239723324776e-03</internalNodes> + <leafValues> + 2.0659619942307472e-02 -2.0293909311294556e-01</leafValues></_> <_> - <!-- tree 184 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 4 1 4 -1.</_> - <_> - 0 5 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-3.7200350780040026e-003</threshold> - <left_val>-0.1540136039257050</left_val> - <right_val>0.0365738607943058</right_val></_></_> + <internalNodes> + 0 -1 1553 -3.7200350780040026e-03</internalNodes> + <leafValues> + -1.5401360392570496e-01 3.6573860794305801e-02</leafValues></_> <_> - <!-- tree 185 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 6 3 3 -1.</_> - <_> - 9 7 3 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0232173893600702</threshold> - <left_val>0.0136170499026775</left_val> - <right_val>-0.1346661001443863</right_val></_></_> + <internalNodes> + 0 -1 1554 2.3217389360070229e-02</internalNodes> + <leafValues> + 1.3617049902677536e-02 -1.3466610014438629e-01</leafValues></_> <_> - <!-- tree 186 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 2 2 -1.</_> - <_> - 8 7 1 1 2.</_> - <_> - 9 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.6200500540435314e-003</threshold> - <left_val>-0.0499108284711838</left_val> - <right_val>0.1362254023551941</right_val></_></_> + <internalNodes> + 0 -1 1555 1.6200500540435314e-03</internalNodes> + <leafValues> + -4.9910828471183777e-02 1.3622540235519409e-01</leafValues></_> <_> - <!-- tree 187 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 3 6 6 -1.</_> - <_> - 9 5 2 2 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1410211026668549</threshold> - <left_val>0.0673981010913849</left_val> - <right_val>-0.0395831800997257</right_val></_></_> + <internalNodes> + 0 -1 1556 -1.4102110266685486e-01</internalNodes> + <leafValues> + 6.7398101091384888e-02 -3.9583180099725723e-02</leafValues></_> <_> - <!-- tree 188 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 8 2 2 -1.</_> - <_> - 9 8 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.9663311801850796e-003</threshold> - <left_val>0.0270152706652880</left_val> - <right_val>-0.2032209932804108</right_val></_></_> + <internalNodes> + 0 -1 1557 4.9663311801850796e-03</internalNodes> + <leafValues> + 2.7015270665287971e-02 -2.0322099328041077e-01</leafValues></_> <_> - <!-- tree 189 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 4 6 6 -1.</_> - <_> - 9 4 2 6 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0625454410910606</threshold> - <left_val>-0.0202993005514145</left_val> - <right_val>0.2707617878913879</right_val></_></_> + <internalNodes> + 0 -1 1558 6.2545441091060638e-02</internalNodes> + <leafValues> + -2.0299300551414490e-02 2.7076178789138794e-01</leafValues></_> <_> - <!-- tree 190 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 6 3 3 -1.</_> - <_> - 9 7 1 3 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0353707298636436</threshold> - <left_val>0.0146474195644259</left_val> - <right_val>-0.4151732921600342</right_val></_></_> + <internalNodes> + 0 -1 1559 3.5370729863643646e-02</internalNodes> + <leafValues> + 1.4647419564425945e-02 -4.1517329216003418e-01</leafValues></_> <_> - <!-- tree 191 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 2 3 2 -1.</_> - <_> - 16 3 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0110299102962017</threshold> - <left_val>0.0316992104053497</left_val> - <right_val>-0.2413218021392822</right_val></_></_> + <internalNodes> + 0 -1 1560 1.1029910296201706e-02</internalNodes> + <leafValues> + 3.1699210405349731e-02 -2.4132180213928223e-01</leafValues></_> <_> - <!-- tree 192 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 7 2 3 -1.</_> - <_> - 7 8 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.4016189426183701e-003</threshold> - <left_val>-0.0489480309188366</left_val> - <right_val>0.1132624968886375</right_val></_></_> + <internalNodes> + 0 -1 1561 6.4016189426183701e-03</internalNodes> + <leafValues> + -4.8948030918836594e-02 1.1326249688863754e-01</leafValues></_> <_> - <!-- tree 193 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 2 3 -1.</_> - <_> - 8 8 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-4.9354950897395611e-003</threshold> - <left_val>0.1465432941913605</left_val> - <right_val>-0.0480414107441902</right_val></_></_> + <internalNodes> + 0 -1 1562 -4.9354950897395611e-03</internalNodes> + <leafValues> + 1.4654329419136047e-01 -4.8041410744190216e-02</leafValues></_> <_> - <!-- tree 194 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 5 2 3 -1.</_> - <_> - 1 6 2 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0113536398857832</threshold> - <left_val>0.0177291706204414</left_val> - <right_val>-0.3483485877513886</right_val></_></_> + <internalNodes> + 0 -1 1563 1.1353639885783195e-02</internalNodes> + <leafValues> + 1.7729170620441437e-02 -3.4834858775138855e-01</leafValues></_> <_> - <!-- tree 195 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 8 2 2 -1.</_> - <_> - 10 8 1 1 2.</_> - <_> - 9 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.7991849454119802e-003</threshold> - <left_val>0.0315003693103790</left_val> - <right_val>-0.1100760027766228</right_val></_></_> + <internalNodes> + 0 -1 1564 1.7991849454119802e-03</internalNodes> + <leafValues> + 3.1500369310379028e-02 -1.1007600277662277e-01</leafValues></_> <_> - <!-- tree 196 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 3 1 -1.</_> - <_> - 1 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0583570003509521e-003</threshold> - <left_val>0.1376388967037201</left_val> - <right_val>-0.0382785610854626</right_val></_></_> + <internalNodes> + 0 -1 1565 -2.0583570003509521e-03</internalNodes> + <leafValues> + 1.3763889670372009e-01 -3.8278561085462570e-02</leafValues></_> <_> - <!-- tree 197 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 2 3 1 -1.</_> - <_> - 16 3 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0115839401260018</threshold> - <left_val>-0.1979050040245056</left_val> - <right_val>0.0215400401502848</right_val></_></_> + <internalNodes> + 0 -1 1566 -1.1583940126001835e-02</internalNodes> + <leafValues> + -1.9790500402450562e-01 2.1540040150284767e-02</leafValues></_> <_> - <!-- tree 198 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 2 2 -1.</_> - <_> - 7 8 1 1 2.</_> - <_> - 8 9 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7315410077571869e-003</threshold> - <left_val>0.1417302042245865</left_val> - <right_val>-0.0389972105622292</right_val></_></_> + <internalNodes> + 0 -1 1567 -1.7315410077571869e-03</internalNodes> + <leafValues> + 1.4173020422458649e-01 -3.8997210562229156e-02</leafValues></_> <_> - <!-- tree 199 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 3 1 -1.</_> - <_> - 15 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.4372592391446233e-004</threshold> - <left_val>0.1365551054477692</left_val> - <right_val>-0.0806939080357552</right_val></_></_> + <internalNodes> + 0 -1 1568 -8.4372592391446233e-04</internalNodes> + <leafValues> + 1.3655510544776917e-01 -8.0693908035755157e-02</leafValues></_> <_> - <!-- tree 200 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 18 1 -1.</_> - <_> - 9 11 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0914738774299622</threshold> - <left_val>-0.4475409090518951</left_val> - <right_val>0.0119623504579067</right_val></_></_> + <internalNodes> + 0 -1 1569 -9.1473877429962158e-02</internalNodes> + <leafValues> + -4.4754090905189514e-01 1.1962350457906723e-02</leafValues></_> <_> - <!-- tree 201 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 11 10 1 -1.</_> - <_> - 8 11 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0181042198091745</threshold> - <left_val>0.0772896185517311</left_val> - <right_val>-0.0235456004738808</right_val></_></_> + <internalNodes> + 0 -1 1570 -1.8104219809174538e-02</internalNodes> + <leafValues> + 7.7289618551731110e-02 -2.3545600473880768e-02</leafValues></_> <_> - <!-- tree 202 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 0 3 1 -1.</_> - <_> - 2 0 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.1535269732121378e-004</threshold> - <left_val>0.0768363103270531</left_val> - <right_val>-0.0681343227624893</right_val></_></_> + <internalNodes> + 0 -1 1571 -1.1535269732121378e-04</internalNodes> + <leafValues> + 7.6836310327053070e-02 -6.8134322762489319e-02</leafValues></_> <_> - <!-- tree 203 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 14 0 4 1 -1.</_> - <_> - 15 0 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0109061095863581</threshold> - <left_val>7.2263278998434544e-003</left_val> - <right_val>-0.6970415711402893</right_val></_></_> + <internalNodes> + 0 -1 1572 1.0906109586358070e-02</internalNodes> + <leafValues> + 7.2263278998434544e-03 -6.9704157114028931e-01</leafValues></_> <_> - <!-- tree 204 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 4 1 -1.</_> - <_> - 1 0 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.7245879862457514e-003</threshold> - <left_val>-0.0503533110022545</left_val> - <right_val>0.1281010955572128</right_val></_></_> + <internalNodes> + 0 -1 1573 1.7245879862457514e-03</internalNodes> + <leafValues> + -5.0353311002254486e-02 1.2810109555721283e-01</leafValues></_> <_> - <!-- tree 205 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 4 12 4 -1.</_> - <_> - 10 4 4 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2058921009302139</threshold> - <left_val>-0.0133006004616618</left_val> - <right_val>0.2716938853263855</right_val></_></_> + <internalNodes> + 0 -1 1574 2.0589210093021393e-01</internalNodes> + <leafValues> + -1.3300600461661816e-02 2.7169388532638550e-01</leafValues></_> <_> - <!-- tree 206 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 3 6 2 -1.</_> - <_> - 6 3 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0316697917878628</threshold> - <left_val>-0.3354839980602264</left_val> - <right_val>0.0158088393509388</right_val></_></_> + <internalNodes> + 0 -1 1575 -3.1669791787862778e-02</internalNodes> + <leafValues> + -3.3548399806022644e-01 1.5808839350938797e-02</leafValues></_> <_> - <!-- tree 207 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 4 2 6 -1.</_> - <_> - 10 7 2 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0120976697653532</threshold> - <left_val>-0.0718467682600021</left_val> - <right_val>0.0189812891185284</right_val></_></_> + <internalNodes> + 0 -1 1576 1.2097669765353203e-02</internalNodes> + <leafValues> + -7.1846768260002136e-02 1.8981289118528366e-02</leafValues></_> <_> - <!-- tree 208 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 3 2 1 -1.</_> - <_> - 6 3 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.8784686997532845e-005</threshold> - <left_val>0.0663050413131714</left_val> - <right_val>-0.0796494334936142</right_val></_></_> + <internalNodes> + 0 -1 1577 -9.8784686997532845e-05</internalNodes> + <leafValues> + 6.6305041313171387e-02 -7.9649433493614197e-02</leafValues></_> <_> - <!-- tree 209 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 4 3 -1.</_> - <_> - 7 3 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0346628092229366</threshold> - <left_val>-0.0242437906563282</left_val> - <right_val>0.2266075015068054</right_val></_></_> + <internalNodes> + 0 -1 1578 3.4662809222936630e-02</internalNodes> + <leafValues> + -2.4243790656328201e-02 2.2660750150680542e-01</leafValues></_> <_> - <!-- tree 210 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 3 1 2 -1.</_> - <_> - 8 4 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.1574249044060707e-003</threshold> - <left_val>-0.0237258393317461</left_val> - <right_val>0.2277520000934601</right_val></_></_> + <internalNodes> + 0 -1 1579 4.1574249044060707e-03</internalNodes> + <leafValues> + -2.3725839331746101e-02 2.2775200009346008e-01</leafValues></_> <_> - <!-- tree 211 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 0 4 8 -1.</_> - <_> - 10 0 2 8 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.1362545937299728</threshold> - <left_val>0.0125456601381302</left_val> - <right_val>-0.1869889050722122</right_val></_></_> + <internalNodes> + 0 -1 1580 1.3625459372997284e-01</internalNodes> + <leafValues> + 1.2545660138130188e-02 -1.8698890507221222e-01</leafValues></_> <_> - <!-- tree 212 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 0 8 4 -1.</_> - <_> - 8 0 8 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.1879647970199585</threshold> - <left_val>-0.4974902868270874</left_val> - <right_val>0.0109146004542708</right_val></_></_> + <internalNodes> + 0 -1 1581 -1.8796479701995850e-01</internalNodes> + <leafValues> + -4.9749028682708740e-01 1.0914600454270840e-02</leafValues></_> <_> - <!-- tree 213 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 4 4 2 -1.</_> - <_> - 9 4 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0680788531899452</threshold> - <left_val>0.6581838130950928</left_val> - <right_val>-4.3843579478561878e-003</right_val></_></_> + <internalNodes> + 0 -1 1582 -6.8078853189945221e-02</internalNodes> + <leafValues> + 6.5818381309509277e-01 -4.3843579478561878e-03</leafValues></_> <_> - <!-- tree 214 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 4 4 2 -1.</_> - <_> - 7 4 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.1167731396853924e-003</threshold> - <left_val>0.0402112491428852</left_val> - <right_val>-0.1413715928792954</right_val></_></_> + <internalNodes> + 0 -1 1583 4.1167731396853924e-03</internalNodes> + <leafValues> + 4.0211249142885208e-02 -1.4137159287929535e-01</leafValues></_> <_> - <!-- tree 215 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 1 3 2 -1.</_> - <_> - 13 2 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0122228302061558</threshold> - <left_val>0.0175553802400827</left_val> - <right_val>-0.1242308020591736</right_val></_></_> + <internalNodes> + 0 -1 1584 1.2222830206155777e-02</internalNodes> + <leafValues> + 1.7555380240082741e-02 -1.2423080205917358e-01</leafValues></_> <_> - <!-- tree 216 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 3 1 6 -1.</_> - <_> - 8 6 1 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0301945097744465</threshold> - <left_val>0.2896938025951386</left_val> - <right_val>-0.0200853701680899</right_val></_></_> + <internalNodes> + 0 -1 1585 -3.0194509774446487e-02</internalNodes> + <leafValues> + 2.8969380259513855e-01 -2.0085370168089867e-02</leafValues></_> <_> - <!-- tree 217 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 1 3 2 -1.</_> - <_> - 13 2 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0136304795742035</threshold> - <left_val>-0.0729305371642113</left_val> - <right_val>0.0204719398170710</right_val></_></_> + <internalNodes> + 0 -1 1586 -1.3630479574203491e-02</internalNodes> + <leafValues> + -7.2930537164211273e-02 2.0471939817070961e-02</leafValues></_> <_> - <!-- tree 218 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 2 12 4 -1.</_> - <_> - 2 3 12 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0491704605519772</threshold> - <left_val>0.1449605971574783</left_val> - <right_val>-0.0410229898989201</right_val></_></_> + <internalNodes> + 0 -1 1587 -4.9170460551977158e-02</internalNodes> + <leafValues> + 1.4496059715747833e-01 -4.1022989898920059e-02</leafValues></_> <_> - <!-- tree 219 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 3 -1.</_> - <_> - 16 0 1 3 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0188057795166969</threshold> - <left_val>-0.3085105121135712</left_val> - <right_val>0.0280869193375111</right_val></_></_> + <internalNodes> + 0 -1 1588 -1.8805779516696930e-02</internalNodes> + <leafValues> + -3.0851051211357117e-01 2.8086919337511063e-02</leafValues></_> <_> - <!-- tree 220 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 0 3 2 -1.</_> - <_> - 2 0 3 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0300586391240358</threshold> - <left_val>0.0125476401299238</left_val> - <right_val>-0.4472235143184662</right_val></_></_> + <internalNodes> + 0 -1 1589 3.0058639124035835e-02</internalNodes> + <leafValues> + 1.2547640129923820e-02 -4.4722351431846619e-01</leafValues></_> <_> - <!-- tree 221 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 0 12 1 -1.</_> - <_> - 3 0 6 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0117461197078228</threshold> - <left_val>-0.0577172487974167</left_val> - <right_val>0.0878280326724052</right_val></_></_> + <internalNodes> + 0 -1 1590 1.1746119707822800e-02</internalNodes> + <leafValues> + -5.7717248797416687e-02 8.7828032672405243e-02</leafValues></_> <_> - <!-- tree 222 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 18 10 -1.</_> - <_> - 9 0 9 10 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1092891991138458</threshold> - <left_val>-0.0683912634849548</left_val> - <right_val>0.0975721478462219</right_val></_></_> + <internalNodes> + 0 -1 1591 1.0928919911384583e-01</internalNodes> + <leafValues> + -6.8391263484954834e-02 9.7572147846221924e-02</leafValues></_> <_> - <!-- tree 223 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 8 2 -1.</_> - <_> - 5 2 4 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.1915056109428406e-003</threshold> - <left_val>-0.0741810128092766</left_val> - <right_val>0.0733941718935966</right_val></_></_> + <internalNodes> + 0 -1 1592 9.1915056109428406e-03</internalNodes> + <leafValues> + -7.4181012809276581e-02 7.3394171893596649e-02</leafValues></_> <_> - <!-- tree 224 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 1 2 12 6 -1.</_> - <_> - 1 2 6 3 2.</_> - <_> - 7 5 6 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.1846816986799240</threshold> - <left_val>9.3096662312746048e-003</left_val> - <right_val>-0.5878456234931946</right_val></_></_> + <internalNodes> + 0 -1 1593 1.8468169867992401e-01</internalNodes> + <leafValues> + 9.3096662312746048e-03 -5.8784562349319458e-01</leafValues></_> <_> - <!-- tree 225 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 8 3 3 -1.</_> - <_> - 15 9 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.8637598305940628e-003</threshold> - <left_val>0.0309680793434381</left_val> - <right_val>-0.1727750003337860</right_val></_></_> + <internalNodes> + 0 -1 1594 6.8637598305940628e-03</internalNodes> + <leafValues> + 3.0968079343438148e-02 -1.7277500033378601e-01</leafValues></_> <_> - <!-- tree 226 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 7 2 2 -1.</_> - <_> - 3 7 1 1 2.</_> - <_> - 4 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.9742390140891075e-003</threshold> - <left_val>0.1306941956281662</left_val> - <right_val>-0.0380300506949425</right_val></_></_> + <internalNodes> + 0 -1 1595 -1.9742390140891075e-03</internalNodes> + <leafValues> + 1.3069419562816620e-01 -3.8030050694942474e-02</leafValues></_> <_> - <!-- tree 227 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 2 2 -1.</_> - <_> - 14 7 1 1 2.</_> - <_> - 13 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.6963930577039719e-003</threshold> - <left_val>0.1624440997838974</left_val> - <right_val>-0.0354813784360886</right_val></_></_> + <internalNodes> + 0 -1 1596 -2.6963930577039719e-03</internalNodes> + <leafValues> + 1.6244409978389740e-01 -3.5481378436088562e-02</leafValues></_> <_> - <!-- tree 228 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 5 3 4 -1.</_> - <_> - 9 6 1 4 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0580139085650444</threshold> - <left_val>-0.4374948143959045</left_val> - <right_val>0.0127705102786422</right_val></_></_> + <internalNodes> + 0 -1 1597 -5.8013908565044403e-02</internalNodes> + <leafValues> + -4.3749481439590454e-01 1.2770510278642178e-02</leafValues></_> <_> - <!-- tree 229 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 4 -1.</_> - <_> - 16 1 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.9008668437600136e-003</threshold> - <left_val>0.0430592596530914</left_val> - <right_val>-0.3790155947208405</right_val></_></_> + <internalNodes> + 0 -1 1598 8.9008668437600136e-03</internalNodes> + <leafValues> + 4.3059259653091431e-02 -3.7901559472084045e-01</leafValues></_> <_> - <!-- tree 230 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 3 3 -1.</_> - <_> - 0 9 3 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0167404506355524</threshold> - <left_val>-0.4096631109714508</left_val> - <right_val>0.0104116601869464</right_val></_></_> + <internalNodes> + 0 -1 1599 -1.6740450635552406e-02</internalNodes> + <leafValues> + -4.0966311097145081e-01 1.0411660186946392e-02</leafValues></_> <_> - <!-- tree 231 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 7 2 2 -1.</_> - <_> - 14 7 1 1 2.</_> - <_> - 13 8 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>2.6413789018988609e-003</threshold> - <left_val>-0.0400578081607819</left_val> - <right_val>0.2167664021253586</right_val></_></_> + <internalNodes> + 0 -1 1600 2.6413789018988609e-03</internalNodes> + <leafValues> + -4.0057808160781860e-02 2.1676640212535858e-01</leafValues></_> <_> - <!-- tree 232 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 4 2 -1.</_> - <_> - 8 9 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-8.0486387014389038e-003</threshold> - <left_val>-0.2788177132606506</left_val> - <right_val>0.0197779703885317</right_val></_></_> + <internalNodes> + 0 -1 1601 -8.0486387014389038e-03</internalNodes> + <leafValues> + -2.7881771326065063e-01 1.9777970388531685e-02</leafValues></_> <_> - <!-- tree 233 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 8 6 2 -1.</_> - <_> - 8 8 2 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0603763498365879</threshold> - <left_val>0.5353479981422424</left_val> - <right_val>-0.0114248897880316</right_val></_></_> + <internalNodes> + 0 -1 1602 -6.0376349836587906e-02</internalNodes> + <leafValues> + 5.3534799814224243e-01 -1.1424889788031578e-02</leafValues></_> <_> - <!-- tree 234 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 1 2 3 -1.</_> - <_> - 5 2 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0231240708380938</threshold> - <left_val>0.0164581593126059</left_val> - <right_val>-0.3212598860263825</right_val></_></_> + <internalNodes> + 0 -1 1603 2.3124070838093758e-02</internalNodes> + <leafValues> + 1.6458159312605858e-02 -3.2125988602638245e-01</leafValues></_> <_> - <!-- tree 235 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 0 8 6 -1.</_> - <_> - 5 2 8 2 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.2032282948493958</threshold> - <left_val>-0.0231459401547909</left_val> - <right_val>0.2390325963497162</right_val></_></_> + <internalNodes> + 0 -1 1604 2.0322829484939575e-01</internalNodes> + <leafValues> + -2.3145940154790878e-02 2.3903259634971619e-01</leafValues></_> <_> - <!-- tree 236 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 5 2 2 2 -1.</_> - <_> - 6 2 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.2585664242506027e-003</threshold> - <left_val>0.0119809396564960</left_val> - <right_val>-0.4384216070175171</right_val></_></_> + <internalNodes> + 0 -1 1605 9.2585664242506027e-03</internalNodes> + <leafValues> + 1.1980939656496048e-02 -4.3842160701751709e-01</leafValues></_> <_> - <!-- tree 237 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 2 2 -1.</_> - <_> - 10 2 1 1 2.</_> - <_> - 9 3 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3168877356220037e-005</threshold> - <left_val>0.0386874787509441</left_val> - <right_val>-0.0377978086471558</right_val></_></_> + <internalNodes> + 0 -1 1606 -9.3168877356220037e-05</internalNodes> + <leafValues> + 3.8687478750944138e-02 -3.7797808647155762e-02</leafValues></_> <_> - <!-- tree 238 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 4 12 4 -1.</_> - <_> - 6 4 4 4 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.3064337968826294</threshold> - <left_val>-0.5577437281608582</left_val> - <right_val>9.6901366487145424e-003</right_val></_></_> + <internalNodes> + 0 -1 1607 -3.0643379688262939e-01</internalNodes> + <leafValues> + -5.5774372816085815e-01 9.6901366487145424e-03</leafValues></_> <_> - <!-- tree 239 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 2 2 2 -1.</_> - <_> - 10 2 1 1 2.</_> - <_> - 9 3 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.9146942375227809e-005</threshold> - <left_val>-0.0553302392363548</left_val> - <right_val>0.0668352469801903</right_val></_></_> + <internalNodes> + 0 -1 1608 9.9146942375227809e-05</internalNodes> + <leafValues> + -5.5330239236354828e-02 6.6835246980190277e-02</leafValues></_> <_> - <!-- tree 240 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 2 2 2 -1.</_> - <_> - 7 2 1 1 2.</_> - <_> - 8 3 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.0753950811922550e-003</threshold> - <left_val>0.1510539054870606</left_val> - <right_val>-0.0379700884222984</right_val></_></_> + <internalNodes> + 0 -1 1609 -2.0753950811922550e-03</internalNodes> + <leafValues> + 1.5105390548706055e-01 -3.7970088422298431e-02</leafValues></_> <_> - <!-- tree 241 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 1 3 -1.</_> - <_> - 16 10 1 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.7292000120505691e-003</threshold> - <left_val>0.0372065603733063</left_val> - <right_val>-0.1266295015811920</right_val></_></_> + <internalNodes> + 0 -1 1610 1.7292000120505691e-03</internalNodes> + <leafValues> + 3.7206560373306274e-02 -1.2662950158119202e-01</leafValues></_> <_> - <!-- tree 242 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 6 7 2 3 -1.</_> - <_> - 5 8 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0414862893521786</threshold> - <left_val>-7.8654065728187561e-003</left_val> - <right_val>0.5928629040718079</right_val></_></_> + <internalNodes> + 0 -1 1611 4.1486289352178574e-02</internalNodes> + <leafValues> + -7.8654065728187561e-03 5.9286290407180786e-01</leafValues></_> <_> - <!-- tree 243 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 13 10 2 2 -1.</_> - <_> - 14 10 1 1 2.</_> - <_> - 13 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-2.1392209455370903e-003</threshold> - <left_val>-0.2170332968235016</left_val> - <right_val>0.0255098398774862</right_val></_></_> + <internalNodes> + 0 -1 1612 -2.1392209455370903e-03</internalNodes> + <leafValues> + -2.1703329682350159e-01 2.5509839877486229e-02</leafValues></_> <_> - <!-- tree 244 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 10 2 2 -1.</_> - <_> - 3 10 1 1 2.</_> - <_> - 4 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.2593599967658520e-003</threshold> - <left_val>-0.1543657034635544</left_val> - <right_val>0.0316766612231731</right_val></_></_> + <internalNodes> + 0 -1 1613 -1.2593599967658520e-03</internalNodes> + <leafValues> + -1.5436570346355438e-01 3.1676661223173141e-02</leafValues></_> <_> - <!-- tree 245 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 11 10 1 -1.</_> - <_> - 8 11 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-5.2773267962038517e-003</threshold> - <left_val>0.0408929102122784</left_val> - <right_val>-0.0284157395362854</right_val></_></_> + <internalNodes> + 0 -1 1614 -5.2773267962038517e-03</internalNodes> + <leafValues> + 4.0892910212278366e-02 -2.8415739536285400e-02</leafValues></_> <_> - <!-- tree 246 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 7 2 3 -1.</_> - <_> - 3 8 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0111250402405858</threshold> - <left_val>0.1623205989599228</left_val> - <right_val>-0.0307451691478491</right_val></_></_> + <internalNodes> + 0 -1 1615 -1.1125040240585804e-02</internalNodes> + <leafValues> + 1.6232059895992279e-01 -3.0745169147849083e-02</leafValues></_> <_> - <!-- tree 247 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 6 10 6 -1.</_> - <_> - 4 9 10 3 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.6761909937486053e-003</threshold> - <left_val>-0.3309017121791840</left_val> - <right_val>0.0177685692906380</right_val></_></_> + <internalNodes> + 0 -1 1616 -1.6761909937486053e-03</internalNodes> + <leafValues> + -3.3090171217918396e-01 1.7768569290637970e-02</leafValues></_> <_> - <!-- tree 248 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 11 4 1 -1.</_> - <_> - 5 11 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0530459985602647e-004</threshold> - <left_val>0.0754389390349388</left_val> - <right_val>-0.0669338703155518</right_val></_></_> + <internalNodes> + 0 -1 1617 -1.0530459985602647e-04</internalNodes> + <leafValues> + 7.5438939034938812e-02 -6.6933870315551758e-02</leafValues></_> <_> - <!-- tree 249 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 12 10 2 2 -1.</_> - <_> - 13 10 1 1 2.</_> - <_> - 12 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>7.3067108169198036e-003</threshold> - <left_val>5.1727588288486004e-003</left_val> - <right_val>-0.5524929165840149</right_val></_></_> + <internalNodes> + 0 -1 1618 7.3067108169198036e-03</internalNodes> + <leafValues> + 5.1727588288486004e-03 -5.5249291658401489e-01</leafValues></_> <_> - <!-- tree 250 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 4 10 2 2 -1.</_> - <_> - 4 10 1 1 2.</_> - <_> - 5 11 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>9.5791132480371743e-005</threshold> - <left_val>-0.0749213472008705</left_val> - <right_val>0.0863548517227173</right_val></_></_> + <internalNodes> + 0 -1 1619 9.5791132480371743e-05</internalNodes> + <leafValues> + -7.4921347200870514e-02 8.6354851722717285e-02</leafValues></_> <_> - <!-- tree 251 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 2 2 -1.</_> - <_> - 10 1 1 1 2.</_> - <_> - 9 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.3413247668650001e-005</threshold> - <left_val>0.0485582686960697</left_val> - <right_val>-0.0403787307441235</right_val></_></_> + <internalNodes> + 0 -1 1620 -9.3413247668650001e-05</internalNodes> + <leafValues> + 4.8558268696069717e-02 -4.0378730744123459e-02</leafValues></_> <_> - <!-- tree 252 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 1 4 -1.</_> - <_> - 7 9 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.6156500466167927e-003</threshold> - <left_val>-0.0375327989459038</left_val> - <right_val>0.1334013938903809</right_val></_></_> + <internalNodes> + 0 -1 1621 4.6156500466167927e-03</internalNodes> + <leafValues> + -3.7532798945903778e-02 1.3340139389038086e-01</leafValues></_> <_> - <!-- tree 253 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 11 7 2 2 -1.</_> - <_> - 11 7 1 2 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0410421490669250</threshold> - <left_val>0.2982156872749329</left_val> - <right_val>-6.6182389855384827e-003</right_val></_></_> + <internalNodes> + 0 -1 1622 -4.1042149066925049e-02</internalNodes> + <leafValues> + 2.9821568727493286e-01 -6.6182389855384827e-03</leafValues></_> <_> - <!-- tree 254 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 7 2 2 -1.</_> - <_> - 7 7 2 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>7.1153012104332447e-003</threshold> - <left_val>-0.0216312408447266</left_val> - <right_val>0.2358261048793793</right_val></_></_> + <internalNodes> + 0 -1 1623 7.1153012104332447e-03</internalNodes> + <leafValues> + -2.1631240844726562e-02 2.3582610487937927e-01</leafValues></_> <_> - <!-- tree 255 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 10 7 1 3 -1.</_> - <_> - 9 8 1 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0310664307326078</threshold> - <left_val>-0.5861052274703980</left_val> - <right_val>3.6739821080118418e-003</right_val></_></_> + <internalNodes> + 0 -1 1624 -3.1066430732607841e-02</internalNodes> + <leafValues> + -5.8610522747039795e-01 3.6739821080118418e-03</leafValues></_> <_> - <!-- tree 256 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 11 14 1 -1.</_> - <_> - 9 11 7 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0459889099001884</threshold> - <left_val>0.0169350299984217</left_val> - <right_val>-0.3102642893791199</right_val></_></_> + <internalNodes> + 0 -1 1625 4.5988909900188446e-02</internalNodes> + <leafValues> + 1.6935029998421669e-02 -3.1026428937911987e-01</leafValues></_> <_> - <!-- tree 257 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 10 10 2 -1.</_> - <_> - 8 10 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.1132673993706703</threshold> - <left_val>0.1565486043691635</left_val> - <right_val>-5.0538508221507072e-003</right_val></_></_> + <internalNodes> + 0 -1 1626 -1.1326739937067032e-01</internalNodes> + <leafValues> + 1.5654860436916351e-01 -5.0538508221507072e-03</leafValues></_> <_> - <!-- tree 258 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 10 10 2 -1.</_> - <_> - 5 10 5 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>6.4136488363146782e-003</threshold> - <left_val>-0.0539362505078316</left_val> - <right_val>0.1001392006874085</right_val></_></_> + <internalNodes> + 0 -1 1627 6.4136488363146782e-03</internalNodes> + <leafValues> + -5.3936250507831573e-02 1.0013920068740845e-01</leafValues></_> <_> - <!-- tree 259 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 11 10 1 -1.</_> - <_> - 8 11 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0366158299148083</threshold> - <left_val>8.5446005687117577e-003</left_val> - <right_val>-0.1596466004848480</right_val></_></_> + <internalNodes> + 0 -1 1628 3.6615829914808273e-02</internalNodes> + <leafValues> + 8.5446005687117577e-03 -1.5964660048484802e-01</leafValues></_> <_> - <!-- tree 260 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 11 10 1 -1.</_> - <_> - 5 11 5 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0171479396522045</threshold> - <left_val>0.1419283002614975</left_val> - <right_val>-0.0537494383752346</right_val></_></_> + <internalNodes> + 0 -1 1629 -1.7147939652204514e-02</internalNodes> + <leafValues> + 1.4192830026149750e-01 -5.3749438375234604e-02</leafValues></_> <_> - <!-- tree 261 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 9 2 2 -1.</_> - <_> - 17 9 1 1 2.</_> - <_> - 16 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.3531897719949484e-004</threshold> - <left_val>0.1144033968448639</left_val> - <right_val>-0.2330276966094971</right_val></_></_> + <internalNodes> + 0 -1 1630 5.3531897719949484e-04</internalNodes> + <leafValues> + 1.1440339684486389e-01 -2.3302769660949707e-01</leafValues></_> <_> - <!-- tree 262 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 1 2 -1.</_> - <_> - 3 4 1 1 2.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0114440796896815</threshold> - <left_val>0.0124684898182750</left_val> - <right_val>-0.3917421102523804</right_val></_></_> + <internalNodes> + 0 -1 1631 1.1444079689681530e-02</internalNodes> + <leafValues> + 1.2468489818274975e-02 -3.9174211025238037e-01</leafValues></_> <_> - <!-- tree 263 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 1 2 2 -1.</_> - <_> - 10 1 1 1 2.</_> - <_> - 9 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>8.3751561760436743e-005</threshold> - <left_val>-0.0499331504106522</left_val> - <right_val>0.0548286102712154</right_val></_></_> + <internalNodes> + 0 -1 1632 8.3751561760436743e-05</internalNodes> + <leafValues> + -4.9933150410652161e-02 5.4828610271215439e-02</leafValues></_> <_> - <!-- tree 264 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 1 2 2 -1.</_> - <_> - 7 1 1 1 2.</_> - <_> - 8 2 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.8420179840177298e-003</threshold> - <left_val>0.1435350030660629</left_val> - <right_val>-0.0375447086989880</right_val></_></_> + <internalNodes> + 0 -1 1633 -1.8420179840177298e-03</internalNodes> + <leafValues> + 1.4353500306606293e-01 -3.7544708698987961e-02</leafValues></_> <_> - <!-- tree 265 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 10 4 1 -1.</_> - <_> - 10 10 2 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>4.5310789719223976e-003</threshold> - <left_val>0.0107836900278926</left_val> - <right_val>-0.1858448982238770</right_val></_></_> + <internalNodes> + 0 -1 1634 4.5310789719223976e-03</internalNodes> + <leafValues> + 1.0783690027892590e-02 -1.8584489822387695e-01</leafValues></_> <_> - <!-- tree 266 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 9 4 2 -1.</_> - <_> - 0 10 4 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-6.4388299360871315e-003</threshold> - <left_val>-0.3638176918029785</left_val> - <right_val>0.0126622598618269</right_val></_></_> + <internalNodes> + 0 -1 1635 -6.4388299360871315e-03</internalNodes> + <leafValues> + -3.6381769180297852e-01 1.2662259861826897e-02</leafValues></_> <_> - <!-- tree 267 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 2 11 16 1 -1.</_> - <_> - 6 11 8 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.8657680638134480e-003</threshold> - <left_val>-0.0501558110117912</left_val> - <right_val>0.0953462794423103</right_val></_></_> + <internalNodes> + 0 -1 1636 5.8657680638134480e-03</internalNodes> + <leafValues> + -5.0155811011791229e-02 9.5346279442310333e-02</leafValues></_> <_> - <!-- tree 268 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 8 18 1 -1.</_> - <_> - 9 8 9 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0722144469618797</threshold> - <left_val>0.0207698997110128</left_val> - <right_val>-0.2323918044567108</right_val></_></_> + <internalNodes> + 0 -1 1637 7.2214446961879730e-02</internalNodes> + <leafValues> + 2.0769899711012840e-02 -2.3239180445671082e-01</leafValues></_> <_> - <!-- tree 269 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 9 9 2 2 -1.</_> - <_> - 10 9 1 1 2.</_> - <_> - 9 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>1.1799850035458803e-003</threshold> - <left_val>0.0304791107773781</left_val> - <right_val>-0.1015679016709328</right_val></_></_> + <internalNodes> + 0 -1 1638 1.1799850035458803e-03</internalNodes> + <leafValues> + 3.0479110777378082e-02 -1.0156790167093277e-01</leafValues></_> <_> - <!-- tree 270 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 8 4 3 -1.</_> - <_> - 7 9 4 1 3.</_></rects> - <tilted>0</tilted></feature> - <threshold>-9.1386884450912476e-003</threshold> - <left_val>0.1459242999553680</left_val> - <right_val>-0.0351009108126163</right_val></_></_> + <internalNodes> + 0 -1 1639 -9.1386884450912476e-03</internalNodes> + <leafValues> + 1.4592429995536804e-01 -3.5100910812616348e-02</leafValues></_> <_> - <!-- tree 271 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 6 3 3 -1.</_> - <_> - 9 7 1 1 9.</_></rects> - <tilted>0</tilted></feature> - <threshold>-0.0114875202998519</threshold> - <left_val>0.0667314082384110</left_val> - <right_val>-0.0409609712660313</right_val></_></_> + <internalNodes> + 0 -1 1640 -1.1487520299851894e-02</internalNodes> + <leafValues> + 6.6731408238410950e-02 -4.0960971266031265e-02</leafValues></_> <_> - <!-- tree 272 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 8 7 2 4 -1.</_> - <_> - 8 7 1 2 2.</_> - <_> - 9 9 1 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>5.9421849437057972e-003</threshold> - <left_val>0.0267156008630991</left_val> - <right_val>-0.2093899995088577</right_val></_></_> + <internalNodes> + 0 -1 1641 5.9421849437057972e-03</internalNodes> + <leafValues> + 2.6715600863099098e-02 -2.0938999950885773e-01</leafValues></_> <_> - <!-- tree 273 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 4 2 3 -1.</_> - <_> - 14 5 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>0.0159670002758503</threshold> - <left_val>-0.0256909001618624</left_val> - <right_val>0.1629498004913330</right_val></_></_> + <internalNodes> + 0 -1 1642 1.5967000275850296e-02</internalNodes> + <leafValues> + -2.5690900161862373e-02 1.6294980049133301e-01</leafValues></_> <_> - <!-- tree 274 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 7 9 2 2 -1.</_> - <_> - 7 9 1 1 2.</_> - <_> - 8 10 1 1 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.0477179894223809e-003</threshold> - <left_val>0.1114815026521683</left_val> - <right_val>-0.0446792207658291</right_val></_></_> + <internalNodes> + 0 -1 1643 -1.0477179894223809e-03</internalNodes> + <leafValues> + 1.1148150265216827e-01 -4.4679220765829086e-02</leafValues></_> <_> - <!-- tree 275 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 16 0 2 4 -1.</_> - <_> - 16 1 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>-1.7775410087779164e-003</threshold> - <left_val>0.0517367497086525</left_val> - <right_val>-0.0340076088905334</right_val></_></_> + <internalNodes> + 0 -1 1644 -1.7775410087779164e-03</internalNodes> + <leafValues> + 5.1736749708652496e-02 -3.4007608890533447e-02</leafValues></_> <_> - <!-- tree 276 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 0 0 2 4 -1.</_> - <_> - 0 1 2 2 2.</_></rects> - <tilted>0</tilted></feature> - <threshold>0.0223141908645630</threshold> - <left_val>0.0110568795353174</left_val> - <right_val>-0.4757811129093170</right_val></_></_> + <internalNodes> + 0 -1 1645 2.2314190864562988e-02</internalNodes> + <leafValues> + 1.1056879535317421e-02 -4.7578111290931702e-01</leafValues></_> <_> - <!-- tree 277 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 15 4 2 3 -1.</_> - <_> - 14 5 2 1 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>-0.0120756300166249</threshold> - <left_val>0.0783826783299446</left_val> - <right_val>-0.0386138409376144</right_val></_></_> + <internalNodes> + 0 -1 1646 -1.2075630016624928e-02</internalNodes> + <leafValues> + 7.8382678329944611e-02 -3.8613840937614441e-02</leafValues></_> <_> - <!-- tree 278 --> - <_> - <!-- root node --> - <feature> - <rects> - <_> - 3 4 3 2 -1.</_> - <_> - 4 5 1 2 3.</_></rects> - <tilted>1</tilted></feature> - <threshold>5.9365699999034405e-003</threshold> - <left_val>-0.0407924205064774</left_val> - <right_val>0.1277489066123962</right_val></_></_></trees> - <stage_threshold>-1.4309279918670654</stage_threshold> - <parent>12</parent> - <next>-1</next></_></stages></ojoI> + <internalNodes> + 0 -1 1647 5.9365699999034405e-03</internalNodes> + <leafValues> + -4.0792420506477356e-02 1.2774890661239624e-01</leafValues></_></weakClassifiers></_></stages> + <features> + <_> + <rects> + <_> + 2 0 9 12 -1.</_> + <_> + 2 4 9 4 3.</_></rects></_> + <_> + <rects> + <_> + 3 4 12 8 -1.</_> + <_> + 3 8 12 4 2.</_></rects></_> + <_> + <rects> + <_> + 8 2 6 2 -1.</_> + <_> + 10 4 2 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 9 4 2 -1.</_> + <_> + 13 10 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 10 -1.</_> + <_> + 6 0 6 10 3.</_></rects></_> + <_> + <rects> + <_> + 13 9 4 2 -1.</_> + <_> + 13 10 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 9 4 2 -1.</_> + <_> + 1 10 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 9 1 3 -1.</_> + <_> + 16 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 1 8 6 -1.</_> + <_> + 5 3 8 2 3.</_></rects></_> + <_> + <rects> + <_> + 7 1 7 6 -1.</_> + <_> + 7 3 7 2 3.</_></rects></_> + <_> + <rects> + <_> + 1 9 1 3 -1.</_> + <_> + 1 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 17 0 1 12 -1.</_> + <_> + 17 6 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 1 12 -1.</_> + <_> + 0 6 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 13 1 5 4 -1.</_> + <_> + 13 3 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 0 9 12 -1.</_> + <_> + 2 4 9 4 3.</_></rects></_> + <_> + <rects> + <_> + 16 6 2 1 -1.</_> + <_> + 16 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 5 10 6 -1.</_> + <_> + 1 8 10 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 18 9 -1.</_> + <_> + 6 4 6 3 9.</_></rects></_> + <_> + <rects> + <_> + 0 8 5 4 -1.</_> + <_> + 0 10 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 2 2 6 -1.</_> + <_> + 8 4 2 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 2 6 2 -1.</_> + <_> + 10 4 2 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 1 10 6 -1.</_> + <_> + 4 3 10 2 3.</_></rects></_> + <_> + <rects> + <_> + 3 10 12 2 -1.</_> + <_> + 3 11 12 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 4 2 -1.</_> + <_> + 8 10 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 8 3 4 2 -1.</_> + <_> + 8 3 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 10 4 2 -1.</_> + <_> + 8 10 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 2 -1.</_> + <_> + 6 0 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 4 2 10 6 -1.</_> + <_> + 4 4 10 2 3.</_></rects></_> + <_> + <rects> + <_> + 1 9 1 3 -1.</_> + <_> + 1 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 15 10 1 2 -1.</_> + <_> + 15 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 10 1 2 -1.</_> + <_> + 2 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 9 2 2 -1.</_> + <_> + 16 9 1 1 2.</_> + <_> + 15 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 9 2 2 -1.</_> + <_> + 1 9 1 1 2.</_> + <_> + 2 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 8 6 -1.</_> + <_> + 5 2 8 2 3.</_></rects></_> + <_> + <rects> + <_> + 2 0 11 6 -1.</_> + <_> + 2 2 11 2 3.</_></rects></_> + <_> + <rects> + <_> + 7 0 4 3 -1.</_> + <_> + 8 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 4 11 4 1 -1.</_> + <_> + 5 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 4 12 8 -1.