lib/ankusa/naive_bayes.rb in ankusa-0.0.8 vs lib/ankusa/naive_bayes.rb in ankusa-0.0.9

- old
+ new

@@ -1,6 +1,7 @@ module Ankusa + INFTY = 1.0 / 0.0 class NaiveBayesClassifier include Classifier def classify(text, classes=nil) @@ -10,11 +11,11 @@ # Classes is an array of classes to look at def classifications(text, classnames=nil) result = log_likelihoods text, classnames result.keys.each { |k| - result[k] = Math.exp result[k] + result[k] = (result[k] == INFTY) ? 0 : Math.exp(result[k]) } # normalize to get probs sum = result.values.inject { |x,y| x+y } result.keys.each { |k| result[k] = result[k] / sum } @@ -26,19 +27,22 @@ classnames ||= @classnames result = Hash.new 0 TextHash.new(text).each { |word, count| probs = get_word_probs(word, classnames) - classnames.each { |k| result[k] += (Math.log(probs[k]) * count) } + classnames.each { |k| + # log likelihood should be infinity if we've never seen the klass + result[k] += probs[k] > 0 ? (Math.log(probs[k]) * count) : INFTY + } } - # add the prior and exponentiate + # add the prior doc_counts = doc_count_totals.select { |k,v| classnames.include? k }.map { |k,v| v } doc_count_total = (doc_counts.inject { |x,y| x+y } + classnames.length).to_f classnames.each { |k| result[k] += Math.log((@storage.get_doc_count(k) + 1).to_f / doc_count_total) } - + result end end