# Node.js core benchmark This folder contains benchmarks to measure the performance of the Node.js APIs. ## Table of Content * [Prerequisites](#prerequisites) * [Running benchmarks](#running-benchmarks) * [Running individual benchmarks](#running-individual-benchmarks) * [Running all benchmarks](#running-all-benchmarks) * [Comparing node versions](#comparing-node-versions) * [Comparing parameters](#comparing-parameters) * [Creating a benchmark](#creating-a-benchmark) ## Prerequisites Most of the HTTP benchmarks require a benchmarker to be installed, this can be either [`wrk`][wrk] or [`autocannon`][autocannon]. `Autocannon` is a Node script that can be installed using `npm install -g autocannon`. It will use the Node executable that is in the path, hence if you want to compare two HTTP benchmark runs make sure that the Node version in the path is not altered. `wrk` may be available through your preferred package manger. If not, you can easily build it [from source][wrk] via `make`. By default `wrk` will be used as benchmarker. If it is not available `autocannon` will be used in it its place. When creating a HTTP benchmark you can specify which benchmarker should be used. You can force a specific benchmarker to be used by providing it as an argument, e. g.: `node benchmark/run.js --set benchmarker=autocannon http` `node benchmark/http/simple.js benchmarker=autocannon` Basic Unix tools are required for some benchmarks. [Git for Windows][git-for-windows] includes Git Bash and the necessary tools, which need to be included in the global Windows `PATH`. To analyze the results `R` should be installed. Check you package manager or download it from https://www.r-project.org/. The R packages `ggplot2` and `plyr` are also used and can be installed using the R REPL. ```R $ R install.packages("ggplot2") install.packages("plyr") ``` ### CRAN Mirror Issues In the event you get a message that you need to select a CRAN mirror first. You can specify a mirror by adding in the repo parameter. If we used the "http://cran.us.r-project.org" mirror, it could look somehting like this: ```R install.packages("ggplot2", repo="http://cran.us.r-project.org") ``` Of course, use the mirror that suits your location. A list of mirrors is [located here](https://cran.r-project.org/mirrors.html). ## Running benchmarks ### Running individual benchmarks This can be useful for debugging a benchmark or doing a quick performance measure. But it does not provide the statistical information to make any conclusions about the performance. Individual benchmarks can be executed by simply executing the benchmark script with node. ```console $ node benchmark/buffers/buffer-tostring.js buffers/buffer-tostring.js n=10000000 len=0 arg=true: 62710590.393305704 buffers/buffer-tostring.js n=10000000 len=1 arg=true: 9178624.591787899 buffers/buffer-tostring.js n=10000000 len=64 arg=true: 7658962.8891432695 buffers/buffer-tostring.js n=10000000 len=1024 arg=true: 4136904.4060201733 buffers/buffer-tostring.js n=10000000 len=0 arg=false: 22974354.231509723 buffers/buffer-tostring.js n=10000000 len=1 arg=false: 11485945.656765845 buffers/buffer-tostring.js n=10000000 len=64 arg=false: 8718280.70650129 buffers/buffer-tostring.js n=10000000 len=1024 arg=false: 4103857.0726124765 ``` Each line represents a single benchmark with parameters specified as `${variable}=${value}`. Each configuration combination is executed in a separate process. This ensures that benchmark results aren't affected by the execution order due to v8 optimizations. **The last number is the rate of operations measured in ops/sec (higher is better).** Furthermore you can specify a subset of the configurations, by setting them in the process arguments: ```console $ node benchmark/buffers/buffer-tostring.js len=1024 buffers/buffer-tostring.js n=10000000 len=1024 arg=true: 3498295.68561504 buffers/buffer-tostring.js n=10000000 len=1024 arg=false: 3783071.1678948295 ``` ### Running all benchmarks Similar to running individual benchmarks, a group of benchmarks can be executed by using the `run.js` tool. Again this does not provide the statistical information to make any conclusions. ```console $ node benchmark/run.js arrays arrays/var-int.js arrays/var-int.js n=25 type=Array: 71.90148040747789 arrays/var-int.js n=25 type=Buffer: 92.89648382795582 ... arrays/zero-float.js arrays/zero-float.js n=25 type=Array: 75.46208316171496 arrays/zero-float.js n=25 type=Buffer: 101.62785630273159 ... arrays/zero-int.js arrays/zero-int.js n=25 type=Array: 72.31023859816062 arrays/zero-int.js n=25 type=Buffer: 90.49906662339653 ... ``` It is possible to execute more groups by adding extra process arguments. ```console $ node benchmark/run.js arrays buffers ``` ### Comparing node versions To compare the effect of a new node version use the `compare.js` tool. This will run each benchmark multiple times, making it possible to calculate statistics on the performance measures. As an example on how to check for a possible performance improvement, the [#5134](https://github.com/nodejs/node/pull/5134) pull request will be used as an example. This pull request _claims_ to improve the performance of the `string_decoder` module. First build two versions of node, one from the master branch (here called `./node-master`) and another with the pull request applied (here called `./node-pr-5135`). The `compare.js` tool will then produce a csv file with the benchmark results. ```console $ node benchmark/compare.js --old ./node-master --new ./node-pr-5134 string_decoder > compare-pr-5134.csv ``` For analysing the benchmark results use the `compare.R` tool. ```console $ cat compare-pr-5134.csv | Rscript benchmark/compare.R improvement significant p.value string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=ascii 12.46 % *** 1.165345e-04 string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=base64-ascii 24.70 % *** 1.820615e-15 string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=base64-utf8 23.60 % *** 2.105625e-12 string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=utf8 14.04 % *** 1.291105e-07 string_decoder/string-decoder.js n=250000 chunk=1024 inlen=128 encoding=ascii 6.70 % * 2.928003e-02 ... ``` In the output, _improvement_ is the relative improvement of the new version, hopefully this is positive. _significant_ tells if there is enough statistical evidence to validate the _improvement_. If there is enough evidence then there will be at least one star (`*`), more stars is just better. **However if there are no stars, then you shouldn't make any conclusions based on the _improvement_.** Sometimes this is fine, for example if you are expecting there to be no improvements, then there shouldn't be any stars. **A word of caution:** Statistics is not a foolproof tool. If a benchmark shows a statistical significant difference, there is a 5% risk that this difference doesn't actually exists. For a single benchmark this is not an issue. But when considering 20 benchmarks it's normal that one of them will show significance, when it shouldn't. A possible solution is to instead consider at least two stars (`**`) as the threshold, in that case the risk is 1%. If three stars (`***`) is considered the risk is 0.1%. However this may require more runs to obtain (can be set with `--runs`). _For the statistically minded, the R script performs an [independent/unpaired 2-group t-test][t-test], with the null hypothesis that the performance is the same for both versions. The significant field will show a star if the p-value is less than `0.05`._ The `compare.R` tool can also produce a box plot by using the `--plot filename` option. In this case there are 48 different benchmark combinations, thus you may want to filter the csv file. This can be done while benchmarking using the `--set` parameter (e.g. `--set encoding=ascii`) or by filtering results afterwards using tools such as `sed` or `grep`. In the `sed` case be sure to keep the first line since that contains the header information. ```console $ cat compare-pr-5134.csv | sed '1p;/encoding=ascii/!d' | Rscript benchmark/compare.R --plot compare-plot.png improvement significant p.value string_decoder/string-decoder.js n=250000 chunk=1024 inlen=1024 encoding=ascii 12.46 % *** 1.165345e-04 string_decoder/string-decoder.js n=250000 chunk=1024 inlen=128 encoding=ascii 6.70 % * 2.928003e-02 string_decoder/string-decoder.js n=250000 chunk=1024 inlen=32 encoding=ascii 7.47 % *** 5.780583e-04 string_decoder/string-decoder.js n=250000 chunk=16 inlen=1024 encoding=ascii 8.94 % *** 1.788579e-04 string_decoder/string-decoder.js n=250000 chunk=16 inlen=128 encoding=ascii 10.54 % *** 4.016172e-05 ... ``` ![compare tool boxplot](doc_img/compare-boxplot.png) ### Comparing parameters It can be useful to compare the performance for different parameters, for example to analyze the time complexity. To do this use the `scatter.js` tool, this will run a benchmark multiple times and generate a csv with the results. ```console $ node benchmark/scatter.js benchmark/string_decoder/string-decoder.js > scatter.csv ``` After generating the csv, a comparison table can be created using the `scatter.R` tool. Even more useful it creates an actual scatter plot when using the `--plot filename` option. ```console $ cat scatter.csv | Rscript benchmark/scatter.R --xaxis chunk --category encoding --plot scatter-plot.png --log aggregating variable: inlen chunk encoding mean confidence.interval 16 ascii 1111933.3 221502.48 16 base64-ascii 167508.4 33116.09 16 base64-utf8 122666.6 25037.65 16 utf8 783254.8 159601.79 64 ascii 2623462.9 399791.36 64 base64-ascii 462008.3 85369.45 64 base64-utf8 420108.4 85612.05 64 utf8 1358327.5 235152.03 256 ascii 3730343.4 371530.47 256 base64-ascii 663281.2 80302.73 256 base64-utf8 632911.7 81393.07 256 utf8 1554216.9 236066.53 1024 ascii 4399282.0 186436.46 1024 base64-ascii 730426.6 63806.12 1024 base64-utf8 680954.3 68076.33 1024 utf8 1554832.5 237532.07 ``` Because the scatter plot can only show two variables (in this case _chunk_ and _encoding_) the rest is aggregated. Sometimes aggregating is a problem, this can be solved by filtering. This can be done while benchmarking using the `--set` parameter (e.g. `--set encoding=ascii`) or by filtering results afterwards using tools such as `sed` or `grep`. In the `sed` case be sure to keep the first line since that contains the header information. ```console $ cat scatter.csv | sed -E '1p;/([^,]+, ){3}128,/!d' | Rscript benchmark/scatter.R --xaxis chunk --category encoding --plot scatter-plot.png --log chunk encoding mean confidence.interval 16 ascii 701285.96 21233.982 16 base64-ascii 107719.07 3339.439 16 base64-utf8 72966.95 2438.448 16 utf8 475340.84 17685.450 64 ascii 2554105.08 87067.132 64 base64-ascii 330120.32 8551.707 64 base64-utf8 249693.19 8990.493 64 utf8 1128671.90 48433.862 256 ascii 4841070.04 181620.768 256 base64-ascii 849545.53 29931.656 256 base64-utf8 809629.89 33773.496 256 utf8 1489525.15 49616.334 1024 ascii 4931512.12 165402.805 1024 base64-ascii 863933.22 27766.982 1024 base64-utf8 827093.97 24376.522 1024 utf8 1487176.43 50128.721 ``` ![compare tool boxplot](doc_img/scatter-plot.png) ## Creating a benchmark All benchmarks use the `require('../common.js')` module. This contains the `createBenchmark(main, configs)` method which will setup your benchmark. The first argument `main` is the benchmark function, the second argument specifies the benchmark parameters. `createBenchmark` will run all possible combinations of these parameters, unless specified otherwise. Note that the configuration values can only be strings or numbers. `createBenchmark` also creates a `bench` object, which is used for timing the runtime of the benchmark. Run `bench.start()` after the initialization and `bench.end(n)` when the benchmark is done. `n` is the number of operations you performed in the benchmark. ```js 'use strict'; const common = require('../common.js'); const SlowBuffer = require('buffer').SlowBuffer; const bench = common.createBenchmark(main, { n: [1024], type: ['fast', 'slow'], size: [16, 128, 1024] }); function main(conf) { bench.start(); const BufferConstructor = conf.type === 'fast' ? Buffer : SlowBuffer; for (let i = 0; i < conf.n; i++) { new BufferConstructor(conf.size); } bench.end(conf.n); } ``` ## Creating HTTP benchmark The `bench` object returned by `createBenchmark` implements `http(options, callback)` method. It can be used to run external tool to benchmark HTTP servers. ```js 'use strict'; const common = require('../common.js'); const bench = common.createBenchmark(main, { kb: [64, 128, 256, 1024], connections: [100, 500] }); function main(conf) { const http = require('http'); const len = conf.kb * 1024; const chunk = Buffer.alloc(len, 'x'); const server = http.createServer(function(req, res) { res.end(chunk); }); server.listen(common.PORT, function() { bench.http({ connections: conf.connections, }, function() { server.close(); }); }); } ``` Supported options keys are: * `port` - defaults to `common.PORT` * `path` - defaults to `/` * `connections` - number of concurrent connections to use, defaults to 100 * `duration` - duration of the benchmark in seconds, defaults to 10 * `benchmarker` - benchmarker to use, defaults to `common.default_http_benchmarker` [autocannon]: https://github.com/mcollina/autocannon [wrk]: https://github.com/wg/wrk [t-test]: https://en.wikipedia.org/wiki/Student%27s_t-test#Equal_or_unequal_sample_sizes.2C_unequal_variances [git-for-windows]: http://git-scm.com/download/win