lib/ankusa/naive_bayes.rb in ankusa-0.0.8 vs lib/ankusa/naive_bayes.rb in ankusa-0.0.9
- old
+ new
@@ -1,6 +1,7 @@
module Ankusa
+ INFTY = 1.0 / 0.0
class NaiveBayesClassifier
include Classifier
def classify(text, classes=nil)
@@ -10,11 +11,11 @@
# Classes is an array of classes to look at
def classifications(text, classnames=nil)
result = log_likelihoods text, classnames
result.keys.each { |k|
- result[k] = Math.exp result[k]
+ result[k] = (result[k] == INFTY) ? 0 : Math.exp(result[k])
}
# normalize to get probs
sum = result.values.inject { |x,y| x+y }
result.keys.each { |k| result[k] = result[k] / sum }
@@ -26,19 +27,22 @@
classnames ||= @classnames
result = Hash.new 0
TextHash.new(text).each { |word, count|
probs = get_word_probs(word, classnames)
- classnames.each { |k| result[k] += (Math.log(probs[k]) * count) }
+ classnames.each { |k|
+ # log likelihood should be infinity if we've never seen the klass
+ result[k] += probs[k] > 0 ? (Math.log(probs[k]) * count) : INFTY
+ }
}
- # add the prior and exponentiate
+ # add the prior
doc_counts = doc_count_totals.select { |k,v| classnames.include? k }.map { |k,v| v }
doc_count_total = (doc_counts.inject { |x,y| x+y } + classnames.length).to_f
classnames.each { |k|
result[k] += Math.log((@storage.get_doc_count(k) + 1).to_f / doc_count_total)
}
-
+
result
end
end