README.md in disco-0.2.5 vs README.md in disco-0.2.6

- old
+ new

@@ -42,11 +42,11 @@ {user_id: 1, item_id: 1, value: 1}, {user_id: 2, item_id: 1, value: 1} ]) ``` -> Use `value` instead of rating for implicit feedback +> Use `value` instead of `rating` for implicit feedback Get user-based recommendations - “users like you also liked” ```ruby recommender.user_recs(user_id) @@ -245,11 +245,11 @@ recommender = Disco::Recommender.new(top_items: true) recommender.fit(data) recommender.top_items ``` -This uses [Wilson score](https://www.evanmiller.org/how-not-to-sort-by-average-rating.html) for explicit feedback (add [wilson_score](https://github.com/instacart/wilson_score) your application’s Gemfile) and item frequency for implicit feedback. +This uses [Wilson score](https://www.evanmiller.org/how-not-to-sort-by-average-rating.html) for explicit feedback (add [wilson_score](https://github.com/instacart/wilson_score) to your application’s Gemfile) and item frequency for implicit feedback. ## Data Data can be an array of hashes @@ -267,10 +267,10 @@ ```ruby Daru::DataFrame.from_csv("ratings.csv") ``` -## Performance [master] +## Performance If you have a large number of users or items, you can use an approximate nearest neighbors library like [Faiss](https://github.com/ankane/faiss) to improve the performance of certain methods. Add this line to your application’s Gemfile: