@(__TEXT@@__text__TEXT__stubs__TEXT2!2!__stub_helper__TEXT!!__const__TEXT"8"__cstring__TEXT$o$__unwind_info__TEXTX>X>x__DATA@@@@__nl_symbol_ptr__DATA@@__got__DATA@@__la_symbol_ptr__DATA@@__const__DATA@x@__data__DATA@A@A__bss__DATAA__common__DATAAH__LINKEDIT@( 0@rpath/libosqp.dylib"0hxpH P P@/ =8?``$$  * 8/usr/lib/libSystem.B.dylib&0)HUHAWAVSHXHHHXL0LxL&f)EH{PL &f)EH{@L%f)EH{`L%f)EHHx L%f)EH{pL%f(M_f)MH{hL%f(MfMf(Uff_fX Yf(f(MfMf^Hf(f^WQY_Q]QHX[A^A_]f.@UHSPHHHP(f(Yf.w^f.w 1H[]HnHHAxH[]UHLAf.f(f(fTfUfVf(fTfUfVf(vf.wAHHy&f(f.vf(AHHyLOLW LY(HQ01 ##3%-,HA0A4f(^AI.A66%61fAHH;pA,f.4v+f.v%HO(HHtHHOH+Y,f(^HO 4bfH]HHOH+,f(^+HO ,%IuHGHwHH H[]1[]UHHHHH]f.@UHSPHHH0H0WU%HH{@HpWB%HH{8HpWH[])%fUHAWAVAUATSLMM(HLRHwHHOPI@ Is1JH NNf.vf.H{xvHDf.vH{x_HHxEt HtH{xHf.JHH{@HpfW*HH{8HpfWH[]HH{0HH1HHH{8HHqHPHHxtHH[]kH[]fUHAWAVAUATSH(HHtVLcLMt$8IL$@ID$HHEID$PM|$XI`IhHuQHHxHLHvLs0HC8HEHK@LIE8M}@MeHIuIXHtHEL}IHHxLg-EHHHx LXEHHxt HY@HELL}HHxPfWHUAHLA$HjqAEHǃH([A\A]A^A_]f.UHSPHHGXHGhHG(HH5jHCxH[]UHHw(HF Hw yr]HCHtPH])tMMHHHDHKH5VHDHO(HhHHxt(HuHHxHHSxHHHHHꌠ9Y>)F1HG(HH5gfUHAVSHt[HHWHtpL[MH{ LMLKMxL9RL;R/LBI01H=H51H=H=H51H=dH=H51H=FH=H513SH=1l#H=H51UH=1G C[A^]HL9HItH9}HB f.H9 SHH9|H= H513H=1H=H51H=aH=H51H=}@M9Ku4M9Su.M~OHK(HS01E1BfB.w;IM9uH=jH5q1?sH=71[A^]H==H5D1HC(HK0BB H=DUH1H]ÐUHHt`HxwHH fWf.G0f.G(H=H51{H=H=H51ZH=vH=gH51<H=XH=IH51H=:H=+H5n1H=H= H5P1H=1 ]HxcfWf.szf.GfWf.GpH8G@fWf.H=H51bH={H=lH51AH=yZH=KH51 H=9H=*H5m1H=sH= H5L1H=iH=H5+1H=_OHf.v!H=H51H=ifWf.u+z)f.u#z!H=H51\H=Puf.WPfWf.GXO`f.f. hHHH HfWf..H=H51H=H=H51H=H=H51iH=H=sH51HH=aH=RH51'H=@H=1H5t1H=H=H5S1H=H=H521H=H=H51H=1]ÐUHSPCH  HH=1dH[]ÐUHHHsd1IIt YX  HIq YX  LYXLLHH9u:L HH9AHI9AH9AI9A1EkE bHHL@MIIMMIIE1f.fBfB\fB$fBlfYfXfYfXfB$fBlfBT fB\0fBd fBl0fYfXfYfXfBd fBl0IIuAt7fBfB\fB$fBlfYfXfYfXfB$fBlH9d]E1AufUHH~HufW1W]HHfW1f(fWdYf(fWf(fTfUfV_Ydf(fWf(fTfUfV_HH9ut7 Y f(fWfWf(fTfUfV_f(]ÐUHH~Hu fW1W]HHfW1f(fWf.df(fWf(fTfUfV_f(fWf(fTfUfV_HH9u@t2 f(7fWfWf(fTfUfV_f(]UHH~HufW1W]HHfW1f(fWd\f(fWf(fTfUfV_\df(fWf(fTfUfV_HH9ut7 \ f(XfWfWf(fTfUfV_f(]ÐUHH~HNHsfW1XfWxHHfW1f.XXDXDXDXD XD(XD0XD8HH9uHt!H 1f.XHH9uH*^]UHH Hs1HHfHnfpDHHIIIEAHs1II1fDD D0D@DPD`DpπϐϠϰH I{Mt,L II1AD A H I9uH9tDH4HH9u]ÐUHH!Hs1HHHHHHHAAHs1HH1f.Df fLfL fL0fL@fLPfL`fLpfπfϐfϠfϰffffH H{Mt*H HI1fLf H I9uH9tHH9u]UHHHs1HHHHIIIHLHH1ff\fd fl0fXfXff\fXfXfd fl0HHuAtff\fXfXff\H9t&f.D X HH9u]1Auf.UHHHs1HHHHIIIHLHH1ff\fd fl0fYfYff\fYfYfd fl0HHuAtff\fYfYff\H9t&f.D Y HH9u]1Auf.UHAWAVATSIIL4LHtHM~HLL1H[A\A^A_]@UHHkHrHH9vxHH9voE1MIIHHtfDJJIHuI@JJJDJDJDJDJDJDIL9uIIIKIIIEAH s1mII1f.fLLD L0D L0D@LPD@LPD`LpD`LpHIuMtBL ILII1f.AD A AD A H