</_> + <_> + 3 8 12 4 2.</_></rects></_> + <_> + <rects> + <_> + 9 1 4 6 -1.</_> + <_> + 7 3 4 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 5 12 6 -1.</_> + <_> + 0 5 6 3 2.</_> + <_> + 6 8 6 3 2.</_></rects></_> + <_> + <rects> + <_> + 9 1 3 6 -1.</_> + <_> + 7 3 3 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 1 6 3 -1.</_> + <_> + 11 3 2 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 10 6 2 -1.</_> + <_> + 12 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 8 7 4 -1.</_> + <_> + 0 10 7 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 11 -1.</_> + <_> + 6 0 6 11 3.</_></rects></_> + <_> + <rects> + <_> + 0 10 4 2 -1.</_> + <_> + 0 11 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 13 3 3 3 -1.</_> + <_> + 12 4 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 3 3 -1.</_> + <_> + 6 4 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 10 6 2 -1.</_> + <_> + 11 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 5 10 6 2 -1.</_> + <_> + 7 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 8 10 2 2 -1.</_> + <_> + 8 10 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 8 3 4 -1.</_> + <_> + 0 9 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 4 4 5 -1.</_> + <_> + 8 4 2 5 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 6 4 -1.</_> + <_> + 5 0 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 9 6 3 1 -1.</_> + <_> + 10 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 10 2 -1.</_> + <_> + 4 1 10 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 4 4 -1.</_> + <_> + 9 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 4 4 -1.</_> + <_> + 7 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 9 5 3 3 -1.</_> + <_> + 10 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 6 0 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 0 9 3 -1.</_> + <_> + 5 1 9 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 2 2 3 -1.</_> + <_> + 2 3 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 0 8 8 -1.</_> + <_> + 7 2 8 4 2.</_></rects></_> + <_> + <rects> + <_> + 6 5 3 1 -1.</_> + <_> + 7 5 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 15 5 3 4 -1.</_> + <_> + 15 6 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 3 16 8 -1.</_> + <_> + 0 3 8 4 2.</_> + <_> + 8 7 8 4 2.</_></rects></_> + <_> + <rects> + <_> + 16 4 2 4 -1.</_> + <_> + 16 5 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 4 2 4 -1.</_> + <_> + 0 5 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 6 2 2 -1.</_> + <_> + 11 6 1 1 2.</_> + <_> + 10 7 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 9 4 2 -1.</_> + <_> + 8 9 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 6 4 3 -1.</_> + <_> + 14 6 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 6 9 6 3 -1.</_> + <_> + 8 9 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 9 5 2 2 -1.</_> + <_> + 10 5 1 1 2.</_> + <_> + 9 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 2 2 -1.</_> + <_> + 7 5 1 1 2.</_> + <_> + 8 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 3 3 2 -1.</_> + <_> + 15 4 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 3 3 2 -1.</_> + <_> + 0 4 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 12 -1.</_> + <_> + 6 4 6 4 9.</_></rects></_> + <_> + <rects> + <_> + 8 4 10 8 -1.</_> + <_> + 8 8 10 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 5 4 4 -1.</_> + <_> + 2 5 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 14 7 4 4 -1.</_> + <_> + 14 9 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 2 6 1 -1.</_> + <_> + 9 4 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 8 2 2 -1.</_> + <_> + 16 9 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 8 2 2 -1.</_> + <_> + 0 9 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 13 2 4 1 -1.</_> + <_> + 14 2 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 6 2 -1.</_> + <_> + 0 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 9 4 2 -1.</_> + <_> + 14 10 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 9 4 2 -1.</_> + <_> + 0 10 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 4 7 -1.</_> + <_> + 10 1 2 7 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 4 2 6 -1.</_> + <_> + 0 7 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 8 10 4 2 -1.</_> + <_> + 9 10 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 8 4 -1.</_> + <_> + 6 0 8 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 9 1 2 -1.</_> + <_> + 13 9 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 0 6 4 -1.</_> + <_> + 8 1 6 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 0 12 2 -1.</_> + <_> + 9 0 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 0 9 8 -1.</_> + <_> + 4 2 9 4 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 2 4 -1.</_> + <_> + 9 0 1 4 2.</_></rects></_> + <_> + <rects> + <_> + 7 0 4 3 -1.</_> + <_> + 8 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 6 4 6 6 -1.</_> + <_> + 8 6 2 2 9.</_></rects></_> + <_> + <rects> + <_> + 6 10 4 2 -1.</_> + <_> + 7 10 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 13 7 5 2 -1.</_> + <_> + 13 8 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 4 4 4 -1.</_> + <_> + 7 5 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 13 7 5 2 -1.</_> + <_> + 13 8 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 7 5 2 -1.</_> + <_> + 0 8 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 0 0 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 10 4 2 -1.</_> + <_> + 5 10 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 5 4 3 -1.</_> + <_> + 11 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 4 5 4 3 -1.</_> + <_> + 5 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 4 2 -1.</_> + <_> + 10 0 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 9 1 2 -1.</_> + <_> + 4 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 8 4 -1.</_> + <_> + 5 1 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 5 4 -1.</_> + <_> + 6 1 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 3 2 -1.</_> + <_> + 10 0 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 8 18 4 -1.</_> + <_> + 6 8 6 4 3.</_></rects></_> + <_> + <rects> + <_> + 9 0 4 2 -1.</_> + <_> + 10 0 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 9 2 3 -1.</_> + <_> + 0 10 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 1 8 6 -1.</_> + <_> + 6 3 8 2 3.</_></rects></_> + <_> + <rects> + <_> + 5 0 4 2 -1.</_> + <_> + 6 0 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 6 8 2 -1.</_> + <_> + 9 6 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 4 2 3 -1.</_> + <_> + 6 4 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 0 9 6 -1.</_> + <_> + 5 2 9 2 3.</_></rects></_> + <_> + <rects> + <_> + 2 1 11 4 -1.</_> + <_> + 2 2 11 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 2 2 2 -1.</_> + <_> + 14 2 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 2 2 3 -1.</_> + <_> + 3 3 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 1 6 9 -1.</_> + <_> + 8 4 2 3 9.</_></rects></_> + <_> + <rects> + <_> + 14 5 4 4 -1.</_> + <_> + 14 5 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 1 6 10 6 -1.</_> + <_> + 1 9 10 3 2.</_></rects></_> + <_> + <rects> + <_> + 14 5 4 5 -1.</_> + <_> + 14 5 2 5 2.</_></rects></_> + <_> + <rects> + <_> + 0 5 4 5 -1.</_> + <_> + 2 5 2 5 2.</_></rects></_> + <_> + <rects> + <_> + 10 3 3 3 -1.</_> + <_> + 11 4 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 4 2 3 -1.</_> + <_> + 7 5 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 5 3 2 -1.</_> + <_> + 9 6 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 5 2 2 -1.</_> + <_> + 6 6 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 2 8 4 -1.</_> + <_> + 6 3 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 1 0 16 2 -1.</_> + <_> + 5 0 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 3 2 6 -1.</_> + <_> + 7 5 2 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 1 12 -1.</_> + <_> + 0 6 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 4 3 -1.</_> + <_> + 7 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 2 8 2 2 -1.</_> + <_> + 2 8 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 4 3 2 -1.</_> + <_> + 10 5 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 4 2 3 -1.</_> + <_> + 8 5 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 0 8 4 -1.</_> + <_> + 5 1 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 10 1 2 -1.</_> + <_> + 6 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 0 8 4 -1.</_> + <_> + 7 1 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 11 6 1 -1.</_> + <_> + 6 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 11 6 1 -1.</_> + <_> + 8 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 2 18 10 -1.</_> + <_> + 0 2 9 5 2.</_> + <_> + 9 7 9 5 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 6 9 -1.</_> + <_> + 8 0 2 9 3.</_></rects></_> + <_> + <rects> + <_> + 5 11 6 1 -1.</_> + <_> + 7 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 0 6 4 -1.</_> + <_> + 8 0 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 5 1 7 4 -1.</_> + <_> + 5 2 7 2 2.</_></rects></_> + <_> + <rects> + <_> + 12 3 1 2 -1.</_> + <_> + 12 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 5 3 3 -1.</_> + <_> + 5 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 9 0 6 2 -1.</_> + <_> + 11 0 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 3 0 6 2 -1.</_> + <_> + 5 0 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 9 5 3 5 -1.</_> + <_> + 10 5 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 6 5 3 5 -1.</_> + <_> + 7 5 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 17 4 1 6 -1.</_> + <_> + 17 6 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 2 1 9 -1.</_> + <_> + 0 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 15 9 2 2 -1.</_> + <_> + 16 9 1 1 2.</_> + <_> + 15 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 9 2 2 -1.</_> + <_> + 1 9 1 1 2.</_> + <_> + 2 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 6 3 2 -1.</_> + <_> + 11 6 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 3 2 4 3 -1.</_> + <_> + 4 3 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 17 7 1 4 -1.</_> + <_> + 17 8 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 7 1 4 -1.</_> + <_> + 0 8 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 3 7 -1.</_> + <_> + 10 1 1 7 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 0 7 3 -1.</_> + <_> + 8 1 7 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 10 2 2 -1.</_> + <_> + 10 10 1 1 2.</_> + <_> + 9 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 2 2 -1.</_> + <_> + 7 10 1 1 2.</_> + <_> + 8 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 0 3 2 -1.</_> + <_> + 16 1 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 2 10 3 -1.</_> + <_> + 4 3 10 1 3.</_></rects></_> + <_> + <rects> + <_> + 16 2 2 2 -1.</_> + <_> + 16 2 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 2 2 2 -1.</_> + <_> + 2 2 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 11 18 1 -1.</_> + <_> + 0 11 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 1 16 10 -1.</_> + <_> + 5 1 8 10 2.</_></rects></_> + <_> + <rects> + <_> + 9 10 2 2 -1.</_> + <_> + 10 10 1 1 2.</_> + <_> + 9 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 2 2 -1.</_> + <_> + 7 10 1 1 2.</_> + <_> + 8 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 0 16 10 -1.</_> + <_> + 6 0 8 10 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 16 10 -1.</_> + <_> + 4 0 8 10 2.</_></rects></_> + <_> + <rects> + <_> + 14 10 2 2 -1.</_> + <_> + 14 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 6 3 2 -1.</_> + <_> + 6 6 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 2 11 8 -1.</_> + <_> + 0 4 11 4 2.</_></rects></_> + <_> + <rects> + <_> + 6 5 6 3 -1.</_> + <_> + 8 5 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 5 4 3 -1.</_> + <_> + 2 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 12 6 -1.</_> + <_> + 3 4 12 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 9 3 3 -1.</_> + <_> + 0 10 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 3 7 3 -1.</_> + <_> + 6 4 7 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 10 10 2 -1.</_> + <_> + 4 11 10 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 4 10 2 -1.</_> + <_> + 5 5 10 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 8 -1.</_> + <_> + 6 0 6 8 3.</_></rects></_> + <_> + <rects> + <_> + 17 4 1 8 -1.</_> + <_> + 17 8 1 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 4 1 8 -1.</_> + <_> + 0 8 1 4 2.</_></rects></_> + <_> + <rects> + <_> + 5 7 12 3 -1.</_> + <_> + 9 7 4 3 3.</_></rects></_> + <_> + <rects> + <_> + 3 2 4 2 -1.</_> + <_> + 4 3 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 0 6 4 -1.</_> + <_> + 9 0 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 5 0 6 4 -1.</_> + <_> + 7 0 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 15 10 3 2 -1.</_> + <_> + 15 11 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 6 3 1 -1.</_> + <_> + 7 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 6 3 1 -1.</_> + <_> + 10 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 10 3 2 -1.</_> + <_> + 0 11 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 10 6 2 -1.</_> + <_> + 8 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 7 4 -1.</_> + <_> + 4 1 7 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 10 4 -1.</_> + <_> + 5 1 10 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 6 0 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 10 6 2 -1.</_> + <_> + 8 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 6 3 1 -1.</_> + <_> + 7 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 1 6 3 -1.</_> + <_> + 11 1 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 3 1 6 3 -1.</_> + <_> + 5 1 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 8 1 5 4 -1.</_> + <_> + 8 2 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 1 9 1 -1.</_> + <_> + 12 4 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 9 1 3 -1.</_> + <_> + 16 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 2 6 3 -1.</_> + <_> + 6 3 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 2 7 3 -1.</_> + <_> + 7 3 7 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 0 4 2 -1.</_> + <_> + 2 0 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 1 4 4 -1.</_> + <_> + 16 1 2 2 2.</_> + <_> + 14 3 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 6 6 2 -1.</_> + <_> + 4 6 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 16 9 1 3 -1.</_> + <_> + 16 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 1 4 4 -1.</_> + <_> + 0 1 2 2 2.</_> + <_> + 2 3 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 17 3 1 4 -1.</_> + <_> + 17 5 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 3 1 4 -1.</_> + <_> + 0 5 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 17 7 1 4 -1.</_> + <_> + 17 7 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 1 7 4 1 -1.</_> + <_> + 1 7 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 2 16 10 -1.</_> + <_> + 10 2 8 5 2.</_> + <_> + 2 7 8 5 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 3 -1.</_> + <_> + 6 1 6 1 9.</_></rects></_> + <_> + <rects> + <_> + 9 0 1 8 -1.</_> + <_> + 9 0 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 9 6 3 -1.</_> + <_> + 6 9 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 8 9 2 3 -1.</_> + <_> + 8 9 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 5 7 2 2 -1.</_> + <_> + 5 7 1 1 2.</_> + <_> + 6 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 7 2 2 -1.</_> + <_> + 12 7 1 1 2.</_> + <_> + 11 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 7 2 2 -1.</_> + <_> + 5 7 1 1 2.</_> + <_> + 6 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 12 12 -1.</_> + <_> + 12 0 6 6 2.</_> + <_> + 6 6 6 6 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 12 12 -1.</_> + <_> + 0 0 6 6 2.</_> + <_> + 6 6 6 6 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 18 6 -1.</_> + <_> + 6 3 6 2 9.</_></rects></_> + <_> + <rects> + <_> + 3 11 4 1 -1.</_> + <_> + 4 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 9 1 3 -1.</_> + <_> + 16 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 0 8 1 -1.</_> + <_> + 9 0 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 1 18 8 -1.</_> + <_> + 9 1 9 4 2.</_> + <_> + 0 5 9 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 11 8 -1.</_> + <_> + 0 4 11 4 2.</_></rects></_> + <_> + <rects> + <_> + 16 9 1 3 -1.</_> + <_> + 16 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 9 1 3 -1.</_> + <_> + 1 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 7 4 3 -1.</_> + <_> + 8 8 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 0 4 2 -1.</_> + <_> + 4 0 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 9 2 2 -1.</_> + <_> + 16 9 1 1 2.</_> + <_> + 15 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 4 2 4 -1.</_> + <_> + 0 5 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 8 9 3 -1.</_> + <_> + 5 9 9 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 9 2 2 -1.</_> + <_> + 1 9 1 1 2.</_> + <_> + 2 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 11 6 1 -1.</_> + <_> + 9 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 11 6 1 -1.</_> + <_> + 7 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 9 18 3 -1.</_> + <_> + 6 9 6 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 7 2 2 -1.</_> + <_> + 0 7 1 1 2.</_> + <_> + 1 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 10 12 1 -1.</_> + <_> + 6 10 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 12 1 -1.</_> + <_> + 6 10 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 2 8 10 -1.</_> + <_> + 11 2 4 5 2.</_> + <_> + 7 7 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 2 6 -1.</_> + <_> + 5 5 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 8 0 6 6 -1.</_> + <_> + 8 2 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 3 0 2 3 -1.</_> + <_> + 2 1 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 1 4 3 -1.</_> + <_> + 13 2 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 4 18 7 -1.</_> + <_> + 6 4 6 7 3.</_></rects></_> + <_> + <rects> + <_> + 7 2 8 10 -1.</_> + <_> + 11 2 4 5 2.</_> + <_> + 7 7 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 8 10 -1.</_> + <_> + 3 2 4 5 2.</_> + <_> + 7 7 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 9 4 1 6 -1.</_> + <_> + 7 6 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 4 6 1 -1.</_> + <_> + 11 6 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 9 4 2 -1.</_> + <_> + 8 9 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 3 3 -1.</_> + <_> + 2 1 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 1 4 3 -1.</_> + <_> + 13 2 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 1 3 4 -1.</_> + <_> + 5 2 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 5 4 3 -1.</_> + <_> + 15 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 3 10 1 2 -1.</_> + <_> + 3 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 9 2 -1.</_> + <_> + 9 3 3 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 4 11 8 -1.</_> + <_> + 7 8 11 4 2.</_></rects></_> + <_> + <rects> + <_> + 4 3 4 3 -1.</_> + <_> + 5 4 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 3 3 4 -1.</_> + <_> + 11 4 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 2 14 10 -1.</_> + <_> + 0 2 7 5 2.</_> + <_> + 7 7 7 5 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 6 -1.</_> + <_> + 6 0 6 6 3.</_></rects></_> + <_> + <rects> + <_> + 1 1 12 4 -1.</_> + <_> + 1 2 12 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 1 10 6 -1.</_> + <_> + 5 3 10 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 3 5 3 -1.</_> + <_> + 6 4 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 8 4 2 -1.</_> + <_> + 14 9 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 6 4 2 -1.</_> + <_> + 9 6 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 9 1 2 -1.</_> + <_> + 14 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 9 1 2 -1.</_> + <_> + 3 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 9 1 2 -1.</_> + <_> + 15 9 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 1 12 -1.</_> + <_> + 0 6 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 9 11 6 1 -1.</_> + <_> + 11 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 11 6 1 -1.</_> + <_> + 5 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 13 4 2 3 -1.</_> + <_> + 12 5 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 1 4 4 -1.</_> + <_> + 5 2 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 0 4 3 -1.</_> + <_> + 10 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 6 3 -1.</_> + <_> + 8 0 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 10 6 4 2 -1.</_> + <_> + 11 6 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 4 3 -1.</_> + <_> + 6 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 6 4 -1.</_> + <_> + 6 1 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 6 0 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 0 9 4 -1.</_> + <_> + 6 1 9 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 6 6 2 -1.</_> + <_> + 4 6 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 15 10 3 2 -1.</_> + <_> + 15 11 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 3 3 4 -1.</_> + <_> + 8 4 3 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 10 3 2 -1.</_> + <_> + 15 11 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 3 2 -1.</_> + <_> + 0 11 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 9 6 3 -1.</_> + <_> + 11 9 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 3 9 6 3 -1.</_> + <_> + 5 9 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 10 7 2 2 -1.</_> + <_> + 11 7 1 1 2.</_> + <_> + 10 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 10 2 2 -1.</_> + <_> + 8 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 5 3 2 -1.</_> + <_> + 11 6 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 0 11 8 -1.</_> + <_> + 2 2 11 4 2.</_></rects></_> + <_> + <rects> + <_> + 12 4 2 2 -1.</_> + <_> + 12 4 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 4 2 2 -1.</_> + <_> + 6 4 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 8 1 2 -1.</_> + <_> + 15 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 8 1 2 -1.</_> + <_> + 2 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 10 2 2 -1.</_> + <_> + 16 10 1 1 2.</_> + <_> + 15 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 14 12 -1.</_> + <_> + 7 0 7 12 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 14 8 -1.</_> + <_> + 3 2 7 8 2.</_></rects></_> + <_> + <rects> + <_> + 0 4 18 6 -1.</_> + <_> + 6 4 6 6 3.</_></rects></_> + <_> + <rects> + <_> + 9 6 2 2 -1.</_> + <_> + 10 6 1 1 2.</_> + <_> + 9 7 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 4 3 2 -1.</_> + <_> + 9 4 3 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 10 4 2 -1.</_> + <_> + 8 10 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 1 10 2 2 -1.</_> + <_> + 1 10 1 1 2.</_> + <_> + 2 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 4 3 3 -1.</_> + <_> + 8 5 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 9 4 3 -1.</_> + <_> + 6 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 17 5 1 6 -1.</_> + <_> + 17 7 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 2 -1.</_> + <_> + 0 0 9 1 2.</_> + <_> + 9 1 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 5 1 6 -1.</_> + <_> + 17 7 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 1 4 1 3 -1.</_> + <_> + 1 5 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 2 8 3 -1.</_> + <_> + 5 3 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 9 6 3 -1.</_> + <_> + 7 9 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 8 0 2 3 -1.</_> + <_> + 8 0 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 7 6 3 1 -1.</_> + <_> + 8 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 0 4 3 -1.</_> + <_> + 9 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 10 2 -1.</_> + <_> + 3 1 10 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 5 2 2 -1.</_> + <_> + 10 5 1 1 2.</_> + <_> + 9 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 2 2 -1.</_> + <_> + 7 5 1 1 2.</_> + <_> + 8 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 10 4 2 -1.</_> + <_> + 9 10 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 1 2 3 -1.</_> + <_> + 3 2 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 10 1 2 -1.</_> + <_> + 16 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 7 2 2 -1.</_> + <_> + 3 7 1 1 2.</_> + <_> + 4 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 0 3 3 -1.</_> + <_> + 15 1 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 10 8 -1.</_> + <_> + 0 4 10 4 2.</_></rects></_> + <_> + <rects> + <_> + 14 0 2 4 -1.</_> + <_> + 14 0 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 4 2 -1.</_> + <_> + 4 0 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 1 11 16 1 -1.</_> + <_> + 5 11 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 9 2 1 -1.</_> + <_> + 3 9 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 10 1 2 -1.</_> + <_> + 16 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 10 1 2 -1.</_> + <_> + 1 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 5 1 6 -1.</_> + <_> + 17 7 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 5 1 6 -1.</_> + <_> + 0 7 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 0 7 3 -1.</_> + <_> + 6 1 7 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 0 9 2 -1.</_> + <_> + 9 3 3 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 1 7 3 -1.</_> + <_> + 7 2 7 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 4 2 4 -1.</_> + <_> + 0 5 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 5 3 1 -1.</_> + <_> + 10 5 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 1 10 2 -1.</_> + <_> + 9 1 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 18 1 -1.</_> + <_> + 0 11 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 9 12 2 -1.</_> + <_> + 7 9 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 12 -1.</_> + <_> + 0 0 9 12 2.</_></rects></_> + <_> + <rects> + <_> + 5 4 5 6 -1.</_> + <_> + 5 7 5 3 2.</_></rects></_> + <_> + <rects> + <_> + 14 3 3 3 -1.</_> + <_> + 13 4 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 3 3 3 -1.</_> + <_> + 5 4 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 4 6 5 -1.</_> + <_> + 14 4 2 5 3.</_></rects></_> + <_> + <rects> + <_> + 3 3 12 6 -1.</_> + <_> + 3 5 12 2 3.</_></rects></_> + <_> + <rects> + <_> + 12 4 2 2 -1.</_> + <_> + 12 5 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 4 2 2 -1.</_> + <_> + 4 5 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 12 1 3 2 -1.</_> + <_> + 13 2 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 1 2 3 -1.</_> + <_> + 5 2 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 0 12 6 -1.</_> + <_> + 3 2 12 2 3.</_></rects></_> + <_> + <rects> + <_> + 4 3 6 3 -1.</_> + <_> + 4 3 3 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 4 6 5 -1.</_> + <_> + 14 4 2 5 3.</_></rects></_> + <_> + <rects> + <_> + 7 4 2 2 -1.</_> + <_> + 7 4 1 1 2.</_> + <_> + 8 5 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 2 3 2 -1.</_> + <_> + 16 3 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 2 2 3 -1.</_> + <_> + 2 3 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 2 2 10 -1.</_> + <_> + 16 2 1 10 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 2 10 -1.</_> + <_> + 1 2 1 10 2.</_></rects></_> + <_> + <rects> + <_> + 16 1 2 1 -1.</_> + <_> + 16 1 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 0 2 3 -1.</_> + <_> + 4 1 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 1 6 3 -1.</_> + <_> + 11 3 2 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 5 4 3 -1.</_> + <_> + 14 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 5 4 3 -1.</_> + <_> + 2 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 10 3 3 4 -1.</_> + <_> + 11 4 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 2 3 6 -1.</_> + <_> + 5 4 3 2 3.</_></rects></_> + <_> + <rects> + <_> + 13 7 4 1 -1.</_> + <_> + 13 7 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 6 6 6 -1.</_> + <_> + 0 9 6 3 2.</_></rects></_> + <_> + <rects> + <_> + 9 5 4 3 -1.</_> + <_> + 10 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 3 -1.</_> + <_> + 6 0 6 3 3.</_></rects></_> + <_> + <rects> + <_> + 10 1 3 6 -1.</_> + <_> + 11 2 1 6 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 1 6 3 -1.</_> + <_> + 7 2 6 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 4 3 3 -1.</_> + <_> + 11 5 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 4 3 3 -1.</_> + <_> + 7 5 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 9 1 3 -1.</_> + <_> + 16 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 6 4 2 -1.</_> + <_> + 5 6 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 16 8 1 4 -1.</_> + <_> + 16 9 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 5 6 -1.</_> + <_> + 5 2 5 2 3.</_></rects></_> + <_> + <rects> + <_> + 10 5 2 3 -1.</_> + <_> + 10 5 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 5 3 2 -1.</_> + <_> + 8 5 3 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 8 1 4 -1.</_> + <_> + 16 9 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 1 8 1 4 -1.</_> + <_> + 1 9 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 1 4 4 -1.</_> + <_> + 13 2 4 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 10 7 2 -1.</_> + <_> + 0 11 7 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 1 4 4 -1.</_> + <_> + 13 2 4 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 1 4 4 -1.</_> + <_> + 5 2 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 4 5 2 -1.</_> + <_> + 8 5 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 2 8 10 -1.</_> + <_> + 5 2 4 5 2.</_> + <_> + 9 7 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 17 5 1 4 -1.</_> + <_> + 17 6 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 0 4 4 -1.</_> + <_> + 5 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 16 11 2 1 -1.</_> + <_> + 16 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 2 1 -1.</_> + <_> + 1 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 0 1 12 -1.</_> + <_> + 17 6 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 1 10 -1.</_> + <_> + 0 7 1 5 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 6 3 -1.</_> + <_> + 6 0 3 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 2 4 -1.</_> + <_> + 0 3 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 4 4 -1.</_> + <_> + 9 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 5 4 3 3 -1.</_> + <_> + 6 5 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 8 2 2 -1.</_> + <_> + 16 8 1 1 2.</_> + <_> + 15 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 8 2 2 -1.</_> + <_> + 1 8 1 1 2.</_> + <_> + 2 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 11 2 1 -1.</_> + <_> + 16 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 2 1 -1.</_> + <_> + 1 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 18 1 -1.</_> + <_> + 0 11 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 4 6 8 -1.</_> + <_> + 5 8 6 4 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 8 3 -1.</_> + <_> + 6 1 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 0 12 4 -1.</_> + <_> + 3 1 12 2 2.</_></rects></_> + <_> + <rects> + <_> + 8 11 4 1 -1.</_> + <_> + 9 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 1 2 -1.</_> + <_> + 5 3 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 2 10 4 -1.</_> + <_> + 5 3 10 2 2.</_></rects></_> + <_> + <rects> + <_> + 1 8 2 3 -1.</_> + <_> + 1 9 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 7 2 2 -1.</_> + <_> + 13 7 1 1 2.</_> + <_> + 12 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 2 2 8 -1.</_> + <_> + 9 2 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 18 9 -1.</_> + <_> + 0 0 9 9 2.</_></rects></_> + <_> + <rects> + <_> + 0 4 15 8 -1.</_> + <_> + 5 4 5 8 3.</_></rects></_> + <_> + <rects> + <_> + 12 5 3 3 -1.</_> + <_> + 13 6 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 2 14 10 -1.</_> + <_> + 7 2 7 10 2.</_></rects></_> + <_> + <rects> + <_> + 14 0 2 4 -1.</_> + <_> + 14 0 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 8 2 -1.</_> + <_> + 5 4 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 12 3 6 2 -1.</_> + <_> + 12 4 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 1 4 -1.</_> + <_> + 4 1 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 0 2 4 -1.</_> + <_> + 14 0 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 4 2 -1.</_> + <_> + 4 0 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 4 3 2 -1.</_> + <_> + 10 5 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 4 4 2 -1.</_> + <_> + 5 5 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 13 2 4 3 -1.</_> + <_> + 12 3 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 2 3 4 -1.</_> + <_> + 6 3 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 17 5 1 4 -1.</_> + <_> + 17 6 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 12 2 -1.</_> + <_> + 3 1 12 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 9 2 3 -1.</_> + <_> + 15 10 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 9 1 3 -1.</_> + <_> + 1 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 7 2 2 -1.</_> + <_> + 13 7 1 1 2.</_> + <_> + 12 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 9 4 2 -1.</_> + <_> + 8 9 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 12 7 2 2 -1.</_> + <_> + 13 7 1 1 2.</_> + <_> + 12 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 9 4 3 -1.</_> + <_> + 6 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 9 8 2 2 -1.</_> + <_> + 10 8 1 1 2.</_> + <_> + 9 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 8 2 2 -1.</_> + <_> + 7 8 1 1 2.</_> + <_> + 8 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 5 1 4 -1.</_> + <_> + 17 6 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 5 1 4 -1.</_> + <_> + 0 6 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 12 7 2 2 -1.</_> + <_> + 13 7 1 1 2.</_> + <_> + 12 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 3 6 3 -1.</_> + <_> + 8 4 6 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 6 2 1 -1.</_> + <_> + 16 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 7 2 2 -1.</_> + <_> + 4 7 1 1 2.</_> + <_> + 5 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 7 2 3 -1.</_> + <_> + 16 8 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 7 2 3 -1.</_> + <_> + 0 8 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 0 4 4 -1.</_> + <_> + 8 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 2 2 -1.</_> + <_> + 7 5 1 1 2.</_> + <_> + 8 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 5 2 2 -1.</_> + <_> + 10 5 1 1 2.</_> + <_> + 9 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 2 2 -1.</_> + <_> + 7 5 1 1 2.</_> + <_> + 8 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 6 2 -1.</_> + <_> + 9 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 2 18 8 -1.</_> + <_> + 0 2 9 4 2.</_> + <_> + 9 6 9 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 6 0 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 10 6 2 -1.</_> + <_> + 7 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 8 8 4 4 -1.</_> + <_> + 8 9 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 6 3 -1.</_> + <_> + 5 1 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 1 4 2 -1.</_> + <_> + 9 1 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 1 4 2 -1.</_> + <_> + 7 1 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 8 2 2 -1.</_> + <_> + 10 8 1 1 2.</_> + <_> + 9 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 8 2 2 -1.</_> + <_> + 7 8 1 1 2.</_> + <_> + 8 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 7 2 2 -1.</_> + <_> + 11 8 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 7 2 2 -1.</_> + <_> + 5 8 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 18 2 -1.</_> + <_> + 6 10 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 6 3 1 -1.</_> + <_> + 7 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 10 1 4 3 -1.</_> + <_> + 10 1 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 2 1 -1.</_> + <_> + 4 0 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 3 -1.</_> + <_> + 16 0 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 0 3 2 -1.</_> + <_> + 2 0 3 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 4 10 4 -1.</_> + <_> + 7 4 5 4 2.</_></rects></_> + <_> + <rects> + <_> + 1 4 10 4 -1.</_> + <_> + 6 4 5 4 2.</_></rects></_> + <_> + <rects> + <_> + 13 0 2 1 -1.</_> + <_> + 13 0 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 3 1 6 -1.</_> + <_> + 0 5 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 14 0 4 3 -1.</_> + <_> + 13 1 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 3 4 -1.</_> + <_> + 5 1 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 2 10 1 -1.</_> + <_> + 4 2 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 4 2 -1.</_> + <_> + 4 0 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 5 8 -1.</_> + <_> + 9 2 5 4 2.</_></rects></_> + <_> + <rects> + <_> + 7 3 2 2 -1.</_> + <_> + 7 3 1 1 2.</_> + <_> + 8 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 5 18 2 -1.</_> + <_> + 9 5 9 1 2.</_> + <_> + 0 6 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 9 3 1 -1.</_> + <_> + 1 9 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 16 9 2 2 -1.</_> + <_> + 17 9 1 1 2.</_> + <_> + 16 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 2 2 -1.</_> + <_> + 0 10 1 1 2.</_> + <_> + 1 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 2 12 3 -1.</_> + <_> + 5 3 12 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 9 2 2 -1.</_> + <_> + 0 9 1 1 2.</_> + <_> + 1 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 9 4 3 -1.</_> + <_> + 11 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 7 2 2 2 -1.</_> + <_> + 7 2 1 1 2.</_> + <_> + 8 3 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 1 3 6 -1.</_> + <_> + 7 3 3 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 1 6 3 -1.</_> + <_> + 11 3 2 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 0 4 10 -1.</_> + <_> + 14 5 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 6 6 6 2 -1.</_> + <_> + 8 6 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 4 11 8 -1.</_> + <_> + 6 8 11 4 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 2 9 -1.</_> + <_> + 3 5 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 10 5 3 3 -1.</_> + <_> + 11 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 4 4 7 -1.</_> + <_> + 2 4 2 7 2.</_></rects></_> + <_> + <rects> + <_> + 15 7 3 3 -1.</_> + <_> + 16 8 1 1 9.</_></rects></_> + <_> + <rects> + <_> + 0 3 3 1 -1.</_> + <_> + 1 3 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 10 5 3 3 -1.</_> + <_> + 11 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 5 5 3 3 -1.</_> + <_> + 6 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 3 10 12 2 -1.</_> + <_> + 3 11 12 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 5 3 3 -1.</_> + <_> + 5 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 9 5 3 3 -1.</_> + <_> + 10 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 4 10 3 -1.</_> + <_> + 0 5 10 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 5 3 3 -1.</_> + <_> + 10 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 12 11 -1.</_> + <_> + 4 0 4 11 3.</_></rects></_> + <_> + <rects> + <_> + 9 5 3 3 -1.</_> + <_> + 10 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 6 5 3 3 -1.</_> + <_> + 7 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 7 0 6 3 -1.</_> + <_> + 9 0 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 5 0 6 3 -1.</_> + <_> + 7 0 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 5 -1.</_> + <_> + 6 0 6 5 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 7 4 -1.</_> + <_> + 4 1 7 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 0 3 2 -1.</_> + <_> + 10 1 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 1 12 -1.</_> + <_> + 0 6 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 16 8 2 2 -1.</_> + <_> + 16 8 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 1 7 4 1 -1.</_> + <_> + 1 7 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 1 6 6 -1.</_> + <_> + 6 3 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 7 11 4 1 -1.</_> + <_> + 8 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 3 2 4 -1.</_> + <_> + 16 4 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 11 6 -1.</_> + <_> + 3 4 11 2 3.</_></rects></_> + <_> + <rects> + <_> + 10 0 3 2 -1.</_> + <_> + 10 1 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 3 2 -1.</_> + <_> + 5 1 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 0 16 11 -1.</_> + <_> + 2 0 8 11 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 6 0 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 14 12 -1.</_> + <_> + 4 0 7 12 2.</_></rects></_> + <_> + <rects> + <_> + 4 0 6 5 -1.</_> + <_> + 6 0 2 5 3.</_></rects></_> + <_> + <rects> + <_> + 16 5 2 4 -1.</_> + <_> + 16 6 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 2 4 -1.</_> + <_> + 0 2 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 6 4 -1.</_> + <_> + 7 2 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 4 3 -1.</_> + <_> + 4 3 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 2 8 8 -1.</_> + <_> + 11 2 4 4 2.</_> + <_> + 7 6 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 5 2 4 -1.</_> + <_> + 0 6 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 2 8 8 -1.</_> + <_> + 11 2 4 4 2.</_> + <_> + 7 6 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 8 8 -1.</_> + <_> + 3 2 4 4 2.</_> + <_> + 7 6 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 17 6 1 6 -1.</_> + <_> + 17 8 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 6 1 6 -1.</_> + <_> + 0 8 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 8 4 3 3 -1.</_> + <_> + 9 5 1 1 9.</_></rects></_> + <_> + <rects> + <_> + 6 3 5 3 -1.</_> + <_> + 6 4 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 9 4 3 -1.</_> + <_> + 9 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 2 4 4 5 -1.</_> + <_> + 3 4 2 5 2.</_></rects></_> + <_> + <rects> + <_> + 13 3 3 3 -1.</_> + <_> + 12 4 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 3 3 -1.</_> + <_> + 6 4 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 10 6 1 -1.</_> + <_> + 9 10 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 14 12 -1.</_> + <_> + 7 0 7 12 2.</_></rects></_> + <_> + <rects> + <_> + 14 4 1 2 -1.</_> + <_> + 14 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 2 9 1 -1.</_> + <_> + 12 5 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 4 3 4 -1.</_> + <_> + 9 4 1 4 3.</_></rects></_> + <_> + <rects> + <_> + 0 5 2 3 -1.</_> + <_> + 1 5 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 4 2 11 3 -1.</_> + <_> + 4 3 11 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 4 2 1 -1.</_> + <_> + 4 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 17 1 1 8 -1.</_> + <_> + 17 3 1 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 4 2 3 -1.</_> + <_> + 0 5 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 2 9 10 -1.</_> + <_> + 8 2 3 10 3.</_></rects></_> + <_> + <rects> + <_> + 7 9 4 3 -1.</_> + <_> + 8 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 6 1 6 8 -1.</_> + <_> + 6 1 3 8 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 10 2 -1.</_> + <_> + 8 0 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 10 -1.</_> + <_> + 9 0 9 5 2.</_> + <_> + 0 5 9 5 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 4 2 -1.</_> + <_> + 8 1 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 6 1 3 -1.</_> + <_> + 9 7 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 0 4 3 -1.</_> + <_> + 8 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 10 7 2 2 -1.</_> + <_> + 11 7 1 1 2.</_> + <_> + 10 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 9 4 1 -1.</_> + <_> + 7 9 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 1 2 3 -1.</_> + <_> + 16 2 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 2 1 3 -1.</_> + <_> + 7 3 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 3 4 1 -1.</_> + <_> + 13 4 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 2 2 2 -1.</_> + <_> + 5 2 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 10 2 2 -1.</_> + <_> + 15 10 1 1 2.</_> + <_> + 14 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 10 2 2 -1.</_> + <_> + 2 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 10 4 1 -1.</_> + <_> + 15 10 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 10 6 2 -1.</_> + <_> + 7 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 16 9 2 2 -1.</_> + <_> + 17 9 1 1 2.</_> + <_> + 16 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 7 2 2 -1.</_> + <_> + 3 7 1 1 2.</_> + <_> + 4 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 9 2 2 -1.</_> + <_> + 17 9 1 1 2.</_> + <_> + 16 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 9 2 2 -1.</_> + <_> + 0 9 1 1 2.</_> + <_> + 1 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 9 2 2 -1.</_> + <_> + 17 9 1 1 2.</_> + <_> + 16 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 9 2 2 -1.</_> + <_> + 0 9 1 1 2.</_> + <_> + 1 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 7 2 2 -1.</_> + <_> + 11 7 1 1 2.</_> + <_> + 10 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 2 4 -1.</_> + <_> + 0 3 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 7 2 2 -1.</_> + <_> + 11 7 1 1 2.</_> + <_> + 10 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 11 6 1 -1.</_> + <_> + 4 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 10 4 1 -1.</_> + <_> + 15 10 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 4 1 -1.</_> + <_> + 1 10 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 7 2 2 -1.</_> + <_> + 11 7 1 1 2.</_> + <_> + 10 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 7 2 2 -1.</_> + <_> + 6 7 1 1 2.</_> + <_> + 7 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 4 16 8 -1.</_> + <_> + 10 4 8 4 2.</_> + <_> + 2 8 8 4 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 1 4 -1.</_> + <_> + 6 1 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 16 9 2 3 -1.</_> + <_> + 16 10 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 0 9 3 -1.</_> + <_> + 3 1 9 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 0 3 3 -1.</_> + <_> + 15 1 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 7 2 2 -1.</_> + <_> + 8 7 1 1 2.</_> + <_> + 9 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 9 2 3 -1.</_> + <_> + 16 10 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 9 2 3 -1.</_> + <_> + 0 10 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 0 3 3 -1.</_> + <_> + 15 1 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 3 3 -1.</_> + <_> + 3 1 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 4 1 4 -1.</_> + <_> + 9 5 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 4 6 8 -1.</_> + <_> + 5 4 3 4 2.</_> + <_> + 8 8 3 4 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 2 3 -1.</_> + <_> + 8 1 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 0 4 1 -1.</_> + <_> + 8 0 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 1 2 2 -1.</_> + <_> + 10 1 1 1 2.</_> + <_> + 9 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 2 2 -1.</_> + <_> + 7 1 1 1 2.</_> + <_> + 8 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 1 3 1 -1.</_> + <_> + 10 1 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 1 2 3 -1.</_> + <_> + 0 2 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 1 2 2 -1.</_> + <_> + 10 1 1 1 2.</_> + <_> + 9 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 2 2 -1.</_> + <_> + 7 1 1 1 2.</_> + <_> + 8 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 4 4 -1.</_> + <_> + 10 0 2 2 2.</_> + <_> + 8 2 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 4 8 -1.</_> + <_> + 9 0 2 8 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 4 2 6 -1.</_> + <_> + 14 4 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 6 8 -1.</_> + <_> + 0 4 6 4 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 4 4 -1.</_> + <_> + 10 0 2 2 2.</_> + <_> + 8 2 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 4 6 2 -1.</_> + <_> + 4 4 3 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 1 3 2 -1.</_> + <_> + 13 2 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 8 6 -1.</_> + <_> + 5 3 4 3 2.</_> + <_> + 9 6 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 16 9 2 3 -1.</_> + <_> + 16 10 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 1 3 2 -1.</_> + <_> + 3 2 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 17 2 1 3 -1.</_> + <_> + 16 3 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 0 4 4 -1.</_> + <_> + 6 0 2 2 2.</_> + <_> + 8 2 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 0 3 4 -1.</_> + <_> + 14 1 3 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 3 12 6 -1.</_> + <_> + 3 5 12 2 3.</_></rects></_> + <_> + <rects> + <_> + 15 0 3 4 -1.</_> + <_> + 14 1 3 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 0 4 3 -1.</_> + <_> + 4 1 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 3 18 3 -1.</_> + <_> + 6 3 6 3 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 10 8 -1.</_> + <_> + 4 2 10 4 2.</_></rects></_> + <_> + <rects> + <_> + 8 10 10 2 -1.</_> + <_> + 8 10 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 10 2 -1.</_> + <_> + 5 10 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 18 6 -1.</_> + <_> + 6 4 6 2 9.</_></rects></_> + <_> + <rects> + <_> + 12 8 6 4 -1.</_> + <_> + 12 10 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 5 6 4 -1.</_> + <_> + 8 5 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 14 6 1 6 -1.</_> + <_> + 14 9 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 7 9 2 2 -1.</_> + <_> + 7 10 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 6 4 6 -1.</_> + <_> + 16 6 2 3 2.</_> + <_> + 14 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 6 4 6 -1.</_> + <_> + 0 6 2 3 2.</_> + <_> + 2 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 13 1 4 4 -1.</_> + <_> + 13 1 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 1 12 -1.</_> + <_> + 0 6 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 8 2 -1.</_> + <_> + 5 0 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 1 4 14 6 -1.</_> + <_> + 8 4 7 6 2.</_></rects></_> + <_> + <rects> + <_> + 6 3 9 6 -1.</_> + <_> + 6 5 9 2 3.</_></rects></_> + <_> + <rects> + <_> + 1 9 1 2 -1.</_> + <_> + 1 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 7 8 1 -1.</_> + <_> + 8 7 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 4 3 3 -1.</_> + <_> + 6 5 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 4 9 4 -1.</_> + <_> + 5 6 9 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 3 1 2 -1.</_> + <_> + 2 3 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 0 6 4 -1.</_> + <_> + 9 2 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 1 8 1 3 -1.</_> + <_> + 1 9 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 0 16 4 -1.</_> + <_> + 9 0 8 2 2.</_> + <_> + 1 2 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 3 1 3 -1.</_> + <_> + 2 4 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 1 4 4 -1.</_> + <_> + 13 2 4 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 1 4 4 -1.</_> + <_> + 5 2 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 4 1 2 -1.</_> + <_> + 14 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 4 2 1 -1.</_> + <_> + 4 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 3 5 3 -1.</_> + <_> + 12 4 5 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 3 5 -1.</_> + <_> + 6 4 1 5 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 4 3 5 -1.</_> + <_> + 15 4 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 1 4 3 5 -1.</_> + <_> + 2 4 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 11 0 3 5 -1.</_> + <_> + 12 0 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 3 5 -1.</_> + <_> + 5 0 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 12 0 6 10 -1.</_> + <_> + 14 0 2 10 3.</_></rects></_> + <_> + <rects> + <_> + 4 6 8 2 -1.</_> + <_> + 6 6 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 12 10 6 2 -1.</_> + <_> + 12 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 4 4 -1.</_> + <_> + 6 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 13 7 5 2 -1.</_> + <_> + 13 8 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 11 16 1 -1.</_> + <_> + 5 11 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 11 8 1 -1.</_> + <_> + 8 11 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 11 2 1 -1.</_> + <_> + 6 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 0 1 9 -1.</_> + <_> + 17 3 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 9 2 6 2 -1.</_> + <_> + 11 4 2 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 2 4 4 -1.</_> + <_> + 8 3 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 6 9 -1.</_> + <_> + 2 1 2 9 3.</_></rects></_> + <_> + <rects> + <_> + 13 1 3 10 -1.</_> + <_> + 14 1 1 10 3.</_></rects></_> + <_> + <rects> + <_> + 3 6 4 2 -1.</_> + <_> + 4 6 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 3 16 6 -1.</_> + <_> + 10 3 8 3 2.</_> + <_> + 2 6 8 3 2.</_></rects></_> + <_> + <rects> + <_> + 8 2 2 2 -1.</_> + <_> + 8 3 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 11 6 1 -1.</_> + <_> + 10 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 0 14 12 -1.</_> + <_> + 8 0 7 12 2.</_></rects></_> + <_> + <rects> + <_> + 11 11 2 1 -1.</_> + <_> + 11 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 11 2 1 -1.</_> + <_> + 6 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 12 10 6 2 -1.</_> + <_> + 12 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 4 2 3 -1.</_> + <_> + 7 5 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 10 6 2 -1.</_> + <_> + 12 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 6 2 -1.</_> + <_> + 0 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 0 1 9 -1.</_> + <_> + 17 3 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 1 9 -1.</_> + <_> + 0 3 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 9 1 4 6 -1.</_> + <_> + 9 3 4 2 3.</_></rects></_> + <_> + <rects> + <_> + 2 1 3 10 -1.</_> + <_> + 3 1 1 10 3.</_></rects></_> + <_> + <rects> + <_> + 14 3 4 3 -1.</_> + <_> + 13 4 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 3 3 4 -1.</_> + <_> + 5 4 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 6 5 3 -1.</_> + <_> + 13 7 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 4 4 -1.</_> + <_> + 5 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 13 6 5 3 -1.</_> + <_> + 13 7 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 9 4 3 -1.</_> + <_> + 7 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 3 9 12 3 -1.</_> + <_> + 7 9 4 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 8 2 -1.</_> + <_> + 4 0 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 6 0 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 5 2 2 -1.</_> + <_> + 7 5 1 1 2.</_> + <_> + 8 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 4 3 3 -1.</_> + <_> + 9 5 1 1 9.</_></rects></_> + <_> + <rects> + <_> + 0 6 5 3 -1.</_> + <_> + 0 7 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 2 4 3 -1.</_> + <_> + 8 3 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 5 8 4 -1.</_> + <_> + 3 6 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 16 3 2 6 -1.</_> + <_> + 16 5 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 3 2 6 -1.</_> + <_> + 0 5 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 0 8 4 -1.</_> + <_> + 6 1 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 11 6 1 -1.</_> + <_> + 6 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 11 4 1 -1.</_> + <_> + 10 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 11 4 1 -1.</_> + <_> + 6 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 1 11 4 -1.</_> + <_> + 4 2 11 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 12 8 -1.</_> + <_> + 0 2 12 4 2.</_></rects></_> + <_> + <rects> + <_> + 14 0 2 4 -1.</_> + <_> + 14 0 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 4 2 -1.</_> + <_> + 4 0 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 5 3 1 -1.</_> + <_> + 9 5 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 3 -1.</_> + <_> + 0 1 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 4 2 1 -1.</_> + <_> + 11 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 3 8 1 -1.</_> + <_> + 11 5 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 9 4 2 -1.</_> + <_> + 14 10 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 11 4 1 -1.</_> + <_> + 8 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 9 4 3 -1.</_> + <_> + 8 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 2 -1.</_> + <_> + 0 0 1 1 2.</_> + <_> + 1 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 2 -1.</_> + <_> + 17 0 1 1 2.</_> + <_> + 16 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 2 -1.</_> + <_> + 0 0 1 1 2.</_> + <_> + 1 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 2 -1.</_> + <_> + 17 0 1 1 2.</_> + <_> + 16 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 2 -1.</_> + <_> + 0 0 1 1 2.</_> + <_> + 1 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 7 2 2 -1.</_> + <_> + 9 7 1 1 2.</_> + <_> + 8 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 2 2 -1.</_> + <_> + 7 10 1 1 2.</_> + <_> + 8 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 10 2 2 -1.</_> + <_> + 10 10 1 1 2.</_> + <_> + 9 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 2 2 -1.</_> + <_> + 7 10 1 1 2.</_> + <_> + 8 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 10 2 2 -1.</_> + <_> + 10 10 1 1 2.</_> + <_> + 9 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 2 2 -1.</_> + <_> + 7 10 1 1 2.</_> + <_> + 8 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 3 5 2 -1.</_> + <_> + 8 4 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 3 3 2 -1.</_> + <_> + 6 4 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 9 1 2 -1.</_> + <_> + 14 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 9 1 2 -1.</_> + <_> + 3 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 3 4 2 -1.</_> + <_> + 11 3 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 7 3 1 -1.</_> + <_> + 6 7 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 5 4 4 -1.</_> + <_> + 11 7 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 7 2 2 -1.</_> + <_> + 6 7 1 1 2.</_> + <_> + 7 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 8 3 2 -1.</_> + <_> + 15 9 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 8 3 2 -1.</_> + <_> + 0 9 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 3 4 2 -1.</_> + <_> + 11 3 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 3 4 2 -1.</_> + <_> + 5 3 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 2 14 8 -1.</_> + <_> + 11 2 7 4 2.</_> + <_> + 4 6 7 4 2.</_></rects></_> + <_> + <rects> + <_> + 1 3 4 4 -1.</_> + <_> + 1 3 2 2 2.</_> + <_> + 3 5 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 3 -1.</_> + <_> + 16 0 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 10 1 2 -1.</_> + <_> + 0 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 6 2 -1.</_> + <_> + 9 1 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 5 1 6 2 -1.</_> + <_> + 7 1 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 15 10 2 2 -1.</_> + <_> + 16 10 1 1 2.</_> + <_> + 15 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 10 2 2 -1.</_> + <_> + 1 10 1 1 2.</_> + <_> + 2 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 2 14 8 -1.</_> + <_> + 11 2 7 4 2.</_> + <_> + 4 6 7 4 2.</_></rects></_> + <_> + <rects> + <_> + 5 4 4 4 -1.</_> + <_> + 5 4 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 4 6 6 -1.</_> + <_> + 15 4 3 3 2.</_> + <_> + 12 7 3 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 12 1 -1.</_> + <_> + 6 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 8 2 2 -1.</_> + <_> + 11 8 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 3 2 3 -1.</_> + <_> + 1 3 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 11 4 6 6 -1.</_> + <_> + 14 4 3 3 2.</_> + <_> + 11 7 3 3 2.</_></rects></_> + <_> + <rects> + <_> + 1 4 6 6 -1.</_> + <_> + 1 4 3 3 2.</_> + <_> + 4 7 3 3 2.</_></rects></_> + <_> + <rects> + <_> + 9 1 6 3 -1.</_> + <_> + 11 3 2 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 2 3 4 -1.</_> + <_> + 13 3 3 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 2 4 3 -1.</_> + <_> + 5 3 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 0 2 12 -1.</_> + <_> + 16 6 2 6 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 12 -1.</_> + <_> + 0 6 2 6 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 8 3 -1.</_> + <_> + 6 0 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 9 -1.</_> + <_> + 6 0 6 9 3.</_></rects></_> + <_> + <rects> + <_> + 10 3 3 4 -1.</_> + <_> + 11 4 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 8 6 4 -1.</_> + <_> + 0 10 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 3 3 4 -1.</_> + <_> + 11 4 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 3 4 3 -1.</_> + <_> + 7 4 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 3 4 3 -1.</_> + <_> + 11 4 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 3 3 4 -1.</_> + <_> + 7 4 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 6 0 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 3 2 4 -1.</_> + <_> + 5 3 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 0 3 5 -1.</_> + <_> + 9 0 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 7 0 3 5 -1.</_> + <_> + 8 0 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 11 4 3 3 -1.</_> + <_> + 12 5 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 9 4 3 -1.</_> + <_> + 7 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 12 12 -1.</_> + <_> + 6 0 6 12 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 14 12 -1.</_> + <_> + 7 0 7 12 2.</_></rects></_> + <_> + <rects> + <_> + 5 9 8 1 -1.</_> + <_> + 5 9 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 1 7 6 -1.</_> + <_> + 5 3 7 2 3.</_></rects></_> + <_> + <rects> + <_> + 7 0 4 4 -1.</_> + <_> + 7 1 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 6 4 -1.</_> + <_> + 0 2 3 2 2.</_> + <_> + 3 4 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 0 3 1 -1.</_> + <_> + 16 1 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 0 1 3 -1.</_> + <_> + 2 1 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 9 2 2 -1.</_> + <_> + 16 9 1 1 2.</_> + <_> + 15 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 9 2 2 -1.</_> + <_> + 1 9 1 1 2.</_> + <_> + 2 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 7 2 4 -1.</_> + <_> + 14 8 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 7 2 4 -1.</_> + <_> + 2 8 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 11 4 3 4 -1.</_> + <_> + 12 5 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 10 12 2 -1.</_> + <_> + 3 11 12 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 4 3 4 -1.</_> + <_> + 12 5 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 4 4 3 -1.</_> + <_> + 6 5 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 10 6 2 -1.</_> + <_> + 11 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 3 10 6 2 -1.</_> + <_> + 5 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 3 8 8 -1.</_> + <_> + 10 3 4 4 2.</_> + <_> + 6 7 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 2 1 3 2 -1.</_> + <_> + 2 1 3 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 7 5 3 -1.</_> + <_> + 7 8 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 3 3 3 -1.</_> + <_> + 0 4 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 10 3 2 2 -1.</_> + <_> + 11 3 1 1 2.</_> + <_> + 10 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 9 3 -1.</_> + <_> + 3 1 9 1 3.</_></rects></_> + <_> + <rects> + <_> + 17 8 1 4 -1.</_> + <_> + 17 10 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 1 7 2 -1.</_> + <_> + 5 2 7 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 8 4 -1.</_> + <_> + 7 2 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 4 2 3 -1.</_> + <_> + 0 5 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 2 12 8 -1.</_> + <_> + 11 2 6 4 2.</_> + <_> + 5 6 6 4 2.</_></rects></_> + <_> + <rects> + <_> + 4 3 8 8 -1.</_> + <_> + 4 3 4 4 2.</_> + <_> + 8 7 4 4 2.</_></rects></_> + <_> + <rects> + <_> + 16 1 2 2 -1.</_> + <_> + 17 1 1 1 2.</_> + <_> + 16 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 2 2 -1.</_> + <_> + 0 1 1 1 2.</_> + <_> + 1 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 1 2 2 -1.</_> + <_> + 17 1 1 1 2.</_> + <_> + 16 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 2 2 -1.</_> + <_> + 0 1 1 1 2.</_> + <_> + 1 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 1 2 2 -1.</_> + <_> + 17 1 1 1 2.</_> + <_> + 16 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 4 3 3 -1.</_> + <_> + 8 5 1 1 9.</_></rects></_> + <_> + <rects> + <_> + 12 0 3 12 -1.</_> + <_> + 13 0 1 12 3.</_></rects></_> + <_> + <rects> + <_> + 0 1 2 2 -1.</_> + <_> + 0 1 1 1 2.</_> + <_> + 1 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 12 0 3 10 -1.</_> + <_> + 13 0 1 10 3.</_></rects></_> + <_> + <rects> + <_> + 6 2 1 2 -1.</_> + <_> + 6 2 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 5 1 6 -1.</_> + <_> + 16 5 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 18 12 -1.</_> + <_> + 9 0 9 12 2.</_></rects></_> + <_> + <rects> + <_> + 3 10 12 2 -1.</_> + <_> + 7 10 4 2 3.</_></rects></_> + <_> + <rects> + <_> + 9 2 7 3 -1.</_> + <_> + 8 3 7 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 6 4 1 -1.</_> + <_> + 10 6 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 6 4 1 -1.</_> + <_> + 6 6 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 5 2 2 -1.</_> + <_> + 10 5 1 1 2.</_> + <_> + 9 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 11 6 1 -1.</_> + <_> + 6 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 16 4 2 7 -1.</_> + <_> + 16 4 1 7 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 4 4 -1.</_> + <_> + 4 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 11 0 2 6 -1.</_> + <_> + 11 0 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 4 1 4 4 -1.</_> + <_> + 6 1 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 9 5 2 2 -1.</_> + <_> + 10 5 1 1 2.</_> + <_> + 9 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 2 2 -1.</_> + <_> + 7 5 1 1 2.</_> + <_> + 8 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 5 1 6 -1.</_> + <_> + 17 7 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 5 1 6 -1.</_> + <_> + 0 7 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 16 4 2 7 -1.</_> + <_> + 16 4 1 7 2.</_></rects></_> + <_> + <rects> + <_> + 0 4 2 7 -1.</_> + <_> + 1 4 1 7 2.</_></rects></_> + <_> + <rects> + <_> + 13 3 2 2 -1.</_> + <_> + 13 3 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 2 2 -1.</_> + <_> + 5 3 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 1 15 3 -1.</_> + <_> + 8 2 5 1 9.</_></rects></_> + <_> + <rects> + <_> + 5 0 2 2 -1.</_> + <_> + 5 1 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 5 3 2 -1.</_> + <_> + 12 6 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 1 10 3 -1.</_> + <_> + 7 1 5 3 2.</_></rects></_> + <_> + <rects> + <_> + 2 1 16 3 -1.</_> + <_> + 6 1 8 3 2.</_></rects></_> + <_> + <rects> + <_> + 8 7 2 3 -1.</_> + <_> + 8 8 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 5 3 3 -1.</_> + <_> + 12 6 1 1 9.</_></rects></_> + <_> + <rects> + <_> + 0 6 8 2 -1.