# frozen_string_literal: true require 'svmkit/base/splitter' module SVMKit # This module consists of the classes for model validation techniques. module ModelSelection # KFold is a class that generates the set of data indices for K-fold cross-validation. # # @example # kf = SVMKit::ModelSelection::KFold.new(n_splits: 3, shuffle: true, random_seed: 1) # kf.split(samples, labels).each do |train_ids, test_ids| # train_samples = samples[train_ids, true] # test_samples = samples[test_ids, true] # ... # end # class KFold include Base::Splitter # Return the flag indicating whether to shuffle the dataset. # @return [Boolean] attr_reader :shuffle # Return the random generator for shuffling the dataset. # @return [Random] attr_reader :rng # Create a new data splitter for K-fold cross validation. # # @param n_splits [Integer] The number of folds. # @param shuffle [Boolean] The flag indicating whether to shuffle the dataset. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(n_splits: 3, shuffle: false, random_seed: nil) SVMKit::Validation.check_params_integer(n_splits: n_splits) SVMKit::Validation.check_params_boolean(shuffle: shuffle) SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) SVMKit::Validation.check_params_positive(n_splits: n_splits) @n_splits = n_splits @shuffle = shuffle @random_seed = random_seed @random_seed ||= srand @rng = Random.new(@random_seed) end # Generate data indices for K-fold cross validation. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) # The dataset to be used to generate data indices for K-fold cross validation. # @return [Array] The set of data indices for constructing the training and testing dataset in each fold. def split(x, _y = nil) SVMKit::Validation.check_sample_array(x) # Initialize and check some variables. n_samples, = x.shape unless @n_splits.between?(2, n_samples) raise ArgumentError, 'The value of n_splits must be not less than 2 and not more than the number of samples.' end # Splits dataset ids to each fold. dataset_ids = [*0...n_samples] dataset_ids.shuffle!(random: @rng) if @shuffle fold_sets = Array.new(@n_splits) do |n| n_fold_samples = n_samples / @n_splits n_fold_samples += 1 if n < n_samples % @n_splits dataset_ids.shift(n_fold_samples) end # Returns array consisting of the training and testing ids for each fold. Array.new(@n_splits) do |n| train_ids = fold_sets.select.with_index { |_, id| id != n }.flatten test_ids = fold_sets[n] [train_ids, test_ids] end end end end end