I9uI9]fDUHHkHrHH9|HH9vs1IIIHHtHHuIfDDDDDDHH9uHHHHIIIEAH s1eII1@LLD L0D L0D@LPD@LPD`LpD`LpHIuMtBL ILII1f.AD A AD A H I9uH9]fDUHHHtHH9vpHH9vg1HHt^HHf(^  f(^LLHH9uHHHHIIIHtqMII1f(fDf f(f^ffLf(f^fTHIuAtff( Mf^f H9]1Auf.DUHH~HJЃHs fW1WW]HfW1ɐ TY YTX\Y\XDYDXXHH9uHt+HH 1f. Y XHH9u]UHHH1IIIIItDYHIuIvf.YDYDDDYDDDYDDHH9uL HH9AHI9AH9AI9A1E3E *HHL@MIIMMIIE1DfBfBLfBfYfBDfYfBfBDfBD fBL0fBT fYfBD0fYfBT fBD0IIuAt/fBfBLfBfYfBDfYfBfBDH9P]E1Auf.UHH~NHu1-HH1@ffQfHH9uH9t@QHH9u]UHHHs1HHHHIIIHLHH1ff\fd fl0f_f_ff\f_f_fd fl0HHuAtff\f_f_ff\H9t&f.D _ HH9u]1Auf.UHHHs1HHHHIIIHLHH1ff\fd fl0f]f]ff\f]f]fd fl0HHuAtff\f]f]ff\H9t&f.D ] HH9u]1Auf.UHH|Hs\1IIt_HIM@_D_DDHH9uL HH9AHI9AH9AI9A1EsE jHHL@MIIMMIIE1ffBfBLfBf_fBTf_fBfBLfBD fBL0fBT f_fBT0f_fBD fBL0IIuAt/fBfBLfBf_fBTf_fBfBLH9]E1Auf.UHH|Hs\1IIt]HIM@]D]DDHH9uL HH9AHI9AH9AI9A1EsE jHHL@MIIMMIIE1ffBfBLfBf]fBTf]fBfBLfBD fBL0fBT f]fBT0f]fBD fBL0IIuAt/fBfBLfBf]fBTf]fBfBLH9]E1Auf.UHHGHOHHHO(Hs1HHHrIIIHtgLHH1f.ff\fd fl0fYfYff\fYfYfd fl0HHuAu :1At2ff\fYfYff\ Y HH9u]f.DUHAVSLGMLOME1 M9~LO\II9~HG HO(D)LrtHYLM9tDHYH\YDDHL9|y[A^]@UHAWAVAUATSLGM]LOM)E1LEfDM9>LLIMlMI)~LHG(IH HHH9v J I9MIINIIIHAH H0MII1fLfTf\f$fYfYfLfTfYfYf\f$HIuAt&HAf fTfYfYf fTM9LELf.fAYHL9|1Au[A\A]A^A_]f.@UHAWAVAUATSPIHIIHuIwH~ HHnMOMGK<IMM(E1f.@M9aLLIMlI9~IO Iw(EA)LXAtAYHXLM9tf.AYHXDAYHTXHL9|^MM(E1f.M9LLIMlI9~IG Iw(EA)LZAt AYH \ LM9tfDAYH  \ DAYHL \ HL9|VH[A\A]A^A_]UHAWAVAUATSPMIHIIHuIwH~ HH{MOMGK<VIMM:M(E1 fM9'LLIMlI9~IO D)LP@t)LfWI9tIw(CYXLM9uXHL9}H4fWfWH9tIW( AY X  HtH9tIW(DAYMMeM(E1f.M9GLLIMlI9~IO D)LR@t-LfWI9tIw(CY \ LM9u)f.f \ HL9uH4fWfWH9tIG( AY \HtH9tIG(DAYMrM(E1f.M9WLLIMlI9~Iw IO(EA)L_At HHGp(Gx((HLJ]f.DUHAWAVAUATSH8IIHHHtH5/L HtH5HIHIHHJB8IHAEI}cZIHAIuI} oIHA HzHyoI}+ZIHAHVIuI}(.IHA(IuI}0IHA0IUHUHtHHy( H]L$LHEIFLIF HtHH}H]HJIF(Ht HMeL'HEIF0H]HHEIF@I<HEIFHLIIFPHHEIFXHIF8H}H}MH}tH}HH}LMeLXHEIF`I]H?HEIFhH*HEIFpLHEIFxHHEIHHEIHHILeLIH}H} H}H}HH}tH}HH}L>IHI0\IHHM}IL9HEHCL)HEHC IEHEL$L HEHCLeLHC(H}!H}H}tH}HLHILIIH}IHMH}t HLr.!IdžWAIdžL״IxheHtH5YLHIINHpHPI@D@hE1eHtH5hIFHIIEHEL<LHEID$(LHEID$0L}HEID$LlHEID$ I]HHSIID$8LCHEID$@L2ID$HM_H}t@H}MH}BH}7H},H}!HIHIĿHxHI$LdID$HHu H}7IHHH.IW@h@XI<I@PIdžWAH@xIHtL5Idž1H8[A\A]A^A_]H5H8[A\A]A^A_]6fDHCUHAWAVAUATSHXIHuIH@`IDžIIHHE;IHt4bIHHx8IE0HEIEPHEIE@HEIEXHEAE11HEDIIL;{8 LHH(\(HIH}HuH}HuLUL=LպL蝼bFIGHE1IHIIDPE :If. u{UXf. HHLutH]HH H t;HHH71HEHAu0f.11HAHtwDHEIIiHL9Mلu Eu1LHuHU1~Hۻt L5@Eu]H5阱H@@1]HtBUHfWf.vEH= H5Ʃ1H=1ҝ Ν]H5(H@H1]HtBUHfWf.vEH=H5j1pH=u1b ^]H5=鸰H@P1]HtBUHfWf.vEH=+H541H=?1 ]H5HH@X1]Ht(UHfWf.s+f.=s!H@`1]H5H=H5Ө1eH=ר1W S]f.@HtUHHs#HH1]H5~H=H51H=1 ߛ]f.HtUHHs#HH1]H5qH=H5Y1聛H=j1s o]f.HtUHHx#HH1]H5L韮H==H541H=D1 ]f.HtUHfWf.s!H@p1]H5,H=ʞH51蟚H=*1葚 荚]Ht(UHHs/HHpxHH@h1]H5鲭H=PH51%H=1 ]f.@HtUHHx#HH1]H5v?H=ݝH5^1貙H=1褙 蠙]f.HtUHHs#HH1]H5$άH=lH5 1AH=13 /]f.Ht!UHfWf.v$H=<]H5YH1]ÐUHHL@MHH(HP0Is1JMIL~IH9}M;DuITITLHI|E1E1H}tLmI}HEH0H<IEL]ISHMKM)H}~1LuLMf.DIH9HHILI9}HELNMVMMMf MM^(HMN4JHp(HHP 1fI LMAMI<AI HMHLJ(HHH9|L]ISILuH]MLMHE@LuLe I{oINLIv I~(MNN J41f(HEHUI<HXHIHXHI fWf ILL LH11fHH4HHHtHDHHtHH9uAtHHHHHJMM1f.LMLM9,Mt{ILFI;D}MfDHI;D}IH9IL9LHLINHLJL H]H MtHMAMtITfDILFI;DaMuefDHI;DEI H9HMHHZHH]H HMAMtITDHI;DI H9HMHHZHH]H MtITH] mHH([A\A]A^A_]fUHAVSHHHsHCHE1IHtGHSH{IvH,H{ Iv HCHKHH{(Iv(HCHKHzL[A^]fUHAVSIHHWHHvHΉH{ Iv HCHKH赉H{(Iv(HCHKHHI[A^]ÐUHAWAVAUATSPLgL;gIHGN4MALLLHIMMOI11E1f.HM9LIITH9}IO f.HH9}HH9IU HIUHLHgHII6HIF Hr!H I9H LH91HHHHHt)f(g fWfALHHuH4f(g@ fWfALLfWfALLfWfALLfWfALHH9uHH@0HCH84HHHQHHHHtcHHH1f(gf fTfWfWfALfATfL fT0fWfWfAL fAT0HHu1t)ffLf(ffWfWfADfALH9HELHMAMIV(IY(I@EAHs1]MIH<L1fHDHDDHDDHDHI9uMt;H1HLH 1f.DHHI9uMQMIV0Iy0IBEAHs1fII0HL1f.H DHLDHLDHLHI9uMt;IIJ LH1f.HHI9uLL辀H HH}HWL}MI'LmHEHEIIOL(HLhJ<EcHIIL}M JK IUHHUHH9I9 ȈELHHEDHEHHUHHHU1L}&fDHMHL}IH;LHMIAH}LLuIHxHLH|IHxAHLHMIIOH9HH4LHE1*IIOH9HIHHH}LWD u׸H}MHM1fAfALffXfDfXfL f\0ffDfAD fXfAL0fXfD fL0HHuEt+fAfALffXfDfXffDHMHI9|HHLHUHt$f.AXHHuHUHAWAVAUATSHXMMIIL] HEL,I\HHEHHEHHEHH~H]HH}u11QE1LEIIHEHHL4I11fDH|I|IfDHUHHHUMHPI4H}HHHHEMHDMHuHFH9HEJIHpHHhH~L;}MHEHMI HI) uIHPMHH+EIL]HtML}IML}H@tY1H HHH9t2HJHxH4HrHpH4H HxH4H2HpH4HL}Au 21At*I Hx!HIHH)HL}ME1LLL)H}qHr)JJ H9K7L)HJ H9LDD)MIMHtf.HJHDJDHDJDHDHJDIM9uLuLE#1A*IIIBIIIIH:HJ J>D::H H9uL9HMqI1AtHM@H HtHU(HM@11HufDHU(HHtHHHI9uM 1H}HHHI9twHUH<uHHtH4H4HLH1HH9@HU@HHtHu(HHU@HTHtHpH}(H4M~mINDHs1?I1ɐHI HTHqI4HTHqI4HTHqI4HI9uHtHI HHuH[A\A]A^A_]ÐUHAWAVAUATSHMHIIIMLMtH5=L:LMIMJJ4HQ:KDHEE11HEE1HI M9LKLKTIH9|I4H9tIH9}^HHHMDI4L9}fM I9}'JHHI9uLf.DuHI@]HHEO1LMLEL9t6HIHI;T}fI4HHHI;T|H}HL)u';M11BK|E1E1HL)tI*XH*^M~Is 11LHHNHHHЃH s fW1fxHHfW1ff.@ofoLfoT od0ol@ffo\PffoL`foTpfHHuHt.H HH1@o\fofH H9uffpffH~L9tf.HHI9uMt^IWI*AIWH*AIAAWI*fHnfb :f\ :AA f(fXAA(H[A\A]A^A_]ÐUHAWAVSPHfWOfI~AL5WI^Ht+H=KLrKEEfWf.INvHtH=GK1Ht H=SKINHtL<1I9v5I 7L9v&L<1I9H}L}H}Iτ:HHI9#L H HfInfbv0f\~0f(fXEXY0C8H}HuHUHMMMSuPAWIH H} L L L L HEWH*H}HuHUHMMMjuPAWH/H H}b LZ LR LJ HB HEDUHAWAVSHI9MQE1L4ItPO.A52T52TE-C6?@@?KH9Aꌠ9Y>)F@????ư> @?MbP?MbP?-C6?-C6?)@9@@@@----------------0C0E0C0EeA|=$@@$@? @"@ @& .