</_> + <_> + 0 7 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 8 2 2 -1.</_> + <_> + 16 8 1 1 2.</_> + <_> + 15 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 8 2 2 -1.</_> + <_> + 1 8 1 1 2.</_> + <_> + 2 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 5 2 6 -1.</_> + <_> + 15 5 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 1 5 2 6 -1.</_> + <_> + 2 5 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 15 10 1 2 -1.</_> + <_> + 15 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 2 2 -1.</_> + <_> + 7 5 1 1 2.</_> + <_> + 8 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 7 2 2 -1.</_> + <_> + 10 7 1 1 2.</_> + <_> + 9 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 10 1 2 -1.</_> + <_> + 2 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 6 3 2 -1.</_> + <_> + 12 6 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 4 6 8 6 -1.</_> + <_> + 4 6 4 3 2.</_> + <_> + 8 9 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 11 5 3 2 -1.</_> + <_> + 12 6 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 5 2 3 -1.</_> + <_> + 6 6 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 9 1 3 -1.</_> + <_> + 15 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 0 4 2 -1.</_> + <_> + 6 0 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 0 4 5 -1.</_> + <_> + 8 0 2 5 2.</_></rects></_> + <_> + <rects> + <_> + 0 9 2 3 -1.</_> + <_> + 0 10 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 1 2 2 -1.</_> + <_> + 10 1 1 1 2.</_> + <_> + 9 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 3 2 2 -1.</_> + <_> + 6 3 1 1 2.</_> + <_> + 7 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 3 2 2 -1.</_> + <_> + 11 3 1 1 2.</_> + <_> + 10 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 2 12 8 -1.</_> + <_> + 1 2 6 4 2.</_> + <_> + 7 6 6 4 2.</_></rects></_> + <_> + <rects> + <_> + 1 9 16 3 -1.</_> + <_> + 5 9 8 3 2.</_></rects></_> + <_> + <rects> + <_> + 1 10 16 2 -1.</_> + <_> + 5 10 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 11 4 1 -1.</_> + <_> + 8 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 11 4 -1.</_> + <_> + 0 2 11 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 1 4 4 -1.</_> + <_> + 9 2 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 8 5 2 1 -1.</_> + <_> + 9 5 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 4 3 4 -1.</_> + <_> + 9 4 1 4 3.</_></rects></_> + <_> + <rects> + <_> + 6 1 6 11 -1.</_> + <_> + 8 1 2 11 3.</_></rects></_> + <_> + <rects> + <_> + 16 2 2 8 -1.</_> + <_> + 16 6 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 1 6 -1.</_> + <_> + 0 3 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 10 3 2 2 -1.</_> + <_> + 11 3 1 1 2.</_> + <_> + 10 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 3 2 2 -1.</_> + <_> + 6 3 1 1 2.</_> + <_> + 7 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 9 2 2 -1.</_> + <_> + 10 9 1 1 2.</_> + <_> + 9 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 9 2 2 -1.</_> + <_> + 7 9 1 1 2.</_> + <_> + 8 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 8 4 2 -1.</_> + <_> + 8 8 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 6 0 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 10 0 8 2 -1.</_> + <_> + 10 0 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 16 2 -1.</_> + <_> + 4 0 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 0 14 12 -1.</_> + <_> + 11 0 7 6 2.</_> + <_> + 4 6 7 6 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 4 8 -1.</_> + <_> + 9 0 2 8 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 1 12 6 -1.</_> + <_> + 7 3 4 2 9.</_></rects></_> + <_> + <rects> + <_> + 0 0 14 12 -1.</_> + <_> + 0 0 7 6 2.</_> + <_> + 7 6 7 6 2.</_></rects></_> + <_> + <rects> + <_> + 10 5 8 4 -1.</_> + <_> + 14 5 4 2 2.</_> + <_> + 10 7 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 5 8 4 -1.</_> + <_> + 0 5 4 2 2.</_> + <_> + 4 7 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 13 1 4 3 -1.</_> + <_> + 12 2 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 1 3 4 -1.</_> + <_> + 6 2 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 3 4 3 -1.</_> + <_> + 13 4 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 3 3 4 -1.</_> + <_> + 5 4 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 4 1 2 -1.</_> + <_> + 14 5 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 4 1 2 -1.</_> + <_> + 3 5 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 1 3 2 -1.</_> + <_> + 16 2 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 11 4 1 -1.</_> + <_> + 4 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 8 2 2 -1.</_> + <_> + 10 8 1 1 2.</_> + <_> + 9 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 14 9 -1.</_> + <_> + 7 2 7 9 2.</_></rects></_> + <_> + <rects> + <_> + 11 3 2 2 -1.</_> + <_> + 11 3 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 3 2 2 -1.</_> + <_> + 7 3 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 8 2 2 -1.</_> + <_> + 10 8 1 1 2.</_> + <_> + 9 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 8 2 2 -1.</_> + <_> + 7 8 1 1 2.</_> + <_> + 8 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 12 0 6 2 -1.</_> + <_> + 12 0 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 8 2 2 -1.</_> + <_> + 7 8 1 1 2.</_> + <_> + 8 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 8 2 2 -1.</_> + <_> + 10 8 1 1 2.</_> + <_> + 9 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 5 2 1 -1.</_> + <_> + 4 5 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 2 1 2 -1.</_> + <_> + 15 3 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 2 11 -1.</_> + <_> + 4 0 1 11 2.</_></rects></_> + <_> + <rects> + <_> + 13 4 3 4 -1.</_> + <_> + 14 5 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 6 10 6 -1.</_> + <_> + 4 9 10 3 2.</_></rects></_> + <_> + <rects> + <_> + 14 0 4 4 -1.</_> + <_> + 13 1 4 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 10 8 2 -1.</_> + <_> + 4 10 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 0 4 4 -1.</_> + <_> + 13 1 4 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 4 4 -1.</_> + <_> + 5 1 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 10 4 2 -1.</_> + <_> + 16 10 2 1 2.</_> + <_> + 14 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 4 2 -1.</_> + <_> + 0 10 2 1 2.</_> + <_> + 2 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 8 2 2 -1.</_> + <_> + 10 8 1 1 2.</_> + <_> + 9 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 8 2 2 -1.</_> + <_> + 7 8 1 1 2.</_> + <_> + 8 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 9 8 2 -1.</_> + <_> + 14 9 4 1 2.</_> + <_> + 10 10 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 2 3 -1.</_> + <_> + 2 3 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 1 2 2 -1.</_> + <_> + 10 1 1 1 2.</_> + <_> + 9 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 2 2 -1.</_> + <_> + 7 1 1 1 2.</_> + <_> + 8 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 2 4 3 -1.</_> + <_> + 10 2 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 18 1 -1.</_> + <_> + 9 11 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 2 4 3 -1.</_> + <_> + 10 2 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 2 2 -1.</_> + <_> + 7 1 1 1 2.</_> + <_> + 8 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 0 4 2 -1.</_> + <_> + 8 0 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 4 6 -1.</_> + <_> + 0 1 2 3 2.</_> + <_> + 2 4 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 7 4 11 8 -1.</_> + <_> + 7 8 11 4 2.</_></rects></_> + <_> + <rects> + <_> + 6 6 6 2 -1.</_> + <_> + 8 6 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 12 5 6 6 -1.</_> + <_> + 12 8 6 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 5 6 6 -1.</_> + <_> + 0 8 6 3 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 2 1 -1.</_> + <_> + 9 0 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 4 6 8 -1.</_> + <_> + 9 4 3 8 2.</_></rects></_> + <_> + <rects> + <_> + 3 10 12 2 -1.</_> + <_> + 3 11 12 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 8 4 -1.</_> + <_> + 5 4 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 2 3 4 -1.</_> + <_> + 14 3 3 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 4 2 2 -1.</_> + <_> + 5 4 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 18 3 -1.</_> + <_> + 6 0 6 3 3.</_></rects></_> + <_> + <rects> + <_> + 4 1 6 6 -1.</_> + <_> + 4 3 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 9 4 1 4 -1.</_> + <_> + 8 5 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 6 4 -1.</_> + <_> + 6 0 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 11 0 3 7 -1.</_> + <_> + 12 1 1 7 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 0 7 3 -1.</_> + <_> + 6 1 7 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 9 1 2 -1.</_> + <_> + 15 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 9 1 2 -1.</_> + <_> + 2 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 3 1 6 -1.</_> + <_> + 17 5 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 3 1 6 -1.</_> + <_> + 0 5 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 0 6 4 -1.</_> + <_> + 6 1 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 9 2 -1.</_> + <_> + 3 1 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 3 3 -1.</_> + <_> + 9 0 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 7 0 4 3 -1.</_> + <_> + 8 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 10 6 6 2 -1.</_> + <_> + 12 6 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 2 6 6 2 -1.</_> + <_> + 4 6 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 14 12 -1.</_> + <_> + 4 0 7 12 2.</_></rects></_> + <_> + <rects> + <_> + 1 9 2 2 -1.</_> + <_> + 1 9 1 1 2.</_> + <_> + 2 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 5 6 5 -1.</_> + <_> + 13 5 2 5 3.</_></rects></_> + <_> + <rects> + <_> + 0 3 16 9 -1.</_> + <_> + 4 3 8 9 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 12 12 -1.</_> + <_> + 6 0 6 12 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 12 12 -1.</_> + <_> + 6 0 6 12 2.</_></rects></_> + <_> + <rects> + <_> + 5 1 8 10 -1.</_> + <_> + 5 1 4 10 2.</_></rects></_> + <_> + <rects> + <_> + 6 3 3 2 -1.</_> + <_> + 6 4 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 12 2 2 6 -1.</_> + <_> + 10 4 2 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 1 8 1 3 -1.</_> + <_> + 1 9 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 0 8 3 -1.</_> + <_> + 5 1 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 5 12 5 -1.</_> + <_> + 4 5 4 5 3.</_></rects></_> + <_> + <rects> + <_> + 9 9 6 3 -1.</_> + <_> + 11 9 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 4 9 6 2 -1.</_> + <_> + 6 9 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 8 5 4 4 -1.</_> + <_> + 9 5 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 3 1 2 3 -1.</_> + <_> + 2 2 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 2 3 1 -1.</_> + <_> + 15 3 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 4 10 -1.</_> + <_> + 0 5 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 14 1 4 2 -1.</_> + <_> + 14 1 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 1 2 4 -1.</_> + <_> + 4 1 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 0 12 9 -1.</_> + <_> + 3 3 12 3 3.</_></rects></_> + <_> + <rects> + <_> + 6 5 4 3 -1.</_> + <_> + 5 6 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 5 3 1 -1.</_> + <_> + 10 6 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 1 2 3 -1.</_> + <_> + 2 2 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 1 6 9 -1.</_> + <_> + 14 1 2 9 3.</_></rects></_> + <_> + <rects> + <_> + 6 5 3 4 -1.</_> + <_> + 7 5 1 4 3.</_></rects></_> + <_> + <rects> + <_> + 9 1 1 8 -1.</_> + <_> + 7 3 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 1 8 1 -1.</_> + <_> + 11 3 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 0 1 8 -1.</_> + <_> + 9 0 1 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 1 6 9 -1.</_> + <_> + 2 1 2 9 3.</_></rects></_> + <_> + <rects> + <_> + 10 5 4 3 -1.</_> + <_> + 11 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 5 4 1 3 -1.</_> + <_> + 4 5 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 4 3 3 -1.</_> + <_> + 9 5 1 1 9.</_></rects></_> + <_> + <rects> + <_> + 6 9 6 2 -1.</_> + <_> + 8 9 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 8 5 3 2 -1.</_> + <_> + 9 5 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 0 4 5 -1.</_> + <_> + 7 0 2 5 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 4 4 -1.</_> + <_> + 9 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 8 1 -1.</_> + <_> + 9 0 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 3 6 4 -1.</_> + <_> + 15 3 3 2 2.</_> + <_> + 12 5 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 3 6 4 -1.</_> + <_> + 0 3 3 2 2.</_> + <_> + 3 5 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 13 3 4 3 -1.</_> + <_> + 12 4 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 3 4 -1.</_> + <_> + 6 4 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 8 12 4 -1.</_> + <_> + 7 8 4 4 3.</_></rects></_> + <_> + <rects> + <_> + 6 1 1 3 -1.</_> + <_> + 5 2 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 14 5 3 4 -1.</_> + <_> + 14 5 3 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 2 3 3 -1.</_> + <_> + 6 3 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 10 2 2 -1.</_> + <_> + 16 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 2 2 -1.</_> + <_> + 0 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 11 2 1 -1.</_> + <_> + 16 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 2 1 -1.</_> + <_> + 1 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 11 2 1 -1.</_> + <_> + 16 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 2 1 -1.</_> + <_> + 1 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 10 6 2 -1.</_> + <_> + 11 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 1 10 16 2 -1.</_> + <_> + 5 10 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 4 2 -1.</_> + <_> + 8 10 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 2 3 3 -1.</_> + <_> + 3 2 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 8 4 3 5 -1.</_> + <_> + 9 4 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 0 1 18 10 -1.</_> + <_> + 0 1 9 5 2.</_> + <_> + 9 6 9 5 2.</_></rects></_> + <_> + <rects> + <_> + 14 7 4 1 -1.</_> + <_> + 15 8 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 4 12 4 -1.</_> + <_> + 5 4 6 4 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 4 3 -1.</_> + <_> + 7 2 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 6 6 3 -1.</_> + <_> + 3 6 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 13 3 4 9 -1.</_> + <_> + 13 3 2 9 2.</_></rects></_> + <_> + <rects> + <_> + 1 3 4 9 -1.</_> + <_> + 3 3 2 9 2.</_></rects></_> + <_> + <rects> + <_> + 7 11 10 1 -1.</_> + <_> + 7 11 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 9 14 3 -1.</_> + <_> + 7 9 7 3 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 12 4 -1.</_> + <_> + 5 1 12 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 2 4 3 -1.</_> + <_> + 9 2 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 5 3 1 -1.</_> + <_> + 11 6 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 11 4 1 -1.</_> + <_> + 6 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 0 3 2 -1.</_> + <_> + 15 1 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 2 -1.</_> + <_> + 0 1 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 5 4 3 -1.</_> + <_> + 11 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 4 5 4 3 -1.</_> + <_> + 5 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 11 11 4 1 -1.</_> + <_> + 12 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 4 12 6 -1.</_> + <_> + 4 4 4 6 3.</_></rects></_> + <_> + <rects> + <_> + 9 2 4 4 -1.</_> + <_> + 9 2 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 5 1 4 -1.</_> + <_> + 0 6 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 0 14 2 -1.</_> + <_> + 9 0 7 1 2.</_> + <_> + 2 1 7 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 2 1 2 -1.</_> + <_> + 6 2 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 8 5 4 -1.</_> + <_> + 7 9 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 11 4 1 -1.</_> + <_> + 4 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 12 -1.</_> + <_> + 9 0 9 6 2.</_> + <_> + 0 6 9 6 2.</_></rects></_> + <_> + <rects> + <_> + 0 7 5 3 -1.</_> + <_> + 0 8 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 10 4 2 -1.</_> + <_> + 8 11 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 9 2 2 -1.</_> + <_> + 2 9 1 1 2.</_> + <_> + 3 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 3 9 6 -1.</_> + <_> + 9 5 3 2 9.</_></rects></_> + <_> + <rects> + <_> + 5 4 6 4 -1.</_> + <_> + 7 4 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 8 5 8 3 -1.</_> + <_> + 8 5 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 2 5 8 3 -1.</_> + <_> + 6 5 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 3 -1.</_> + <_> + 6 0 6 3 3.</_></rects></_> + <_> + <rects> + <_> + 8 5 1 3 -1.</_> + <_> + 7 6 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 0 2 2 -1.</_> + <_> + 15 0 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 3 7 -1.</_> + <_> + 6 3 1 7 3.</_></rects></_> + <_> + <rects> + <_> + 10 5 4 4 -1.</_> + <_> + 12 5 2 2 2.</_> + <_> + 10 7 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 4 5 4 4 -1.</_> + <_> + 4 5 2 2 2.</_> + <_> + 6 7 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 13 5 3 3 -1.</_> + <_> + 12 6 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 5 3 3 -1.</_> + <_> + 6 6 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 1 4 4 -1.</_> + <_> + 11 1 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 9 1 3 8 -1.</_> + <_> + 9 1 3 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 1 8 3 -1.</_> + <_> + 5 1 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 4 0 4 5 -1.</_> + <_> + 5 0 2 5 2.</_></rects></_> + <_> + <rects> + <_> + 5 2 8 3 -1.</_> + <_> + 5 3 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 0 6 2 -1.</_> + <_> + 7 0 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 10 0 8 1 -1.</_> + <_> + 10 0 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 0 16 1 -1.</_> + <_> + 5 0 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 9 2 2 -1.</_> + <_> + 11 9 1 1 2.</_> + <_> + 10 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 10 8 -1.</_> + <_> + 0 2 5 4 2.</_> + <_> + 5 6 5 4 2.</_></rects></_> + <_> + <rects> + <_> + 11 7 2 2 -1.</_> + <_> + 12 7 1 1 2.</_> + <_> + 11 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 7 2 2 -1.</_> + <_> + 5 7 1 1 2.</_> + <_> + 6 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 4 6 8 -1.</_> + <_> + 7 8 6 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 7 1 4 -1.</_> + <_> + 0 8 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 8 9 2 2 -1.</_> + <_> + 9 9 1 1 2.</_> + <_> + 8 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 9 2 2 -1.</_> + <_> + 8 9 1 1 2.</_> + <_> + 9 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 9 3 2 -1.</_> + <_> + 9 10 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 9 2 2 -1.</_> + <_> + 8 9 1 1 2.</_> + <_> + 9 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 8 2 2 -1.</_> + <_> + 9 8 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 10 2 1 -1.</_> + <_> + 9 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 10 2 1 -1.</_> + <_> + 8 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 9 2 2 -1.</_> + <_> + 6 9 1 1 2.</_> + <_> + 7 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 18 1 -1.</_> + <_> + 6 11 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 11 6 1 -1.</_> + <_> + 5 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 9 2 2 -1.</_> + <_> + 10 9 1 1 2.</_> + <_> + 9 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 9 2 2 -1.</_> + <_> + 7 9 1 1 2.</_> + <_> + 8 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 9 1 3 -1.</_> + <_> + 11 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 9 1 3 -1.</_> + <_> + 6 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 7 3 2 -1.</_> + <_> + 13 8 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 7 2 3 -1.</_> + <_> + 5 8 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 4 4 6 -1.</_> + <_> + 14 4 2 3 2.</_> + <_> + 12 7 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 2 4 4 6 -1.</_> + <_> + 2 4 2 3 2.</_> + <_> + 4 7 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 11 10 1 2 -1.</_> + <_> + 11 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 3 2 -1.</_> + <_> + 8 5 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 13 3 4 3 -1.</_> + <_> + 12 4 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 3 3 -1.</_> + <_> + 0 1 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 13 2 5 3 -1.</_> + <_> + 12 3 5 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 3 4 -1.</_> + <_> + 6 4 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 10 3 1 -1.</_> + <_> + 11 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 4 3 2 -1.</_> + <_> + 3 5 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 9 3 1 -1.</_> + <_> + 11 9 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 2 3 2 -1.</_> + <_> + 5 2 3 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 9 2 2 -1.</_> + <_> + 17 9 1 1 2.</_> + <_> + 16 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 10 3 1 -1.</_> + <_> + 6 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 0 8 4 -1.</_> + <_> + 9 0 8 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 3 4 2 -1.</_> + <_> + 9 3 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 2 3 3 -1.</_> + <_> + 8 3 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 2 4 2 -1.</_> + <_> + 8 2 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 6 1 3 -1.</_> + <_> + 9 7 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 3 8 1 -1.</_> + <_> + 11 5 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 2 6 2 -1.</_> + <_> + 8 2 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 3 4 10 4 -1.</_> + <_> + 3 4 5 2 2.</_> + <_> + 8 6 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 3 -1.</_> + <_> + 15 1 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 3 1 -1.</_> + <_> + 5 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 0 3 1 -1.</_> + <_> + 12 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 3 1 -1.</_> + <_> + 5 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 16 4 2 6 -1.</_> + <_> + 16 4 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 5 10 8 2 -1.</_> + <_> + 7 10 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 8 6 2 2 -1.