/* * Copyright (c) 2009, Wayne Meissner * Copyright (c) 2009, Luc Heinrich * Copyright (c) 2009, Mike Dalessio * Copyright (c) 2009, Aman Gupta. * Copyright (c) 2008-2013, Ruby FFI project contributors * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the Ruby FFI project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _MSC_VER #include #endif #include #include #include #include #include #include #include #if defined(HAVE_NATIVETHREAD) && !defined(_WIN32) # include # include #endif #include #include "extconf.h" #include "rbffi.h" #include "compat.h" #include "AbstractMemory.h" #include "Pointer.h" #include "Struct.h" #include "Function.h" #include "Type.h" #include "LastError.h" #include "Call.h" #include "MappedType.h" #include "Thread.h" #include "LongDouble.h" #ifdef USE_RAW # ifndef __i386__ # error "RAW argument packing only supported on i386" # endif #define INT8_ADJ (4) #define INT16_ADJ (4) #define INT32_ADJ (4) #define INT64_ADJ (8) #define LONG_ADJ (sizeof(long)) #define FLOAT32_ADJ (4) #define FLOAT64_ADJ (8) #define ADDRESS_ADJ (sizeof(void *)) #define LONGDOUBLE_ADJ (ffi_type_longdouble.alignment > sizeof(long double) ? ffi_type_longdouble.alignment : sizeof(long double)) #endif /* USE_RAW */ #ifdef USE_RAW # define ADJ(p, a) ((p) = (FFIStorage*) (((char *) p) + a##_ADJ)) #else # define ADJ(p, a) (++(p)) #endif static void* callback_param(VALUE proc, VALUE cbinfo); static inline void* getPointer(VALUE value, int type); static ID id_to_ptr, id_map_symbol, id_to_native; void rbffi_SetupCallParams(int argc, VALUE* argv, int paramCount, Type** paramTypes, FFIStorage* paramStorage, void** ffiValues, VALUE* callbackParameters, int callbackCount, VALUE enums) { VALUE callbackProc = Qnil; FFIStorage* param = ¶mStorage[0]; int i, argidx, cbidx, argCount; if (unlikely(paramCount != -1 && paramCount != argc)) { if (argc == (paramCount - 1) && callbackCount == 1 && rb_block_given_p()) { callbackProc = rb_block_proc(); } else { rb_raise(rb_eArgError, "wrong number of arguments (%d for %d)", argc, paramCount); } } argCount = paramCount != -1 ? paramCount : argc; for (i = 0, argidx = 0, cbidx = 0; i < argCount; ++i) { Type* paramType = paramTypes[i]; int type; if (unlikely(paramType->nativeType == NATIVE_MAPPED)) { VALUE values[] = { argv[argidx], Qnil }; argv[argidx] = rb_funcall2(((MappedType *) paramType)->rbConverter, id_to_native, 2, values); paramType = ((MappedType *) paramType)->type; } type = argidx < argc ? TYPE(argv[argidx]) : T_NONE; ffiValues[i] = param; switch (paramType->nativeType) { case NATIVE_INT8: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->s8 = NUM2INT(value); } else { param->s8 = NUM2INT(argv[argidx]); } ++argidx; ADJ(param, INT8); break; case NATIVE_INT16: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->s16 = NUM2INT(value); } else { param->s16 = NUM2INT(argv[argidx]); } ++argidx; ADJ(param, INT16); break; case NATIVE_INT32: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->s32 = NUM2INT(value); } else { param->s32 = NUM2INT(argv[argidx]); } ++argidx; ADJ(param, INT32); break; case NATIVE_BOOL: if (type != T_TRUE && type != T_FALSE) { rb_raise(rb_eTypeError, "wrong argument type (expected a boolean parameter)"); } param->s8 = argv[argidx++] == Qtrue; ADJ(param, INT8); break; case NATIVE_UINT8: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->u8 = NUM2UINT(value); } else { param->u8 = NUM2UINT(argv[argidx]); } ADJ(param, INT8); ++argidx; break; case NATIVE_UINT16: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->u16 = NUM2UINT(value); } else { param->u16 = NUM2UINT(argv[argidx]); } ADJ(param, INT16); ++argidx; break; case NATIVE_UINT32: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->u32 = NUM2UINT(value); } else { param->u32 = NUM2UINT(argv[argidx]); } ADJ(param, INT32); ++argidx; break; case NATIVE_INT64: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->i64 = NUM2LL(value); } else { param->i64 = NUM2LL(argv[argidx]); } ADJ(param, INT64); ++argidx; break; case NATIVE_UINT64: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->u64 = NUM2ULL(value); } else { param->u64 = NUM2ULL(argv[argidx]); } ADJ(param, INT64); ++argidx; break; case NATIVE_LONG: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); *(ffi_sarg *) param = NUM2LONG(value); } else { *(ffi_sarg *) param = NUM2LONG(argv[argidx]); } ADJ(param, LONG); ++argidx; break; case NATIVE_ULONG: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); *(ffi_arg *) param = NUM2ULONG(value); } else { *(ffi_arg *) param = NUM2ULONG(argv[argidx]); } ADJ(param, LONG); ++argidx; break; case NATIVE_FLOAT32: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->f32 = (float) NUM2DBL(value); } else { param->f32 = (float) NUM2DBL(argv[argidx]); } ADJ(param, FLOAT32); ++argidx; break; case NATIVE_FLOAT64: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->f64 = NUM2DBL(value); } else { param->f64 = NUM2DBL(argv[argidx]); } ADJ(param, FLOAT64); ++argidx; break; case NATIVE_LONGDOUBLE: if (unlikely(type == T_SYMBOL && enums != Qnil)) { VALUE value = rb_funcall(enums, id_map_symbol, 1, argv[argidx]); param->ld = rbffi_num2longdouble(value); } else { param->ld = rbffi_num2longdouble(argv[argidx]); } ADJ(param, LONGDOUBLE); ++argidx; break; case NATIVE_STRING: if (type == T_NIL) { param->ptr = NULL; } else { param->ptr = StringValueCStr(argv[argidx]); } ADJ(param, ADDRESS); ++argidx; break; case NATIVE_POINTER: case NATIVE_BUFFER_IN: case NATIVE_BUFFER_OUT: case NATIVE_BUFFER_INOUT: param->ptr = getPointer(argv[argidx++], type); ADJ(param, ADDRESS); break; case NATIVE_FUNCTION: if (callbackProc != Qnil) { param->ptr = callback_param(callbackProc, callbackParameters[cbidx++]); } else { param->ptr = callback_param(argv[argidx], callbackParameters[cbidx++]); ++argidx; } ADJ(param, ADDRESS); break; case NATIVE_STRUCT: ffiValues[i] = getPointer(argv[argidx++], type); break; default: rb_raise(rb_eArgError, "Invalid parameter type: %d", paramType->nativeType); } } } static void * call_blocking_function(void* data) { rbffi_blocking_call_t* b = (rbffi_blocking_call_t *) data; ffi_call(&b->cif, FFI_FN(b->function), b->retval, b->ffiValues); return NULL; } VALUE rbffi_do_blocking_call(VALUE data) { rb_thread_call_without_gvl(call_blocking_function, (void*)data, (rb_unblock_function_t *) -1, NULL); return Qnil; } VALUE rbffi_save_frame_exception(VALUE data, VALUE exc) { rbffi_frame_t* frame = (rbffi_frame_t *) data; frame->exc = exc; return Qnil; } VALUE rbffi_CallFunction(int argc, VALUE* argv, void* function, FunctionType* fnInfo) { void* retval; void** ffiValues; FFIStorage* params; VALUE