/* -*-C-*- ******************************************************************************** * * File: helpers.h * Description: General utility functions * Author: Daria Antonova * Created: Wed Apr 8 14:37:00 2009 * Language: C++ * Package: N/A * Status: Reusable Software Component * * (c) Copyright 2009, Google Inc. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * ********************************************************************************/ #ifndef TESSERACT_CCUTIL_HELPERS_H_ #define TESSERACT_CCUTIL_HELPERS_H_ #include #include // Remove newline (if any) at the end of the string. inline void chomp_string(char *str) { int last_index = strlen(str) - 1; if (last_index >= 0 && str[last_index] == '\n') { str[last_index] = '\0'; } } // Advance the current pointer of the file if it points to a newline character. inline void SkipNewline(FILE *file) { if (fgetc(file) != '\n') fseek(file, -1, SEEK_CUR); } // qsort function to sort 2 floats. inline int sort_floats(const void *arg1, const void *arg2) { float diff = *((float *) arg1) - *((float *) arg2); if (diff > 0) { return 1; } else if (diff < 0) { return -1; } else { return 0; } } // return the smallest multiple of block_size greater than or equal to n. inline int RoundUp(int n, int block_size) { return block_size * ((n + block_size - 1) / block_size); } // Clip a numeric value to the interval [lower_bound, upper_bound]. template inline T ClipToRange(const T& x, const T& lower_bound, const T& upper_bound) { if (x < lower_bound) return lower_bound; if (x > upper_bound) return upper_bound; return x; } // Extend the range [lower_bound, upper_bound] to include x. template inline void UpdateRange(const T1& x, T2* lower_bound, T2* upper_bound) { if (x < *lower_bound) *lower_bound = x; if (x > *upper_bound) *upper_bound = x; } // Decrease lower_bound to be <= x_lo AND increase upper_bound to be >= x_hi. template inline void UpdateRange(const T1& x_lo, const T1& x_hi, T2* lower_bound, T2* upper_bound) { if (x_lo < *lower_bound) *lower_bound = x_lo; if (x_hi > *upper_bound) *upper_bound = x_hi; } // Proper modulo arithmetic operator. Returns a mod b that works for -ve a. // For any integer a and positive b, returns r : 0<=r= 0 ? (a + b / 2) / b : (a - b / 2) / b; } // Return a double cast to int with rounding. inline int IntCastRounded(double x) { return x >= 0.0 ? static_cast(x + 0.5) : -static_cast(-x + 0.5); } // Reverse the order of bytes in a n byte quantity for big/little-endian switch. inline void ReverseN(void* ptr, int num_bytes) { char *cptr = reinterpret_cast(ptr); int halfsize = num_bytes / 2; for (int i = 0; i < halfsize; ++i) { char tmp = cptr[i]; cptr[i] = cptr[num_bytes - 1 - i]; cptr[num_bytes - 1 - i] = tmp; } } // Reverse the order of bytes in a 16 bit quantity for big/little-endian switch. inline void Reverse16(void *ptr) { ReverseN(ptr, 2); } // Reverse the order of bytes in a 32 bit quantity for big/little-endian switch. inline void Reverse32(void *ptr) { ReverseN(ptr, 4); } // Reverse the order of bytes in a 64 bit quantity for big/little-endian switch. inline void Reverse64(void* ptr) { ReverseN(ptr, 8); } #endif // TESSERACT_CCUTIL_HELPERS_H_