>solvedsolved inaccurateprimal infeasibleprimal infeasible inaccurateunsolveddual infeasibledual infeasible inaccuratemaximum iterations reachedrun time limit reachedinterruptedproblem non convexERROR in %s: validate_dataMissing dataMissing matrix PMissing matrix AMissing vector qn must be positive and m nonnegative; n = %i, m = %iP does not have dimension n x n with n = %iP is not squareP is not upper triangularA does not have dimension %i x %iLower bound at index %d is greater than upper bound: %.4e > %.4evalidate_settingsMissing settings!scaling must be nonnegativeadaptive_rho must be either 0 or 1adaptive_rho_interval must be nonnegativeadaptive_rho_fraction must be positiveadaptive_rho_tolerance must be >= 1polish_refine_iter must be nonnegativerho must be positivesigma must be positivedelta must be positivemax_iter must be positiveeps_abs must be nonnegativeeps_rel must be nonnegativeat least one of eps_abs and eps_rel must be positiveeps_prim_inf must be positiveeps_dual_inf must be positivealpha must be strictly between 0 and 2linsys_solver not recognizedverbose must be either 0 or 1scaled_termination must be either 0 or 1check_termination must be nonnegativewarm_start must be either 0 or 1time_limit must be nonnegativeProblem data validation.Solver settings validation.Linear system solver not available. Tried to obtain it from shared library.Linear system solver initialization.KKT matrix factorization. The problem seems to be non-convex.Memory allocation.Solver workspace not initialized.ERROR in %s: %s quad_formquad_form matrix is not upper triangularosqp_setuposqp_solveFailed rho updateosqp_update_lin_costosqp_update_boundslower bound must be lower than or equal to upper boundosqp_update_lower_boundupper bound must be greater than or equal to lower boundosqp_update_upper_boundosqp_warm_startosqp_warm_start_xosqp_warm_start_yosqp_update_Pnew number of elements (%i) greater than elements in P (%i)new KKT matrix is not quasidefiniteosqp_update_Anew number of elements (%i) greater than elements in A (%i)osqp_update_P_Aosqp_update_rhoosqp_update_max_iterosqp_update_eps_absosqp_update_eps_relosqp_update_eps_prim_infeps_prim_inf must be nonnegativeosqp_update_eps_dual_infeps_dual_inf must be nonnegativeosqp_update_alphaalpha must be between 0 and 2osqp_update_warm_startwarm_start should be either 0 or 1osqp_update_scaled_terminationscaled_termination should be either 0 or 1osqp_update_check_terminationcheck_termination should be nonnegativeosqp_update_deltaosqp_update_polishpolish should be either 0 or 1osqp_update_polish_refine_iterosqp_update_verboseverbose should be either 0 or 1osqp_update_time_limitSolver interrupted0.6.2iter objective pri res dua res rho time OSQP v%s - Operator Splitting QP Solver (c) Bartolomeo Stellato, Goran Banjac University of Oxford - Stanford University 2021 problem: variables