/* * Copyright (c) 2009, Wayne Meissner * Copyright (c) 2009, Luc Heinrich * Copyright (c) 2009, Mike Dalessio * Copyright (c) 2009, Aman Gupta. * All rights reserved. * * This file is part of ruby-ffi. * * This code is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License version 3 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * version 3 for more details. * * You should have received a copy of the GNU Lesser General Public License * version 3 along with this work. If not, see . */ #ifndef _MSC_VER #include #endif #include #include #ifndef _MSC_VER #include #include #else typedef int bool; #define true 1 #define false 0 #endif #include #include #if defined(HAVE_NATIVETHREAD) && defined(HAVE_RB_THREAD_BLOCKING_REGION) && !defined(_WIN32) # include # include #endif #include #include "extconf.h" #include "rbffi.h" #include "compat.h" #include "AbstractMemory.h" #include "Pointer.h" #include "Struct.h" #include "Function.h" #include "Type.h" #include "LastError.h" #include "Call.h" #include "MappedType.h" #include "Thread.h" #ifdef USE_RAW # ifndef __i386__ # error "RAW argument packing only supported on i386" # endif #define INT8_ADJ (4) #define INT16_ADJ (4) #define INT32_ADJ (4) #define INT64_ADJ (8) #define LONG_ADJ (sizeof(long)) #define FLOAT32_ADJ (4) #define FLOAT64_ADJ (8) #define ADDRESS_ADJ (sizeof(void *)) #endif /* USE_RAW */ #ifdef USE_RAW # define ADJ(p, a) ((p) = (FFIStorage*) (((char *) p) + a##_ADJ)) #else # define ADJ(p, a) (++(p)) #endif static void* callback_param(VALUE proc, VALUE cbinfo); static inline void* getPointer(VALUE value, int type); static inline char* getString(VALUE value, int type); static ID id_to_ptr, id_map_symbol, id_to_native; void rbffi_SetupCallParams(int argc, VALUE* argv, int paramCount, Type** paramTypes, FFIStorage* paramStorage, void** ffiValues, VALUE* callbackParameters, int callbackCount, VALUE enums) { VALUE callbackProc = Qnil; FFIStorage* param = ¶mStorage[0]; int i, argidx, cbidx, argCount; if (unlikely(paramCount != -1 && paramCount != argc)) { if (argc == (paramCount - 1) && callbackCount == 1 && rb_block_given_p()) { callbackProc = rb_block_proc(); } else { rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", argc, paramCount); } } argCount = paramCount != -1 ? paramCount : argc; for (i = 0, argidx = 0, cbidx = 0; i < argCount; ++i) { Type* paramType = paramTypes[i]; int type; if (unlikely(paramType->nativeType == NATIVE_MAPPED)) { VALUE values[] = { argv[argidx], Qnil }; argv[argidx] = rb_funcall2(((MappedType *) paramType)->rbConverter, id_to_native, 2, values); paramType = ((MappedType *) paramType)->type; } type = argidx < argc ? TYPE(argv[argidx]) : T_NONE; ffiValues[i] = param; switch (paramType->nativeType) { case NATIVE_INT8: param->s8 = NUM2INT(argv[argidx]); ++argidx; ADJ(param, INT8); break; case NATIVE_INT16: param->s16 = NUM2INT(argv[argidx]); ++argidx; ADJ(param, INT16); break; case NATIVE_INT32: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->s32 = NUM2INT(value); } else { param->s32 = NUM2INT(argv[argidx]); } ++argidx; ADJ(param, INT32); break; case NATIVE_BOOL: if (type != T_TRUE && type != T_FALSE) { rb_raise(rb_eTypeError, "wrong argument type (expected a boolean parameter)"); } param->s8 = argv[argidx++] == Qtrue; ADJ(param, INT8); break; case NATIVE_UINT8: param->u8 = NUM2UINT(argv[argidx]); ADJ(param, INT8); ++argidx; break; case NATIVE_UINT16: param->u16 = NUM2UINT(argv[argidx]); ADJ(param, INT16); ++argidx; break; case NATIVE_UINT32: param->u32 = NUM2UINT(argv[argidx]); ADJ(param, INT32); ++argidx; break; case NATIVE_INT64: param->i64 = NUM2LL(argv[argidx]); ADJ(param, INT64); ++argidx; break; case NATIVE_UINT64: param->u64 = NUM2ULL(argv[argidx]); ADJ(param, INT64); ++argidx; break; case NATIVE_LONG: *(ffi_sarg *) param = NUM2LONG(argv[argidx]); ADJ(param, LONG); ++argidx; break; case NATIVE_ULONG: *(ffi_arg *) param = NUM2ULONG(argv[argidx]); ADJ(param, LONG); ++argidx; break; case NATIVE_FLOAT32: param->f32 = (float) NUM2DBL(argv[argidx]); ADJ(param, FLOAT32); ++argidx; break; case NATIVE_FLOAT64: param->f64 = NUM2DBL(argv[argidx]); ADJ(param, FLOAT64); ++argidx; break; case NATIVE_STRING: param->ptr = getString(argv[argidx++], type); ADJ(param, ADDRESS); break; case NATIVE_POINTER: case NATIVE_BUFFER_IN: case NATIVE_BUFFER_OUT: case NATIVE_BUFFER_INOUT: param->ptr = getPointer(argv[argidx++], type); ADJ(param, ADDRESS); break; case NATIVE_FUNCTION: case NATIVE_CALLBACK: if (callbackProc != Qnil) { param->ptr = callback_param(callbackProc, callbackParameters[cbidx++]); } else { param->ptr = callback_param(argv[argidx], callbackParameters[cbidx++]); ++argidx; } ADJ(param, ADDRESS); break; case NATIVE_STRUCT: ffiValues[i] = getPointer(argv[argidx++], type); break; default: rb_raise(rb_eArgError, "Invalid parameter type: %d", paramType->nativeType); } } } typedef struct BlockingCall_ { void* function; FunctionType* info; void **ffiValues; void* retval; void* stkretval; void* params; } BlockingCall; static VALUE call_blocking_function(void* data) { BlockingCall* b = (BlockingCall *) data; ffi_call(&b->info->ffi_cif, FFI_FN(b->function), b->retval, b->ffiValues); return Qnil; } static VALUE do_blocking_call(void *data) { rbffi_thread_blocking_region(call_blocking_function, data, (void *) -1, NULL); return Qnil; } static VALUE cleanup_blocking_call(void *data) { BlockingCall* bc = (BlockingCall *) data; memcpy(bc->stkretval, bc->retval, MAX(bc->info->ffi_cif.rtype->size, FFI_SIZEOF_ARG)); xfree(bc->params); xfree(bc->ffiValues); xfree(bc->retval); xfree(bc); return Qnil; } VALUE rbffi_CallFunction(int argc, VALUE* argv, void* function, FunctionType* fnInfo) { void* retval; void** ffiValues; FFIStorage* params; VALUE rbReturnValue; #if !defined(HAVE_RUBY_THREAD_HAS_GVL_P) rbffi_thread_t oldThread; #endif retval = alloca(MAX(fnInfo->ffi_cif.rtype->size, FFI_SIZEOF_ARG)); if (unlikely(fnInfo->blocking)) { BlockingCall* bc; // due to the way thread switching works on older ruby variants, we // cannot allocate anything passed to the blocking function on the stack ffiValues = ALLOC_N(void *, fnInfo->parameterCount); params = ALLOC_N(FFIStorage, fnInfo->parameterCount); bc = ALLOC_N(BlockingCall, 1); bc->info = fnInfo; bc->function = function; bc->ffiValues = ffiValues; bc->params = params; bc->retval = xmalloc(MAX(fnInfo->ffi_cif.rtype->size, FFI_SIZEOF_ARG)); bc->stkretval = retval; rbffi_SetupCallParams(argc, argv, fnInfo->parameterCount, fnInfo->parameterTypes, params, ffiValues, fnInfo->callbackParameters, fnInfo->callbackCount, fnInfo->rbEnums); rb_ensure(do_blocking_call, (VALUE) bc, cleanup_blocking_call, (VALUE) bc); } else { ffiValues = ALLOCA_N(void *, fnInfo->parameterCount); params = ALLOCA_N(FFIStorage, fnInfo->parameterCount); rbffi_SetupCallParams(argc, argv, fnInfo->parameterCount, fnInfo->parameterTypes, params, ffiValues, fnInfo->callbackParameters, fnInfo->callbackCount, fnInfo->rbEnums); #if !defined(HAVE_RUBY_THREAD_HAS_GVL_P) oldThread = rbffi_active_thread; rbffi_active_thread = rbffi_thread_self(); #endif ffi_call(&fnInfo->ffi_cif, FFI_FN(function), retval, ffiValues); #if !defined(HAVE_RUBY_THREAD_HAS_GVL_P) rbffi_active_thread = oldThread; #endif } if (unlikely(!fnInfo->ignoreErrno)) { rbffi_save_errno(); } RB_GC_GUARD(rbReturnValue) = rbffi_NativeValue_ToRuby(fnInfo->returnType, fnInfo->rbReturnType, retval); RB_GC_GUARD(fnInfo->rbReturnType); return rbReturnValue; } static inline void* getPointer(VALUE value, int type) { if (likely(type == T_DATA && rb_obj_is_kind_of(value, rbffi_AbstractMemoryClass))) { return ((AbstractMemory *) DATA_PTR(value))->address; } else if (type == T_DATA && rb_obj_is_kind_of(value, rbffi_StructClass)) { AbstractMemory* memory = ((Struct *) DATA_PTR(value))->pointer; return memory != NULL ? memory->address : NULL; } else if (type == T_STRING) { if (rb_safe_level() >= 1 && OBJ_TAINTED(value)) { rb_raise(rb_eSecurityError, "Unsafe string parameter"); } return StringValuePtr(value); } else if (type == T_NIL) { return NULL; } else if (rb_respond_to(value, id_to_ptr)) { VALUE ptr = rb_funcall2(value, id_to_ptr, 0, NULL); if (rb_obj_is_kind_of(ptr, rbffi_AbstractMemoryClass) && TYPE(ptr) == T_DATA) { return ((AbstractMemory *) DATA_PTR(ptr))->address; } rb_raise(rb_eArgError, "to_ptr returned an invalid pointer"); } rb_raise(rb_eArgError, ":pointer argument is not a valid pointer"); return NULL; } static inline char* getString(VALUE value, int type) { if (type == T_STRING) { if (rb_safe_level() >= 1 && OBJ_TAINTED(value)) { rb_raise(rb_eSecurityError, "Unsafe string parameter"); } return StringValueCStr(value); } else if (type == T_NIL) { return NULL; } rb_raise(rb_eArgError, "Invalid String value"); } Invoker rbffi_GetInvoker(FunctionType *fnInfo) { return rbffi_CallFunction; } static void* callback_param(VALUE proc, VALUE cbInfo) { VALUE callback ; if (unlikely(proc == Qnil)) { return NULL ; } // Handle Function pointers here if (rb_obj_is_kind_of(proc, rbffi_FunctionClass)) { AbstractMemory* ptr; Data_Get_Struct(proc, AbstractMemory, ptr); return ptr->address; } //callback = rbffi_NativeCallback_ForProc(proc, cbInfo); callback = rbffi_Function_ForProc(cbInfo, proc); RB_GC_GUARD(callback); return ((AbstractMemory *) DATA_PTR(callback))->address; } void rbffi_Call_Init(VALUE moduleFFI) { id_to_ptr = rb_intern("to_ptr"); id_to_native = rb_intern("to_native"); id_map_symbol = rb_intern("__map_symbol"); }