# Linear Regression sample, using SGD and auto-differentiation require "bundler/setup" require 'tensor_stream' tf = TensorStream # use tf to make it look like TensorFlow learning_rate = 0.01 momentum = 0.5 training_epochs = 10000 display_step = 50 train_X = [3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1] train_Y = [1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3] n_samples = train_X.size X = tf.placeholder("float") Y = tf.placeholder("float") # Set model weights W = tf.variable(rand, name: "weight") b = tf.variable(rand, name: "bias") # Construct a linear model pred = X * W + b # Mean squared error cost = ((pred - Y) ** 2).reduce(:+) / ( 2 * n_samples) # Other possible Optimizers # optimizer = TensorStream::Train::MomentumOptimizer.new(learning_rate, momentum, use_nesterov: true).minimize(cost) # optimizer = TensorStream::Train::AdamOptimizer.new(learning_rate).minimize(cost) # optimizer = TensorStream::Train::AdadeltaOptimizer.new(1.0).minimize(cost) # optimizer = TensorStream::Train::AdagradOptimizer.new(0.01).minimize(cost) # optimizer = TensorStream::Train::RMSPropOptimizer.new(0.01, centered: true).minimize(cost) optimizer = TensorStream::Train::GradientDescentOptimizer.new(learning_rate).minimize(cost) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer() tf.session do |sess| start_time = Time.now sess.run(init) (0..training_epochs).each do |epoch| train_X.zip(train_Y).each do |x,y| sess.run(optimizer, feed_dict: {X => x, Y => y}) end if (epoch+1) % display_step == 0 c = sess.run(cost, feed_dict: {X => train_X, Y => train_Y}) puts("Epoch:", '%04d' % (epoch+1), "cost=", c, \ "W=", sess.run(W), "b=", sess.run(b)) end end puts("Optimization Finished!") training_cost = sess.run(cost, feed_dict: { X => train_X, Y => train_Y}) puts("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n') puts("time elapsed ", Time.now.to_i - start_time.to_i) end