lib/distribution/math_extension/log_utilities.rb in distribution-0.7.3 vs lib/distribution/math_extension/log_utilities.rb in distribution-0.8.0
- old
+ new
@@ -13,65 +13,63 @@
C6 = 1.quo(7)
C7 = -1.quo(8)
C8 = 1.quo(9)
C9 = -1.quo(10)
class << self
-
# gsl_log1p from GSL-1.9 sys/log1p.c
# log for very small x
- def log1p x
+ def log1p(x)
# in C, this is volatile double y.
# Not sure how to reproduce that in Ruby.
- y = 1+x
- Math.log(y) - ((y-1)-x).quo(y) # cancel errors with IEEE arithmetic
+ y = 1 + x
+ Math.log(y) - ((y - 1) - x).quo(y) # cancel errors with IEEE arithmetic
end
# \log(1+x) for x > -1
# gsl_sf_log_1plusx_e
def log_1plusx(x, with_error = false)
- raise(ArgumentError, "Range error: x must be > -1") if x <= -1
+ fail(ArgumentError, 'Range error: x must be > -1') if x <= -1
if x.abs < Math::ROOT6_FLOAT_EPSILON
- result = x * (1.0 + x * (C1 + x*(C2 + x*(C3 + x*(C4 + x*begin
- C5 + x*(C6 + x*(C7 + x*(C8 + x*C9))) # formerly t = this
+ result = x * (1.0 + x * (C1 + x * (C2 + x * (C3 + x * (C4 + x * begin
+ C5 + x * (C6 + x * (C7 + x * (C8 + x * C9))) # formerly t = this
end)))))
return with_error ? [result, Float::EPSILON * result.abs] : result
elsif x.abs < 0.5
- c = ChebyshevSeries.evaluate(:lopx, (8*x + 1).quo(2*x+4), with_error)
- return with_error ? [x * c.first, x * c.last] : x*c
+ c = ChebyshevSeries.evaluate(:lopx, (8 * x + 1).quo(2 * x + 4), with_error)
+ return with_error ? [x * c.first, x * c.last] : x * c
else
- result = Math.log(1+x)
- return with_error ? [result, Float::EPSILON*result.abs] : result
+ result = Math.log(1 + x)
+ return with_error ? [result, Float::EPSILON * result.abs] : result
end
end
-
# \log(1+x)-x for x > -1
# gsl_sf_log_1plusx_mx_e
- def log_1plusx_minusx x, with_error = false
- raise(ArgumentError, "Range error: x must be > -1") if x <= -1
+ def log_1plusx_minusx(x, with_error = false)
+ fail(ArgumentError, 'Range error: x must be > -1') if x <= -1
if x.abs < Math::ROOT5_FLOAT_EPSILON
- result = x*x * (C1 + x*(C2 + x*(C3 + x*(C4 + x*begin
- C5 + x*(C6 + x*(C7 + x*(C8 + x*C9))) # formerly t = this
+ result = x * x * (C1 + x * (C2 + x * (C3 + x * (C4 + x * begin
+ C5 + x * (C6 + x * (C7 + x * (C8 + x * C9))) # formerly t = this
end))))
return with_error ? [result, Float::EPSILON * result.abs] : result
elsif x.abs < 0.5
- c = ChebyshevSeries.evaluate(:lopxmx, (8*x + 1).quo(2*x+4), with_error)
- return with_error ? [x*x * c.first, x*x * c.last] : x*x*c
+ c = ChebyshevSeries.evaluate(:lopxmx, (8 * x + 1).quo(2 * x + 4), with_error)
+ return with_error ? [x * x * c.first, x * x * c.last] : x * x * c
else
- lterm = Math.log(1.0+x)
+ lterm = Math.log(1.0 + x)
error = Float::EPSILON * (lterm.abs + x.abs) if with_error
result = lterm - x
return with_error ? [result, error] : result
end
end
- protected
+ protected
# Abstracted from other log helper functions in GSL-1.9.
- def x_less_than_root_epsilon x, with_error
- result = square_x ? x*x : x
+ def x_less_than_root_epsilon(x, with_error)
+ result = square_x ? x * x : x
with_error ? [result, Float::EPSILON * result.abs] : result
end
end
end