n = %i, constraints m = %i nnz(P) + nnz(A) = %i settings: linear system solver = %s (%d threads), eps_abs = %.1e, eps_rel = %.1e, eps_prim_inf = %.1e, eps_dual_inf = %.1e, rho = %.2e (adaptive)sigma = %.2e, alpha = %.2f, max_iter = %i check_termination: on (interval %i), time_limit: %.2e sec, scaling: on, scaling: off, warm start: on, warm start: off, polish: on, polish: off, time_limit: %.2e sec %4i %12.4e %9.2e %9.2es%4splsh --------status: %s number of iterations: %i optimal objective: %.4f run time: %.2es optimal rho estimate: %.2e check_termination: off,scaled_termination: offtime_limit: offscaled_termination: onsolution polish: unsuccessfulsolution polish: successfulcsc_to_triuMatrix M not squareUpper triangular matrix extraction failed (out of memory)iterative_refinementqdldlmkl pardisolh_load_libno library name givenError while loading dynamic library %s: %slh_load_symCannot find symbol %s in dynamic library, error = %s AMD version %d.%d.%d, %s: approximate minimum degree ordering dense row parameter: %g May 4, 2016 no rows treated as dense (rows with more than max (%g * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes aggressive absorption: no size of AMD integer: %d AMD version %d.%d.%d, %s, results: status: OK out of memory invalid matrix OK, but jumbled unknown n, dimension of A: %.20g nz, number of nonzeros in A: %.20g symmetry of A: %.4f number of nonzeros on diagonal: %.20g nonzeros in pattern of A+A' (excl. diagonal): %.20g # dense rows/columns of A+A': %.20g memory used, in bytes: %.20g # of memory compactions: %.20g The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): %.20g nonzeros in L (including diagonal): %.20g # divide operations for LDL' or LU: %.20g # multiply-subtract operations for LDL': %.20g # multiply-subtract operations for LU: %.20g max nz. in any column of L (incl. diagonal): %.20g chol flop count for real A, sqrt counted as 1 flop: %.20g LDL' flop count for real A: %.20g LDL' flop count for complex A: %.20g LU flop count for real A (with no pivoting): %.20g LU flop count for complex A (with no pivoting): %.20g init_linsys_solver_qdldlError forming and permuting KKT matrixLDL_factorError in KKT matrix LDL factorization when computing the elimination tree.Matrix is not perfectly upper triangular.Integer overflow in L nonzero count.Error in KKT matrix LDL factorization when computing the nonzero elements. There are zeros in the diagonal matrixError in KKT matrix LDL factorization when computing the nonzero elements. The problem seems to be non-convex44X!a LL3!L T\@` @`P p##-P-:`;B`D`E@FGGpVZ`\_ aoqz  0` P0@p `P p P P  !!!!!!""""","6"@"J"T"^"h"r"|""""0%$$%%%9%%d%$$$$%I%)***v****44@!