README.md in disco-0.2.5 vs README.md in disco-0.2.6
- old
+ new
@@ -42,11 +42,11 @@
{user_id: 1, item_id: 1, value: 1},
{user_id: 2, item_id: 1, value: 1}
])
```
-> Use `value` instead of rating for implicit feedback
+> Use `value` instead of `rating` for implicit feedback
Get user-based recommendations - “users like you also liked”
```ruby
recommender.user_recs(user_id)
@@ -245,11 +245,11 @@
recommender = Disco::Recommender.new(top_items: true)
recommender.fit(data)
recommender.top_items
```
-This uses [Wilson score](https://www.evanmiller.org/how-not-to-sort-by-average-rating.html) for explicit feedback (add [wilson_score](https://github.com/instacart/wilson_score) your application’s Gemfile) and item frequency for implicit feedback.
+This uses [Wilson score](https://www.evanmiller.org/how-not-to-sort-by-average-rating.html) for explicit feedback (add [wilson_score](https://github.com/instacart/wilson_score) to your application’s Gemfile) and item frequency for implicit feedback.
## Data
Data can be an array of hashes
@@ -267,10 +267,10 @@
```ruby
Daru::DataFrame.from_csv("ratings.csv")
```
-## Performance [master]
+## Performance
If you have a large number of users or items, you can use an approximate nearest neighbors library like [Faiss](https://github.com/ankane/faiss) to improve the performance of certain methods.
Add this line to your application’s Gemfile: