# -*- coding: utf-8 -*- require "narray" ############################################################ =begin =module NumRu::Derivative in derivative.rb ==todo * decide argument of b_expand_linear_ext is Symbol or Numeric. * now is Numeric. * it denpends the treatment of dRuby. * support other boundary conditions. ==Index * (()) * (()) * First derivative (2nd Order difference use three point.) * (()) * First derivative (center difference use two point.) * (()) * 2nd derivative * (()) * return array extended boundaries with linear extention. * (()) * return difference. (center difference) =module NumRu::Derivative Module functions of Derivative Operater for NArray. ---threepoint_O2nd_deriv(z, x, dim, bc=LINEAR_EXT) Derivate of (({z})) with respect to (({dim})) th dim using a 2nd order 3-point differentiation valid for non-uniform grid: (s**2*z_{i+1} + (t**2 - s**2)*f_{i} - t**2*f_{i-1}) / (s*t*(s + t)) Here, s represents (x_{i} - x_{i-1}) ,t represents (x_{i+1} - x_{i}) and _{i} represents the suffix of {i} th element in the (()) th dimension of the array. ). ARGUMENTS * z (NArray): a NArray which you want to derivative. * x (NArray): a NArray represents the dimension which derivative respect to. z.rank must be 1. * dim (Numeric): a Numeric represents the dimention which derivative respect to. you can give number count backward ((())<0), but (()) must be > 0. * bc (Numeric) : a Numeric to represent boundary condition. Supported conditions are expressed in terms of boundary extension applied before differentiation: * LINEAR_EXT(=1): default value. linear extension using two grid points at the boundaries. * CYCLIC_EXT(=2): cyclic extension as k,0,1,..,k,0 for indices 0,1,..,k * MIRROR_A(=3): for indices 0,1,..,k, extends as 0,0,1,..,k,k (good for cell interior values with the Neumann condition) * MIRROR_B(=4): for indices 0,1,..,k, extends as 1,0,1,..,k,k-1 (good for cell boundary values with the Neumann condition) RETURN VALUE * O2nd_deriv_data (NArray): (s**2*z_{i+1} + (t**2 - s**2)*f_{i} - t**2*f_{i-1}) / (s*t*(s + t)) ---cderiv(z, x, dim, bc=LINEAR_EXT) Derivate of (({z})) with respect to (({dim})) th dim using centeral differenciation: (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1}) ARGUMENTS * z (NArray): a NArray which you want to derivative. * x (NArray): a NArray represents the dimension which derivative respect to. z.rank must be 1. * dim (Numeric): a Numeric represents the dimention which derivative respect to. you can give number count backward ((())<0), but (()) must be > 0. * bc (Numeric) : a Numeric to represent boundary condition. See (()) for supported conditions. RETURN VALUE * cderiv_data (NArray): (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1}) ---deriv2nd(z, x, dim, bc=LINEAR_EXT) 2nd Derivate of (({z})) with respect to (({dim}))-th dim covering non-uniform grids. Based on: ( (z_{i+1}-z_{i})/(x_{i+1}-x_{i}) - (z_{i}-z_{i-1})/(x_{i}-x_{i-1}) ) / ((x_{i+1}-x_{i-1})/2) ARGUMENTS * z (NArray): a NArray which you want to derivative. * x (NArray): a NArray represents the dimension which derivative respect to. z.rank must be 1. * dim (Numeric): a Numeric represents the dimention which derivative respect to. you can give number count backward ((())<0), but (()) must be > 0. * bc (Numeric) : a Numeric to represent boundary condition. See (()) for supported conditions. RETURN VALUE * cderiv_data (NArray): (z_{i+1} - z_{i-1}) / (x_{i+1} - x_{i-1}) ---b_expand_linear_ext(z, dim) expand boundary with linear value. extend array with 1 grid at each boundary with (()) th dimension, and assign th value which diffrential value between a grid short of boundary and boundary grid in original array. (on other wards, 2*z_{0}-z_{1} or 2*z_{n-1}-z_{n-2}: now _{i} represents the suffix of {i} th element in the (()) th dimension of array. ). ARGUMENTS * z (NArray): a NArray which you want to expand boundary. * dim (Numeric): a Numeric represents the dimention which derivative respect to. you can give number count backward ((())<0), but (()) must be > 0. RETURN VALUE * expand_data (NArray): ---cdiff(x, dim) Diffrence operater. return an NArray which a difference (()) ( in other wards, (x_{i+1} - x_{i-1}): now _{i} represents the suffix of {i} th element in the (()) th dimension of array. ). ARGUMENTS * x (NArray): a NArray which you want to get difference. * dim (Numeric): a Numeric representing the dimention which derivative respect to. you can give number count backward ((())<0), but (()) must be > 0. RETURN VALUE * cdiff_data (NArray): (x_{i+1} - x_{i-1}) =end ############################################################ module NumRu module Derivative module_function #<> LINEAR_EXT = 1 CYCLIC_EXT = 2 MIRROR_A = 3 MIRROR_B = 4 def threepoint_O2nd_deriv(z, x, dim, bc=LINEAR_EXT) dim += z.rank if dim<0 if dim < 0 || dim >= z.rank raise ArgumentError,"dim value(#{dim}) must be between 0 and (#{z.rank-1}" end raise ArgumentError,"rank of x (#{x.rank}) must be 1" if x.rank != 1 # <> ze = b_expand(z,dim,bc) x = x - x[0] x = x.to_type(z.typecode) if (x.typecode < z.typecode) xe = b_expand_linear_ext(x,0) # always linear extention # <> to_rankD = [1]*dim + [true] + [1]*(ze.rank-1-dim) # to exand 1D to rank D dx = xe[1..-1] - xe[0..-2] # x_{i} - x_{i-1} (for i=0..n-2) dx2 = dx**2 s = dx[0..-2] # x_{i} - x_{i-1} (for i=0..n-3) t = dx[1..-1] # x_{i+1} - x_{i} (for i=0..n-3) s2 = dx2[0..-2].reshape(*to_rankD) # s**2 t2 = dx2[1..-1].reshape(*to_rankD) # t**2 numerator = ze[ *([true]*dim+[2..-1,false]) ] * s2\ + ze[ *([true]*dim+[1..-2,false]) ] * (t2-s2) \ - ze[ *([true]*dim+[0..-3,false]) ] * t2 denominator = (s*t*(s+t)).reshape(*to_rankD) dzdx = numerator / denominator return dzdx end def cderiv(z, x, dim, bc=LINEAR_EXT) dim += z.rank if dim<0 raise ArgumentError,"dim value (#{dim}) must be smaller than z.rank and >= 0" if dim >= z.rank || dim<0 raise ArgumentError,"rank of x (#{x.rank}) must be 1" if x.rank != 1 # <> ze = b_expand(z,dim,bc) x = x - x[0] x = x.to_type(z.typecode) if (x.typecode < z.typecode) xe = b_expand_linear_ext(x,0) # expand boundary of axis. # <> dz = cdiff(ze,dim) dx = cdiff(xe,0) if dx.rank != dz.rank # make dx.rank == dz.rank dx = dx.reshape(*([1]*dim + [true] + [1]*(dz.rank-1-dim))) end dzdx = dz/dx return dzdx end # 2nd derivative covering uniform grids def deriv2nd(z, x, dim, bc=LINEAR_EXT) dim += z.rank if dim<0 if dim < 0 || dim >= z.rank raise ArgumentError,"dim value(#{dim}) must be between 0 and (#{z.rank-1}" end raise ArgumentError,"rank of x (#{x.rank}) must be 1" if x.rank != 1 # <> ze = b_expand(z,dim,bc) x = x - x[0] x = x.to_type(z.typecode) if (x.typecode < z.typecode) xe = b_expand_linear_ext(x,0) # always linear extention # <> to_rankD = [1]*dim + [true] + [1]*(ze.rank-1-dim) # to exand 1D to rank D dx20 = xe[2..-1] - xe[0..-3] # x_{i+1} - x_{i-1} (for i=1..-2) dx21 = xe[2..-1] - xe[1..-2] # x_{i+1} - x_{i} (for i=1..-2) dx10 = xe[1..-2] - xe[0..-3] # x_{i} - x_{i-1} (for i=1..-2) a2 = 2/(dx21*dx20).reshape(*to_rankD) a1 = (-2)/(dx21*dx10).reshape(*to_rankD) a0 = 2/(dx10*dx20).reshape(*to_rankD) d2zdx2 = ze[ *([true]*dim+[2..-1,false]) ] * a2 \ + ze[ *([true]*dim+[1..-2,false]) ] * a1 \ + ze[ *([true]*dim+[0..-3,false]) ] * a0 return d2zdx2 end def b_expand(z,dim,bc) case bc when LINEAR_EXT ze = b_expand_linear_ext(z,dim) # linear extention when CYCLIC_EXT ze = b_expand_cyclic(z,dim) when MIRROR_A ze = b_expand_mirror_A(z,dim) when MIRROR_B ze = b_expand_mirror_B(z,dim) else raise ArgumentError,"unsupported boundary condition: #{bc}." end ze end def b_expand_linear_ext(z,dim) raise ArgumentError,"Len of #{dim}th dim (#{z.shape[dim]}) must be >= 2" if z.shape[dim] < 2 val0 = z[*([true]*dim + [0] + [false])] # first val1 = z[*([true]*dim + [1] + [false])] # second valm1 = z[*([true]*dim + [-1] + [false])] # last valm2 = z[*([true]*dim + [-2] + [false])] # one before last # expand boundary ze = z[*([true]*dim + [[0,0..(z.shape[dim]-1),0]] + [false])] ze[*([true]*dim + [0] + [false])] = 2*val0-val1 ze[*([true]*dim + [-1] + [false])] = 2*valm1-valm2 return ze end def b_expand_cyclic(z,dim) k = z.shape[dim]-1 z[*([true]*dim + [[k,0..k,0]] + [false])] end def b_expand_mirror_A(z,dim) k = z.shape[dim]-1 z[*([true]*dim + [[0,0..k,k]] + [false])] end def b_expand_mirror_B(z,dim) raise ArgumentError,"Len of #{dim}th dim (#{z.shape[dim]}) must be >= 2" if z.shape[dim] < 2 k = z.shape[dim]-1 z[*([true]*dim + [[1,0..k,k-1]] + [false])] end def cdiff(z,dim) z1 = z[*([true]*dim + [2..-1] + [false])] z2 = z[*([true]*dim + [0..-3] + [false])] cz = z1-z2 # cz[i] = cz[n+1] - cz[n-1] return cz end end end ###################################################### ## < test > if $0 == __FILE__ include NumRu include NMath def test1(x1) f1 = sin(x1) dfdx1 = Derivative::cderiv(f1, x1, 0) dfdx2 = cos(x1) p(dfdx1) if $VERBOSE diff = (dfdx1 - dfdx2)[1..-2].abs err = diff.mean print "dfdx - kaiseki_kai (except boundary): " print err, "\t", diff.max,"\n" err end def test2(x1) f1 = sin(x1) dfdx1 = Derivative::threepoint_O2nd_deriv(f1, x1, 0) dfdx2 = cos(x1) p(dfdx1) if $VERBOSE diff = (dfdx1 - dfdx2)[1..-2].abs err = diff.mean print "dfdx - kaiseki_kai (except boundary): " print err, "\t", diff.max,"\n" err end def test3 nx = 21 x = 2*PI*NArray.float(nx).indgen!/nx f = sin(2*PI*NArray.float(nx,nx,nx).indgen!/nx) dfdx1 = Derivative::cderiv(f, x, 0) dfdx2 = Derivative::threepoint_O2nd_deriv(f, x, 0) diff = (dfdx1 - dfdx2).abs print "cderiv - o2deriv: " print diff.mean, "\t", diff.max,"\n" dfdx1 = Derivative::cderiv(f, x, 1) dfdx2 = Derivative::threepoint_O2nd_deriv(f, x, 1) diff = (dfdx1 - dfdx2).abs print "cderiv - o2deriv: " print diff.mean, "\t", diff.max,"\n" dfdx1 = Derivative::cderiv(f, x, 2) dfdx2 = Derivative::threepoint_O2nd_deriv(f, x, 2) diff = (dfdx1 - dfdx2).abs print "cderiv - o2deriv: " print diff.mean, "\t", diff.max,"\n" end def test4 x = NArray.to_na([-1.0, 0.0, 2.0, 3.0]) f = NArray.to_na([1.0, 0.0, 4.0, 4.0]) dfdx = Derivative::threepoint_O2nd_deriv(f, x, 0) dfdx_anal = NArray.to_na([-1.0, 0.0, 2.0/3.0, 0.0]) print "o2deriv - analytic: " diff = (dfdx - dfdx_anal).abs print diff.mean, "\t", diff.max,"\n" end def test5(x1) f1 = sin(x1) dfdx1 = Derivative::cderiv(f1, x1, 0, Derivative::CYCLIC_EXT) dfdx2 = cos(x1) p(dfdx1) if $VERBOSE diff = (dfdx1 - dfdx2).abs err = diff.mean print "dfdx - kaiseki_kai: " print err, "\t", diff.max,"\n" err end def gen_x(nx) 2*PI*NArray.float(nx).indgen!/(nx-1) end def gen_xc(nx) 2*PI*NArray.float(nx).indgen!/nx end def gen_x2(nx) 2*PI*exp(-NArray.float(nx).indgen!/(nx-1)) end print "**** single-D ****\n" print "**** equally spaced grid ****\n" er1 = test1( gen_x(11) ) er2 = test1( gen_x(21) ) print "error change from nx=11->21: ", er2/er1,"\n" print "**** equally spaced grid ****\n" er1 = test2( gen_x(11) ) er2 = test2( gen_x(21) ) print "error change from nx=11->21: ", er2/er1,"\n" print "**** equally spaced grid (cyclic) ****\n" er1 = test1( gen_xc(80) ) er1 = test5( gen_xc(80) ) print "**** multi-D ****\n" test3 print "**** non-uniform grid ****\n" p 'x(11):',gen_x2(11),'x(21):',gen_x2(21) er1 = test1( gen_x2(11) ) er2 = test1( gen_x2(21) ) print "error change from nx=11->21: ", er2/er1,"\n" print "**** non-uniform grid (2nd order) ****\n" er1 = test2( gen_x2(11) ) er2 = test2( gen_x2(21) ) print "error change from nx=11->21: ", er2/er1,"\n" print "**** non-uniform grid (analytic test) ****\n" test4 end