`,ARDR@___stack_chk_guardQq@_free@_malloc@_realloc@dyld_stub_binderq@___bzeroq @___stack_chk_failq(@___tolowerq0@___toupperq8@_callocq@@_dlcloseqH@_dlerrorqP@_dlopenqX@_dlsymq`@_fmodqh@_freeqp@_mach_absolute_timeqx@_mach_timebase_infoq@_mallocq@_memcpyq@_memsetq@_memset_pattern16q@_printfq@_putcharq@_putsq@_reallocq@_sigaction_casuihas_solutionreset_infov_osqp_errorpmat_ quad_form o lftriplet_to_csSuiteSparse_QDLDL_OSQP_ERROR_MESSAGELINSYS_SOLVER_NAMEoheck_termination_strcpysc_mpute_ld_startpy_rho_estimateobj_valpri_dua_inf_norm_cols_KKT#dapt_rhomd_l%et_rho_vecwap_vectorstore_solutioncale_dataolve_linsys_qdldl&pdate_nrho_vecxzyinfostatusKKT_linsys_solver_)+,z_tilde,29=>restol?@restolADs_nprimal_infeasibledual_infeasibleFKOPSVVWalidate_ec_datalinsys_solversettings\aajadd_scalsnorm_infmcopyew_prodedarjcaled_norm_infet_scalarno_diffqeanult_scalarst_vec_set_scalarit_linsys_solvertvy{}rolishermuteea_ojectint_int_vec_copyvec_copycopy_csc_mat}reciprprodsqrtmЇax in _vec _vec mult_scalar p vec tpose_vec inf_norm_ Жremult_diag ostmult_diag Иcols rows _sym_triu sqp_ acts cleanup update_ warm_start versiontend_interrupt_listeneris_interruptedet olve tart_interrupt_listener_default_settings up l bounds upper_bound PArhomax_itereps_alphawarm_startscaled_terminationcheck_terminationdeltapolishverbosetime_limitin_cost ower_bound _ xy_Aabsrelprim_infdual_infЋ_refine_iterБ_normalconeimit_scalingoad_linsys_solverh_scale_load_linsys_solverdatasolutionЫheaderspolishfooteretup_headerummarysettingscsc_maticocorm_KKTree_linsys_solver_qdldlйPAparam2matrixsdonecumsumpinvto_triupympermallocfreecr_qdldlЈload_unload_liblibsym12_aatcontroldefaultsinfoorderpvalidostreprocess_treeorderhypotdivcomplexmallocreallocfreetversionconfigioccmeЄmatrices_qdldlrho_vec_qdldl_xt_xetreefactorLsolvesolvetsolveȃ#p P`0@@0P` pppppppppppP``0@ p pPp`@ 080   00 p  p  A A @A* 8GTb`o A@`P  `25?JRpZet``Е+ ")0D@Uf0 wP P` М-';@Oi@:}%#` 0TW"V5PKFMYPLkPzN AhX`Y`P@%`/v>rMz^ql@ pk+nDZ n Ѕ@o`+p<pqOrb`my>p@@@Ј  W+ +7C P d (tP0@@PP ) 9 ] m `+| @ P   @. 0 0 < @5 > F H+ G7 IG CT Ac Ep 9z = 7 8  C 7 p;      ' 0 9 A H N T h |          @ _LINSYS_SOLVER_NAME_OSQP_ERROR_MESSAGE_QDLDL_Lsolve_QDLDL_Ltsolve_QDLDL_etree_QDLDL_factor_QDLDL_solve_SuiteSparse_config_SuiteSparse_divcomplex_SuiteSparse_free_SuiteSparse_hypot_SuiteSparse_malloc_SuiteSparse_realloc_SuiteSparse_tic_SuiteSparse_time_SuiteSparse_toc_SuiteSparse_version__osqp_error_adapt_rho_amd_l1_amd_l2_amd_l_aat_amd_l_control_amd_l_defaults_amd_l_info_amd_l_order_amd_l_post_tree_amd_l_postorder_amd_l_preprocess_amd_l_valid_c_strcpy_check_termination_cold_start_compute_dua_res_compute_dua_tol_compute_inf_norm_cols_KKT_compute_obj_val_compute_pri_res_compute_pri_tol_compute_rho_estimate_copy_csc_mat_copy_settings_csc_cumsum_csc_done_csc_matrix_csc_pinv_csc_spalloc_csc_spfree_csc_symperm_csc_to_triu_form_KKT_free_linsys_solver_qdldl_has_solution_init_linsys_solver_init_linsys_solver_qdldl_int_vec_set_scalar_is_dual_infeasible_is_primal_infeasible_lh_load_lib_lh_load_sym_lh_unload_lib_limit_scaling_load_linsys_solver_mat_inf_norm_cols_mat_inf_norm_cols_sym_triu_mat_inf_norm_rows_mat_mult_scalar_mat_postmult_diag_mat_premult_diag_mat_tpose_vec_mat_vec_oact_osqp_cleanup_osqp_end_interrupt_listener_osqp_is_interrupted_osqp_set_default_settings_osqp_setup_osqp_solve_osqp_start_interrupt_listener_osqp_tic_osqp_toc_osqp_update_A_osqp_update_P_osqp_update_P_A_osqp_update_alpha_osqp_update_bounds_osqp_update_check_termination_osqp_update_delta_osqp_update_eps_abs_osqp_update_eps_dual_inf_osqp_update_eps_prim_inf_osqp_update_eps_rel_osqp_update_lin_cost_osqp_update_lower_bound_osqp_update_max_iter_osqp_update_polish_osqp_update_polish_refine_iter_osqp_update_rho_osqp_update_scaled_termination_osqp_update_time_limit_osqp_update_upper_bound_osqp_update_verbose_osqp_update_warm_start_osqp_version_osqp_warm_start_osqp_warm_start_x_osqp_warm_start_y_permute_x_permutet_x_polish_prea_copy_csc_mat_prea_int_vec_copy_prea_vec_copy_print_footer_print_header_print_polish_print_setup_header_print_summary_project_project_normalcone_quad_form_reset_info_scale_data_set_rho_vec_solve_linsys_qdldl_store_solution_swap_vectors_triplet_to_csc_triplet_to_csr_unload_linsys_solver_unscale_data_unscale_solution_update_KKT_A_update_KKT_P_update_KKT_param2_update_info_update_linsys_solver_matrices_qdldl_update_linsys_solver_rho_vec_qdldl_update_rho_vec_update_status_update_x_update_xz_tilde_update_y_update_z_validate_data_validate_linsys_solver_validate_settings_vec_add_scalar_vec_add_scaled_vec_copy_vec_ew_max_vec_ew_max_vec_vec_ew_min_vec_ew_min_vec_vec_ew_prod_vec_ew_recipr_vec_ew_sqrt_vec_mean_vec_mult_scalar_vec_norm_inf_vec_norm_inf_diff_vec_prod_vec_scaled_norm_inf_vec_set_scalar___bzero___stack_chk_fail___stack_chk_guard___tolower___toupper_calloc_dlclose_dlerror_dlopen_dlsym_fmod_free_mach_absolute_time_mach_timebase_info_malloc_memcpy_memset_memset_pattern16_printf_putchar_puts_realloc_sigactiondyld_stub_binder_handle_ctrlc_permute_KKT_int_detected