</_> + <_> + 9 6 1 1 2.</_> + <_> + 8 7 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 6 4 2 -1.</_> + <_> + 5 7 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 6 7 3 -1.</_> + <_> + 11 7 7 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 6 7 3 -1.</_> + <_> + 0 7 7 1 3.</_></rects></_> + <_> + <rects> + <_> + 15 9 2 2 -1.</_> + <_> + 16 9 1 1 2.</_> + <_> + 15 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 10 2 2 -1.</_> + <_> + 2 10 1 1 2.</_> + <_> + 3 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 11 3 1 -1.</_> + <_> + 15 11 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 11 3 1 -1.</_> + <_> + 2 11 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 16 10 1 2 -1.</_> + <_> + 16 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 10 1 2 -1.</_> + <_> + 1 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 3 3 -1.</_> + <_> + 6 4 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 4 6 4 -1.</_> + <_> + 8 4 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 2 3 4 4 -1.</_> + <_> + 2 3 2 2 2.</_> + <_> + 4 5 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 6 2 2 -1.</_> + <_> + 15 6 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 6 2 2 -1.</_> + <_> + 3 6 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 3 12 4 -1.</_> + <_> + 4 4 12 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 5 4 2 -1.</_> + <_> + 2 5 2 1 2.</_> + <_> + 4 6 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 4 3 2 -1.</_> + <_> + 11 5 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 5 4 3 -1.</_> + <_> + 6 5 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 6 0 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 2 10 4 -1.</_> + <_> + 3 3 10 2 2.</_></rects></_> + <_> + <rects> + <_> + 12 6 6 6 -1.</_> + <_> + 12 9 6 3 2.</_></rects></_> + <_> + <rects> + <_> + 4 6 3 2 -1.</_> + <_> + 5 6 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 16 8 1 2 -1.</_> + <_> + 16 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 8 1 2 -1.</_> + <_> + 1 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 4 3 2 -1.</_> + <_> + 10 5 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 9 2 1 -1.</_> + <_> + 3 9 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 0 6 4 -1.</_> + <_> + 11 0 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 9 3 6 3 -1.</_> + <_> + 8 4 6 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 0 6 4 -1.</_> + <_> + 11 0 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 1 12 -1.</_> + <_> + 0 6 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 6 4 -1.</_> + <_> + 6 1 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 1 0 10 4 -1.</_> + <_> + 1 1 10 2 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 3 -1.</_> + <_> + 16 0 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 3 2 4 -1.</_> + <_> + 0 4 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 4 2 6 -1.</_> + <_> + 14 4 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 3 6 -1.</_> + <_> + 6 5 1 2 9.</_></rects></_> + <_> + <rects> + <_> + 7 0 6 6 -1.</_> + <_> + 7 2 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 4 16 7 -1.</_> + <_> + 8 4 8 7 2.</_></rects></_> + <_> + <rects> + <_> + 6 4 8 6 -1.</_> + <_> + 10 4 4 3 2.</_> + <_> + 6 7 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 4 3 -1.</_> + <_> + 4 3 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 0 4 3 -1.</_> + <_> + 10 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 4 0 4 3 -1.</_> + <_> + 6 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 15 4 2 6 -1.</_> + <_> + 15 4 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 4 6 2 -1.</_> + <_> + 3 4 3 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 14 12 -1.</_> + <_> + 4 0 7 12 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 12 12 -1.</_> + <_> + 4 0 4 12 3.</_></rects></_> + <_> + <rects> + <_> + 15 2 3 3 -1.</_> + <_> + 15 3 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 7 3 1 -1.</_> + <_> + 4 7 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 2 4 3 -1.</_> + <_> + 14 3 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 15 6 -1.</_> + <_> + 5 2 5 2 9.</_></rects></_> + <_> + <rects> + <_> + 8 1 6 3 -1.</_> + <_> + 10 1 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 2 14 8 -1.</_> + <_> + 0 2 7 4 2.</_> + <_> + 7 6 7 4 2.</_></rects></_> + <_> + <rects> + <_> + 11 10 1 2 -1.</_> + <_> + 11 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 9 2 2 -1.</_> + <_> + 0 9 1 1 2.</_> + <_> + 1 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 13 9 3 3 -1.</_> + <_> + 13 10 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 4 3 3 -1.</_> + <_> + 7 5 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 9 6 2 -1.</_> + <_> + 10 9 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 3 1 4 -1.</_> + <_> + 0 4 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 6 2 2 -1.</_> + <_> + 10 6 1 1 2.</_> + <_> + 9 7 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 6 2 2 -1.</_> + <_> + 7 6 1 1 2.</_> + <_> + 8 7 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 0 5 2 -1.</_> + <_> + 7 1 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 3 12 -1.</_> + <_> + 4 0 1 12 3.</_></rects></_> + <_> + <rects> + <_> + 7 9 6 3 -1.</_> + <_> + 9 9 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 5 9 6 3 -1.</_> + <_> + 7 9 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 9 0 2 2 -1.</_> + <_> + 10 0 1 1 2.</_> + <_> + 9 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 10 2 -1.</_> + <_> + 3 0 5 1 2.</_> + <_> + 8 1 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 6 3 1 -1.</_> + <_> + 10 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 10 18 2 -1.</_> + <_> + 6 10 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 2 11 16 1 -1.</_> + <_> + 6 11 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 10 4 1 -1.</_> + <_> + 5 10 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 6 3 1 -1.</_> + <_> + 10 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 2 10 10 -1.</_> + <_> + 7 2 5 10 2.</_></rects></_> + <_> + <rects> + <_> + 7 2 8 5 -1.</_> + <_> + 7 2 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 8 5 -1.</_> + <_> + 7 2 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 9 6 3 1 -1.</_> + <_> + 10 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 0 4 2 -1.</_> + <_> + 2 0 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 10 6 2 -1.</_> + <_> + 12 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 0 3 2 -1.</_> + <_> + 2 0 3 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 6 3 1 -1.</_> + <_> + 10 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 6 3 1 -1.</_> + <_> + 7 6 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 10 6 2 -1.</_> + <_> + 12 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 10 1 2 -1.</_> + <_> + 6 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 10 4 2 -1.</_> + <_> + 8 11 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 7 2 2 -1.</_> + <_> + 6 7 1 1 2.</_> + <_> + 7 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 7 2 3 -1.</_> + <_> + 9 8 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 6 9 3 -1.</_> + <_> + 0 7 9 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 0 3 5 -1.</_> + <_> + 12 0 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 4 0 3 5 -1.</_> + <_> + 5 0 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 0 11 18 1 -1.</_> + <_> + 0 11 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 14 11 -1.</_> + <_> + 7 1 7 11 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 0 0 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 1 9 6 -1.</_> + <_> + 3 3 9 2 3.</_></rects></_> + <_> + <rects> + <_> + 11 4 2 1 -1.</_> + <_> + 11 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 7 2 2 -1.</_> + <_> + 8 7 1 1 2.</_> + <_> + 9 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 17 9 1 2 -1.</_> + <_> + 17 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 8 2 2 -1.</_> + <_> + 1 8 1 1 2.</_> + <_> + 2 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 4 2 3 -1.</_> + <_> + 9 5 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 9 3 3 -1.</_> + <_> + 2 10 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 8 8 3 -1.</_> + <_> + 5 9 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 9 6 2 -1.</_> + <_> + 0 10 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 0 3 2 -1.</_> + <_> + 16 1 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 3 5 3 -1.</_> + <_> + 6 4 5 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 4 2 1 -1.</_> + <_> + 11 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 10 2 -1.</_> + <_> + 9 0 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 17 0 1 3 -1.</_> + <_> + 16 1 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 0 4 3 -1.</_> + <_> + 9 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 14 2 3 2 -1.</_> + <_> + 15 3 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 0 6 4 -1.</_> + <_> + 11 2 2 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 17 0 1 3 -1.</_> + <_> + 16 1 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 1 0 3 1 -1.</_> + <_> + 2 1 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 2 16 1 -1.</_> + <_> + 6 2 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 4 1 2 -1.</_> + <_> + 7 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 4 5 3 -1.</_> + <_> + 12 5 5 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 1 4 4 -1.</_> + <_> + 5 2 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 4 3 2 -1.</_> + <_> + 15 5 3 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 18 4 -1.</_> + <_> + 0 2 9 2 2.</_> + <_> + 9 4 9 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 3 2 1 -1.</_> + <_> + 10 3 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 2 2 -1.</_> + <_> + 5 3 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 17 7 1 4 -1.</_> + <_> + 17 9 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 4 3 3 -1.</_> + <_> + 8 5 1 1 9.</_></rects></_> + <_> + <rects> + <_> + 16 6 2 3 -1.</_> + <_> + 16 7 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 7 1 4 -1.</_> + <_> + 0 9 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 10 8 2 -1.</_> + <_> + 10 10 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 8 3 1 6 -1.</_> + <_> + 8 3 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 4 8 5 -1.</_> + <_> + 9 4 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 1 4 8 5 -1.</_> + <_> + 5 4 4 5 2.</_></rects></_> + <_> + <rects> + <_> + 9 5 4 1 -1.</_> + <_> + 10 5 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 5 4 1 -1.</_> + <_> + 6 5 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 13 6 4 6 -1.</_> + <_> + 15 6 2 3 2.</_> + <_> + 13 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 1 6 4 6 -1.</_> + <_> + 1 6 2 3 2.</_> + <_> + 3 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 5 6 10 4 -1.</_> + <_> + 10 6 5 2 2.</_> + <_> + 5 8 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 3 3 7 -1.</_> + <_> + 3 3 1 7 3.</_></rects></_> + <_> + <rects> + <_> + 9 7 2 3 -1.</_> + <_> + 9 8 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 11 6 1 -1.</_> + <_> + 8 11 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 16 1 2 9 -1.</_> + <_> + 13 4 2 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 3 3 -1.</_> + <_> + 0 1 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 3 9 6 -1.</_> + <_> + 6 6 9 3 2.</_></rects></_> + <_> + <rects> + <_> + 7 8 2 2 -1.</_> + <_> + 7 8 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 6 10 6 -1.</_> + <_> + 4 9 10 3 2.</_></rects></_> + <_> + <rects> + <_> + 5 6 2 4 -1.</_> + <_> + 4 7 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 9 2 2 -1.</_> + <_> + 17 9 1 1 2.</_> + <_> + 16 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 8 1 2 -1.</_> + <_> + 2 8 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 6 2 3 -1.</_> + <_> + 16 7 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 3 2 9 -1.</_> + <_> + 1 3 1 9 2.</_></rects></_> + <_> + <rects> + <_> + 15 4 3 2 -1.</_> + <_> + 16 5 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 4 2 3 -1.</_> + <_> + 2 5 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 1 12 4 -1.</_> + <_> + 6 2 12 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 2 8 3 -1.</_> + <_> + 5 3 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 1 2 1 -1.</_> + <_> + 12 1 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 1 2 2 -1.</_> + <_> + 6 1 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 1 10 1 -1.</_> + <_> + 8 1 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 10 1 -1.</_> + <_> + 5 1 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 13 7 2 2 -1.</_> + <_> + 14 7 1 1 2.</_> + <_> + 13 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 9 2 2 -1.</_> + <_> + 0 9 1 1 2.</_> + <_> + 1 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 1 2 4 -1.</_> + <_> + 15 2 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 3 1 -1.</_> + <_> + 1 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 10 2 1 -1.</_> + <_> + 9 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 9 4 3 -1.</_> + <_> + 8 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 13 7 2 2 -1.</_> + <_> + 14 7 1 1 2.</_> + <_> + 13 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 6 1 -1.</_> + <_> + 5 0 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 16 1 2 4 -1.</_> + <_> + 15 2 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 1 4 2 -1.</_> + <_> + 3 2 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 4 1 2 -1.</_> + <_> + 15 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 4 2 1 -1.</_> + <_> + 3 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 0 3 1 -1.</_> + <_> + 16 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 3 1 -1.</_> + <_> + 1 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 15 0 3 1 -1.</_> + <_> + 16 1 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 11 3 1 -1.</_> + <_> + 7 11 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 11 9 2 2 -1.</_> + <_> + 12 9 1 1 2.</_> + <_> + 11 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 8 6 3 -1.</_> + <_> + 6 9 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 10 6 2 -1.</_> + <_> + 10 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 3 0 1 3 -1.</_> + <_> + 2 1 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 8 2 2 -1.</_> + <_> + 10 8 1 1 2.</_> + <_> + 9 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 7 1 3 -1.</_> + <_> + 8 8 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 4 2 6 -1.</_> + <_> + 8 7 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 8 6 1 3 -1.</_> + <_> + 8 7 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 8 1 3 -1.</_> + <_> + 14 9 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 8 1 3 -1.</_> + <_> + 3 9 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 13 2 4 3 -1.</_> + <_> + 14 3 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 4 6 8 -1.</_> + <_> + 9 4 3 8 2.</_></rects></_> + <_> + <rects> + <_> + 9 11 2 1 -1.</_> + <_> + 9 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 1 9 2 -1.</_> + <_> + 5 4 3 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 5 8 3 -1.</_> + <_> + 10 6 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 5 1 2 -1.</_> + <_> + 3 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 11 1 4 2 -1.</_> + <_> + 11 2 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 1 4 2 -1.</_> + <_> + 4 2 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 12 3 3 1 -1.</_> + <_> + 13 4 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 3 1 3 -1.</_> + <_> + 5 4 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 4 5 3 -1.</_> + <_> + 12 5 5 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 4 3 5 -1.</_> + <_> + 6 5 1 5 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 1 4 3 -1.</_> + <_> + 12 2 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 7 2 2 -1.</_> + <_> + 9 7 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 4 18 4 -1.</_> + <_> + 9 4 9 2 2.</_> + <_> + 0 6 9 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 2 2 2 -1.</_> + <_> + 7 2 1 1 2.</_> + <_> + 8 3 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 6 1 -1.</_> + <_> + 8 0 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 0 4 3 -1.</_> + <_> + 6 1 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 11 2 1 -1.</_> + <_> + 9 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 11 2 1 -1.</_> + <_> + 8 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 11 2 1 -1.</_> + <_> + 9 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 11 2 1 -1.</_> + <_> + 8 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 10 6 2 -1.</_> + <_> + 10 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 4 10 6 2 -1.</_> + <_> + 6 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 14 2 4 3 -1.</_> + <_> + 14 3 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 6 11 3 -1.</_> + <_> + 3 7 11 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 7 2 3 -1.</_> + <_> + 9 7 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 2 18 7 -1.</_> + <_> + 6 2 6 7 3.</_></rects></_> + <_> + <rects> + <_> + 12 1 6 4 -1.</_> + <_> + 12 1 3 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 6 4 -1.</_> + <_> + 3 1 3 4 2.</_></rects></_> + <_> + <rects> + <_> + 11 1 2 7 -1.</_> + <_> + 11 1 1 7 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 4 9 4 -1.</_> + <_> + 2 6 9 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 3 3 1 -1.</_> + <_> + 10 3 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 6 10 -1.</_> + <_> + 2 0 2 10 3.</_></rects></_> + <_> + <rects> + <_> + 10 4 4 6 -1.</_> + <_> + 11 4 2 6 2.</_></rects></_> + <_> + <rects> + <_> + 4 4 4 6 -1.</_> + <_> + 5 4 2 6 2.</_></rects></_> + <_> + <rects> + <_> + 11 0 4 3 -1.</_> + <_> + 12 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 2 0 6 4 -1.</_> + <_> + 4 0 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 8 3 3 5 -1.</_> + <_> + 9 3 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 7 3 3 5 -1.</_> + <_> + 8 3 1 5 3.</_></rects></_> + <_> + <rects> + <_> + 6 4 6 4 -1.</_> + <_> + 8 4 2 4 3.</_></rects></_> + <_> + <rects> + <_> + 8 5 2 2 -1.</_> + <_> + 8 5 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 4 8 6 -1.</_> + <_> + 13 4 4 3 2.</_> + <_> + 9 7 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 5 10 2 2 -1.</_> + <_> + 5 10 1 1 2.</_> + <_> + 6 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 1 -1.</_> + <_> + 16 0 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 16 1 -1.</_> + <_> + 4 11 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 9 1 2 -1.</_> + <_> + 14 9 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 1 10 12 2 -1.</_> + <_> + 5 10 4 2 3.</_></rects></_> + <_> + <rects> + <_> + 1 11 16 1 -1.</_> + <_> + 1 11 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 1 -1.</_> + <_> + 1 0 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 18 2 -1.</_> + <_> + 9 10 9 1 2.</_> + <_> + 0 11 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 2 2 -1.</_> + <_> + 7 10 1 1 2.</_> + <_> + 8 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 4 4 4 -1.</_> + <_> + 10 4 2 2 2.</_> + <_> + 8 6 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 4 4 4 -1.</_> + <_> + 6 4 2 2 2.</_> + <_> + 8 6 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 8 4 3 1 -1.</_> + <_> + 9 4 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 2 4 3 -1.</_> + <_> + 8 2 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 9 3 2 2 -1.</_> + <_> + 10 3 1 1 2.</_> + <_> + 9 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 3 3 1 -1.</_> + <_> + 7 3 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 3 1 2 -1.</_> + <_> + 12 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 2 2 -1.</_> + <_> + 8 0 1 1 2.</_> + <_> + 9 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 2 2 -1.</_> + <_> + 9 0 1 1 2.</_> + <_> + 8 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 2 1 3 -1.</_> + <_> + 2 3 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 0 2 2 -1.</_> + <_> + 9 0 1 1 2.</_> + <_> + 8 1 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 8 2 4 -1.</_> + <_> + 1 9 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 9 6 3 -1.</_> + <_> + 10 10 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 9 6 3 -1.</_> + <_> + 2 10 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 9 10 3 -1.</_> + <_> + 6 10 10 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 5 3 1 -1.</_> + <_> + 8 5 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 3 -1.</_> + <_> + 16 0 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 2 2 -1.</_> + <_> + 7 5 1 1 2.</_> + <_> + 8 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 7 3 1 -1.</_> + <_> + 10 7 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 9 2 2 -1.</_> + <_> + 8 9 1 1 2.</_> + <_> + 9 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 7 3 1 -1.</_> + <_> + 10 7 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 7 3 1 -1.</_> + <_> + 7 7 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 1 4 5 -1.</_> + <_> + 8 1 2 5 2.</_></rects></_> + <_> + <rects> + <_> + 0 6 6 3 -1.</_> + <_> + 0 7 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 12 3 1 2 -1.</_> + <_> + 12 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 3 4 -1.</_> + <_> + 5 4 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 11 1 2 3 -1.</_> + <_> + 11 1 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 6 2 6 -1.</_> + <_> + 9 6 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 6 -1.</_> + <_> + 9 0 9 3 2.</_> + <_> + 0 3 9 3 2.</_></rects></_> + <_> + <rects> + <_> + 6 6 6 2 -1.</_> + <_> + 8 6 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 14 5 4 6 -1.</_> + <_> + 14 5 2 6 2.</_></rects></_> + <_> + <rects> + <_> + 6 4 1 4 -1.</_> + <_> + 5 5 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 10 12 -1.</_> + <_> + 4 6 10 6 2.</_></rects></_> + <_> + <rects> + <_> + 8 4 2 3 -1.</_> + <_> + 7 5 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 0 8 4 -1.</_> + <_> + 7 1 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 2 0 9 4 -1.</_> + <_> + 2 1 9 2 2.</_></rects></_> + <_> + <rects> + <_> + 16 5 2 4 -1.</_> + <_> + 16 5 1 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 6 2 6 -1.</_> + <_> + 0 6 1 3 2.</_> + <_> + 1 9 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 11 5 3 3 -1.</_> + <_> + 12 5 1 3 3.</_></rects></_> + <_> + <rects> + <_> + 0 2 1 10 -1.</_> + <_> + 0 7 1 5 2.</_></rects></_> + <_> + <rects> + <_> + 13 5 1 2 -1.</_> + <_> + 13 5 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 5 2 1 -1.</_> + <_> + 5 5 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 10 6 2 -1.</_> + <_> + 12 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 0 6 2 -1.</_> + <_> + 8 0 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 11 -1.</_> + <_> + 0 0 9 11 2.</_></rects></_> + <_> + <rects> + <_> + 8 3 4 2 -1.</_> + <_> + 8 3 4 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 4 2 6 -1.</_> + <_> + 15 4 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 1 4 2 6 -1.</_> + <_> + 2 4 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 17 7 1 4 -1.</_> + <_> + 17 7 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 1 7 4 1 -1.</_> + <_> + 1 7 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 3 8 3 -1.</_> + <_> + 5 4 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 2 2 4 -1.</_> + <_> + 0 3 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 4 2 6 -1.</_> + <_> + 14 4 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 0 4 3 -1.</_> + <_> + 4 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 4 4 -1.</_> + <_> + 10 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 2 2 10 3 -1.</_> + <_> + 7 2 5 3 2.</_></rects></_> + <_> + <rects> + <_> + 12 10 6 2 -1.</_> + <_> + 12 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 6 2 -1.</_> + <_> + 0 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 8 2 3 -1.</_> + <_> + 8 9 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 7 4 3 -1.</_> + <_> + 7 8 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 4 7 2 -1.</_> + <_> + 7 5 7 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 0 4 4 -1.</_> + <_> + 8 0 2 4 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 1 -1.</_> + <_> + 6 0 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 0 7 6 -1.</_> + <_> + 3 2 7 2 3.</_></rects></_> + <_> + <rects> + <_> + 4 1 12 4 -1.</_> + <_> + 4 2 12 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 8 1 4 -1.</_> + <_> + 0 9 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 4 6 8 -1.</_> + <_> + 6 6 6 4 2.</_></rects></_> + <_> + <rects> + <_> + 3 4 3 4 -1.</_> + <_> + 3 6 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 14 2 4 3 -1.</_> + <_> + 13 3 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 2 3 4 -1.</_> + <_> + 5 3 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 3 3 1 -1.</_> + <_> + 14 4 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 6 4 -1.</_> + <_> + 0 0 3 2 2.</_> + <_> + 3 2 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 0 6 5 -1.</_> + <_> + 11 0 2 5 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 14 12 -1.</_> + <_> + 7 0 7 12 2.</_></rects></_> + <_> + <rects> + <_> + 9 9 4 3 -1.</_> + <_> + 10 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 3 0 6 5 -1.</_> + <_> + 5 0 2 5 3.</_></rects></_> + <_> + <rects> + <_> + 10 6 4 2 -1.</_> + <_> + 12 6 2 1 2.</_> + <_> + 10 7 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 9 12 2 -1.</_> + <_> + 6 9 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 6 2 -1.</_> + <_> + 9 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 5 10 6 2 -1.</_> + <_> + 7 10 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 14 1 3 2 -1.</_> + <_> + 15 2 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 0 3 3 -1.</_> + <_> + 5 1 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 0 6 3 -1.</_> + <_> + 8 1 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 1 2 3 -1.</_> + <_> + 3 2 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 5 3 1 -1.</_> + <_> + 9 5 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 7 5 3 1 -1.</_> + <_> + 8 5 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 5 3 1 -1.</_> + <_> + 10 5 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 5 3 1 -1.</_> + <_> + 7 5 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 13 0 4 4 -1.</_> + <_> + 14 1 2 4 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 0 4 4 -1.</_> + <_> + 4 1 4 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 7 6 1 -1.</_> + <_> + 12 7 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 3 -1.</_> + <_> + 6 0 6 3 3.</_></rects></_> + <_> + <rects> + <_> + 2 1 16 2 -1.</_> + <_> + 6 1 8 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 0 4 2 -1.</_> + <_> + 7 0 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 6 3 2 -1.</_> + <_> + 11 6 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 0 4 2 6 -1.</_> + <_> + 1 4 1 6 2.</_></rects></_> + <_> + <rects> + <_> + 9 3 2 4 -1.</_> + <_> + 9 3 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 3 4 2 -1.</_> + <_> + 9 3 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 7 18 4 -1.</_> + <_> + 9 7 9 2 2.</_> + <_> + 0 9 9 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 6 6 4 -1.</_> + <_> + 0 6 3 2 2.</_> + <_> + 3 8 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 17 0 1 12 -1.</_> + <_> + 17 4 1 4 3.</_></rects></_> + <_> + <rects> + <_> + 5 4 3 5 -1.</_> + <_> + 6 5 1 5 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 1 3 4 -1.</_> + <_> + 14 2 3 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 1 4 3 -1.</_> + <_> + 4 2 2 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 17 0 1 12 -1.</_> + <_> + 17 4 1 4 3.</_></rects></_> + <_> + <rects> + <_> + 0 0 1 12 -1.</_> + <_> + 0 4 1 4 3.</_></rects></_> + <_> + <rects> + <_> + 9 9 6 3 -1.</_> + <_> + 11 9 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 3 9 6 3 -1.</_> + <_> + 5 9 2 3 3.</_></rects></_> + <_> + <rects> + <_> + 3 5 12 4 -1.</_> + <_> + 9 5 6 2 2.</_> + <_> + 3 7 6 2 2.</_></rects></_> + <_> + <rects> + <_> + 3 9 9 3 -1.</_> + <_> + 3 10 9 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 10 18 2 -1.</_> + <_> + 6 10 6 2 3.</_></rects></_> + <_> + <rects> + <_> + 2 11 12 1 -1.</_> + <_> + 5 11 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 13 9 1 3 -1.</_> + <_> + 13 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 2 6 3 -1.</_> + <_> + 5 3 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 2 6 3 -1.</_> + <_> + 6 3 6 1 3.</_></rects></_> + <_> + <rects> + <_> + 5 2 1 4 -1.</_> + <_> + 4 3 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 9 1 3 -1.</_> + <_> + 16 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 4 6 2 -1.</_> + <_> + 4 4 3 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 5 8 3 -1.</_> + <_> + 10 6 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 4 9 1 3 -1.</_> + <_> + 4 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 10 5 8 3 -1.</_> + <_> + 10 6 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 5 8 3 -1.</_> + <_> + 0 6 8 1 3.</_></rects></_> + <_> + <rects> + <_> + 10 10 2 2 -1.</_> + <_> + 11 10 1 1 2.</_> + <_> + 10 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 1 2 -1.</_> + <_> + 0 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 3 4 3 -1.</_> + <_> + 13 4 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 10 2 2 -1.</_> + <_> + 6 10 1 1 2.</_> + <_> + 7 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 3 4 3 -1.</_> + <_> + 13 4 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 3 3 4 -1.</_> + <_> + 5 4 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 6 4 2 -1.</_> + <_> + 12 6 2 1 2.</_> + <_> + 10 7 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 5 3 4 -1.</_> + <_> + 5 5 1 4 3.</_></rects></_> + <_> + <rects> + <_> + 10 6 4 2 -1.</_> + <_> + 12 6 2 1 2.</_> + <_> + 10 7 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 6 4 2 -1.</_> + <_> + 4 6 2 1 2.</_> + <_> + 6 7 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 10 2 2 -1.</_> + <_> + 15 10 1 1 2.</_> + <_> + 14 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 4 2 3 -1.</_> + <_> + 8 5 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 4 15 6 -1.</_> + <_> + 8 6 5 2 9.</_></rects></_> + <_> + <rects> + <_> + 0 6 12 2 -1.</_> + <_> + 4 6 4 2 3.</_></rects></_> + <_> + <rects> + <_> + 14 10 2 2 -1.</_> + <_> + 15 10 1 1 2.</_> + <_> + 14 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 2 18 3 -1.</_> + <_> + 6 2 6 3 3.</_></rects></_> + <_> + <rects> + <_> + 14 10 2 2 -1.</_> + <_> + 15 10 1 1 2.</_> + <_> + 14 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 7 6 1 -1.</_> + <_> + 4 7 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 10 2 2 -1.</_> + <_> + 15 10 1 1 2.</_> + <_> + 14 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 10 2 2 -1.</_> + <_> + 2 10 1 1 2.</_> + <_> + 3 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 5 2 2 -1.</_> + <_> + 10 5 1 1 2.</_> + <_> + 9 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 4 1 3 -1.</_> + <_> + 3 5 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 5 6 5 -1.</_> + <_> + 14 5 2 5 3.</_></rects></_> + <_> + <rects> + <_> + 9 8 2 2 -1.</_> + <_> + 9 8 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 9 4 3 -1.</_> + <_> + 10 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 6 2 6 10 -1.</_> + <_> + 9 2 3 10 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 12 9 -1.</_> + <_> + 8 3 6 9 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 16 9 -1.</_> + <_> + 4 1 8 9 2.</_></rects></_> + <_> + <rects> + <_> + 9 9 4 3 -1.</_> + <_> + 10 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 5 9 4 3 -1.</_> + <_> + 6 9 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 1 11 16 1 -1.</_> + <_> + 5 11 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 9 2 1 -1.</_> + <_> + 4 9 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 5 6 5 -1.</_> + <_> + 14 5 2 5 3.</_></rects></_> + <_> + <rects> + <_> + 0 5 6 5 -1.</_> + <_> + 2 5 2 5 3.</_></rects></_> + <_> + <rects> + <_> + 0 1 18 10 -1.</_> + <_> + 9 1 9 5 2.</_> + <_> + 0 6 9 5 2.</_></rects></_> + <_> + <rects> + <_> + 6 10 2 1 -1.</_> + <_> + 7 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 7 3 1 -1.</_> + <_> + 11 7 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 2 1 4 6 -1.</_> + <_> + 3 1 2 6 2.</_></rects></_> + <_> + <rects> + <_> + 12 2 6 1 -1.</_> + <_> + 12 2 3 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 6 2 1 6 -1.</_> + <_> + 6 2 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 5 2 2 -1.</_> + <_> + 10 5 1 1 2.</_> + <_> + 9 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 5 2 2 -1.</_> + <_> + 7 5 1 1 2.</_> + <_> + 8 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 2 3 -1.</_> + <_> + 8 1 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 1 16 1 -1.</_> + <_> + 4 1 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 0 2 1 -1.</_> + <_> + 8 0 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 1 4 3 -1.</_> + <_> + 6 2 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 0 3 1 -1.</_> + <_> + 15 1 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 0 0 12 1 -1.</_> + <_> + 3 0 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 1 9 8 -1.</_> + <_> + 6 3 9 4 2.</_></rects></_> + <_> + <rects> + <_> + 3 5 7 4 -1.</_> + <_> + 3 7 7 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 4 8 6 -1.</_> + <_> + 13 4 4 3 2.</_> + <_> + 9 7 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 0 1 4 1 -1.</_> + <_> + 2 1 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 0 4 1 -1.</_> + <_> + 15 1 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 1 9 3 -1.</_> + <_> + 4 2 9 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 0 4 1 -1.</_> + <_> + 15 1 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 0 1 4 -1.</_> + <_> + 3 1 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 12 0 4 2 -1.</_> + <_> + 13 0 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 2 -1.</_> + <_> + 0 0 9 1 2.</_> + <_> + 9 1 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 3 10 6 -1.</_> + <_> + 12 3 5 3 2.</_> + <_> + 7 6 5 3 2.</_></rects></_> + <_> + <rects> + <_> + 2 0 4 3 -1.</_> + <_> + 3 0 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 12 2 2 1 -1.</_> + <_> + 12 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 2 2 1 -1.</_> + <_> + 5 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 3 -1.</_> + <_> + 15 1 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 0 3 2 -1.</_> + <_> + 3 1 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 3 3 3 -1.</_> + <_> + 10 4 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 5 2 2 -1.</_> + <_> + 7 5 1 1 2.</_> + <_> + 8 6 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 4 8 6 -1.</_> + <_> + 13 4 4 3 2.</_> + <_> + 9 7 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 1 4 8 6 -1.</_> + <_> + 1 4 4 3 2.</_> + <_> + 5 7 4 3 2.</_></rects></_> + <_> + <rects> + <_> + 10 5 4 3 -1.</_> + <_> + 9 6 4 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 0 2 3 -1.</_> + <_> + 2 1 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 8 2 2 -1.</_> + <_> + 9 8 1 1 2.</_> + <_> + 8 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 6 3 2 -1.</_> + <_> + 6 6 1 2 3.</_></rects></_> + <_> + <rects> + <_> + 16 10 1 2 -1.</_> + <_> + 16 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 10 1 2 -1.</_> + <_> + 1 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 15 10 2 2 -1.</_> + <_> + 16 10 1 1 2.</_> + <_> + 15 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 10 2 2 -1.</_> + <_> + 1 10 1 1 2.</_> + <_> + 2 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 5 4 11 8 -1.</_> + <_> + 5 8 11 4 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 2 1 -1.</_> + <_> + 8 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 10 2 1 -1.</_> + <_> + 9 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 10 2 1 -1.</_> + <_> + 8 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 9 6 2 -1.</_> + <_> + 6 9 3 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 2 4 2 -1.</_> + <_> + 8 2 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 2 2 4 -1.</_> + <_> + 9 2 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 3 1 2 -1.</_> + <_> + 7 3 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 1 2 4 -1.</_> + <_> + 15 2 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 1 4 2 -1.</_> + <_> + 3 2 2 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 6 2 3 -1.</_> + <_> + 16 7 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 4 1 4 -1.</_> + <_> + 0 5 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 10 6 3 3 -1.</_> + <_> + 9 7 3 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 7 2 2 -1.</_> + <_> + 8 7 1 1 2.</_> + <_> + 9 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 3 6 6 -1.</_> + <_> + 9 5 2 2 9.</_></rects></_> + <_> + <rects> + <_> + 8 8 2 2 -1.</_> + <_> + 9 8 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 7 4 6 6 -1.</_> + <_> + 9 4 2 6 3.</_></rects></_> + <_> + <rects> + <_> + 8 6 3 3 -1.</_> + <_> + 9 7 1 3 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 15 2 3 2 -1.</_> + <_> + 16 3 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 7 2 3 -1.</_> + <_> + 7 8 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 7 2 3 -1.</_> + <_> + 8 8 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 1 5 2 3 -1.</_> + <_> + 1 6 2 1 3.</_></rects></_> + <_> + <rects> + <_> + 9 8 2 2 -1.</_> + <_> + 10 8 1 1 2.</_> + <_> + 9 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 3 1 -1.</_> + <_> + 1 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 15 2 3 1 -1.</_> + <_> + 16 3 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 8 2 2 -1.</_> + <_> + 7 8 1 1 2.</_> + <_> + 8 9 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 14 0 3 1 -1.</_> + <_> + 15 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 0 11 18 1 -1.</_> + <_> + 9 11 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 11 10 1 -1.</_> + <_> + 8 11 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 1 0 3 1 -1.</_> + <_> + 2 0 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 14 0 4 1 -1.</_> + <_> + 15 0 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 4 1 -1.</_> + <_> + 1 0 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 6 4 12 4 -1.</_> + <_> + 10 4 4 4 3.</_></rects></_> + <_> + <rects> + <_> + 4 3 6 2 -1.</_> + <_> + 6 3 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 10 4 2 6 -1.</_> + <_> + 10 7 2 3 2.</_></rects></_> + <_> + <rects> + <_> + 5 3 2 1 -1.</_> + <_> + 6 3 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 2 4 3 -1.</_> + <_> + 7 3 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 3 1 2 -1.</_> + <_> + 8 4 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 10 0 4 8 -1.</_> + <_> + 10 0 2 8 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 0 8 4 -1.</_> + <_> + 8 0 8 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 4 4 2 -1.</_> + <_> + 9 4 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 5 4 4 2 -1.</_> + <_> + 7 4 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 12 1 3 2 -1.</_> + <_> + 13 2 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 8 3 1 6 -1.</_> + <_> + 8 6 1 3 2.</_></rects></_> + <_> + <rects> + <_> + 12 1 3 2 -1.</_> + <_> + 13 2 1 2 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 2 12 4 -1.</_> + <_> + 2 3 12 2 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 3 -1.</_> + <_> + 16 0 1 3 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 0 3 2 -1.</_> + <_> + 2 0 3 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 0 12 1 -1.</_> + <_> + 3 0 6 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 18 10 -1.</_> + <_> + 9 0 9 10 2.</_></rects></_> + <_> + <rects> + <_> + 5 2 8 2 -1.</_> + <_> + 5 2 4 2 2.</_></rects></_> + <_> + <rects> + <_> + 1 2 12 6 -1.</_> + <_> + 1 2 6 3 2.</_> + <_> + 7 5 6 3 2.</_></rects></_> + <_> + <rects> + <_> + 15 8 3 3 -1.</_> + <_> + 15 9 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 3 7 2 2 -1.</_> + <_> + 3 7 1 1 2.</_> + <_> + 4 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 13 7 2 2 -1.</_> + <_> + 14 7 1 1 2.</_> + <_> + 13 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 5 3 4 -1.</_> + <_> + 9 6 1 4 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 16 0 2 4 -1.</_> + <_> + 16 1 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 8 3 3 -1.</_> + <_> + 0 9 3 1 3.</_></rects></_> + <_> + <rects> + <_> + 13 7 2 2 -1.</_> + <_> + 14 7 1 1 2.</_> + <_> + 13 8 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 9 4 2 -1.</_> + <_> + 8 9 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 6 8 6 2 -1.</_> + <_> + 8 8 2 2 3.</_></rects></_> + <_> + <rects> + <_> + 6 1 2 3 -1.</_> + <_> + 5 2 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 5 0 8 6 -1.</_> + <_> + 5 2 8 2 3.</_></rects></_> + <_> + <rects> + <_> + 5 2 2 2 -1.</_> + <_> + 6 2 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 9 2 2 2 -1.</_> + <_> + 10 2 1 1 2.</_> + <_> + 9 3 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 4 12 4 -1.</_> + <_> + 6 4 4 4 3.</_></rects></_> + <_> + <rects> + <_> + 9 2 2 2 -1.</_> + <_> + 10 2 1 1 2.</_> + <_> + 9 3 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 2 2 2 -1.</_> + <_> + 7 2 1 1 2.</_> + <_> + 8 3 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 9 1 3 -1.</_> + <_> + 16 10 1 1 3.</_></rects></_> + <_> + <rects> + <_> + 6 7 2 3 -1.</_> + <_> + 5 8 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 13 10 2 2 -1.</_> + <_> + 14 10 1 1 2.</_> + <_> + 13 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 10 2 2 -1.</_> + <_> + 3 10 1 1 2.</_> + <_> + 4 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 11 10 1 -1.</_> + <_> + 8 11 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 7 2 3 -1.</_> + <_> + 3 8 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 4 6 10 6 -1.</_> + <_> + 4 9 10 3 2.</_></rects></_> + <_> + <rects> + <_> + 4 11 4 1 -1.</_> + <_> + 5 11 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 12 10 2 2 -1.</_> + <_> + 13 10 1 1 2.</_> + <_> + 12 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 4 10 2 2 -1.</_> + <_> + 4 10 1 1 2.</_> + <_> + 5 11 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 1 2 2 -1.</_> + <_> + 10 1 1 1 2.</_> + <_> + 9 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 8 1 4 -1.</_> + <_> + 7 9 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 11 7 2 2 -1.</_> + <_> + 11 7 1 2 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 7 2 2 -1.</_> + <_> + 7 7 2 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 10 7 1 3 -1.</_> + <_> + 9 8 1 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 2 11 14 1 -1.</_> + <_> + 9 11 7 1 2.</_></rects></_> + <_> + <rects> + <_> + 8 10 10 2 -1.</_> + <_> + 8 10 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 10 10 2 -1.</_> + <_> + 5 10 5 2 2.</_></rects></_> + <_> + <rects> + <_> + 8 11 10 1 -1.</_> + <_> + 8 11 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 11 10 1 -1.</_> + <_> + 5 11 5 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 9 2 2 -1.</_> + <_> + 17 9 1 1 2.</_> + <_> + 16 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 3 4 1 2 -1.</_> + <_> + 3 4 1 1 2.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 9 1 2 2 -1.</_> + <_> + 10 1 1 1 2.</_> + <_> + 9 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 1 2 2 -1.</_> + <_> + 7 1 1 1 2.</_> + <_> + 8 2 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 10 4 1 -1.</_> + <_> + 10 10 2 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 9 4 2 -1.</_> + <_> + 0 10 4 1 2.</_></rects></_> + <_> + <rects> + <_> + 2 11 16 1 -1.</_> + <_> + 6 11 8 1 2.</_></rects></_> + <_> + <rects> + <_> + 0 8 18 1 -1.</_> + <_> + 9 8 9 1 2.</_></rects></_> + <_> + <rects> + <_> + 9 9 2 2 -1.</_> + <_> + 10 9 1 1 2.</_> + <_> + 9 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 7 8 4 3 -1.</_> + <_> + 7 9 4 1 3.</_></rects></_> + <_> + <rects> + <_> + 8 6 3 3 -1.</_> + <_> + 9 7 1 1 9.</_></rects></_> + <_> + <rects> + <_> + 8 7 2 4 -1.</_> + <_> + 8 7 1 2 2.</_> + <_> + 9 9 1 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 4 2 3 -1.</_> + <_> + 14 5 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 7 9 2 2 -1.</_> + <_> + 7 9 1 1 2.</_> + <_> + 8 10 1 1 2.</_></rects></_> + <_> + <rects> + <_> + 16 0 2 4 -1.</_> + <_> + 16 1 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 0 0 2 4 -1.</_> + <_> + 0 1 2 2 2.</_></rects></_> + <_> + <rects> + <_> + 15 4 2 3 -1.</_> + <_> + 14 5 2 1 3.</_></rects> + <tilted>1</tilted></_> + <_> + <rects> + <_> + 3 4 3 2 -1.</_> + <_> + 4 5 1 2 3.</_></rects> + <tilted>1</tilted></_></features></cascade> </opencv_storage>