rbReturnValue; rbffi_frame_t frame = { 0 }; retval = alloca(MAX(fnInfo->ffi_cif.rtype->size, FFI_SIZEOF_ARG)); if (unlikely(fnInfo->blocking)) { rbffi_blocking_call_t* bc; /* allocate information passed to the blocking function on the stack */ ffiValues = ALLOCA_N(void *, fnInfo->parameterCount); params = ALLOCA_N(FFIStorage, fnInfo->parameterCount); bc = ALLOCA_N(rbffi_blocking_call_t, 1); bc->retval = retval; bc->cif = fnInfo->ffi_cif; bc->function = function; bc->ffiValues = ffiValues; bc->params = params; bc->frame = &frame; rbffi_SetupCallParams(argc, argv, fnInfo->parameterCount, fnInfo->parameterTypes, params, ffiValues, fnInfo->callbackParameters, fnInfo->callbackCount, fnInfo->rbEnums); rbffi_frame_push(&frame); rb_rescue2(rbffi_do_blocking_call, (VALUE) bc, rbffi_save_frame_exception, (VALUE) &frame, rb_eException, (VALUE) 0); rbffi_frame_pop(&frame); } else { ffiValues = ALLOCA_N(void *, fnInfo->parameterCount); params = ALLOCA_N(FFIStorage, fnInfo->parameterCount); rbffi_SetupCallParams(argc, argv, fnInfo->parameterCount, fnInfo->parameterTypes, params, ffiValues, fnInfo->callbackParameters, fnInfo->callbackCount, fnInfo->rbEnums); rbffi_frame_push(&frame); ffi_call(&fnInfo->ffi_cif, FFI_FN(function), retval, ffiValues); rbffi_frame_pop(&frame); } if (unlikely(!fnInfo->ignoreErrno)) { rbffi_save_errno(); } if (RTEST(frame.exc) && frame.exc != Qnil) { rb_exc_raise(frame.exc); } RB_GC_GUARD(rbReturnValue) = rbffi_NativeValue_ToRuby(fnInfo->returnType, fnInfo->rbReturnType, retval); RB_GC_GUARD(fnInfo->rbReturnType); return rbReturnValue; } static inline void* getPointer(VALUE value, int type) { if (likely(type == T_DATA && rb_obj_is_kind_of(value, rbffi_AbstractMemoryClass))) { AbstractMemory *mem; TypedData_Get_Struct(value, AbstractMemory, &rbffi_abstract_memory_data_type, mem); return mem->address; } else if (type == T_DATA && rb_obj_is_kind_of(value, rbffi_StructClass)) { Struct* s; AbstractMemory* memory; TypedData_Get_Struct(value, Struct, &rbffi_struct_data_type, s); memory = s->pointer; return memory != NULL ? memory->address : NULL; } else if (type == T_STRING) { return StringValuePtr(value); } else if (type == T_NIL) { return NULL; } else if (rb_respond_to(value, id_to_ptr)) { VALUE ptr = rb_funcall2(value, id_to_ptr, 0, NULL); if (rb_obj_is_kind_of(ptr, rbffi_AbstractMemoryClass) && TYPE(ptr) == T_DATA) { AbstractMemory *mem; TypedData_Get_Struct(ptr, AbstractMemory, &rbffi_abstract_memory_data_type, mem); return mem->address; } rb_raise(rb_eArgError, "to_ptr returned an invalid pointer"); } rb_raise(rb_eArgError, ":pointer argument is not a valid pointer"); return NULL; } Invoker rbffi_GetInvoker(FunctionType *fnInfo) { return rbffi_CallFunction; } static void* callback_param(VALUE proc, VALUE cbInfo) { VALUE callback; AbstractMemory *mem; if (unlikely(proc == Qnil)) { return NULL ; } /* Handle Function pointers here */ if (rb_obj_is_kind_of(proc, rbffi_FunctionClass)) { AbstractMemory* ptr; TypedData_Get_Struct(proc, AbstractMemory, &rbffi_abstract_memory_data_type, ptr); return ptr->address; } callback = rbffi_Function_ForProc(cbInfo, proc); RB_GC_GUARD(callback); TypedData_Get_Struct(callback, AbstractMemory, &rbffi_abstract_memory_data_type, mem); return mem->address; } void rbffi_Call_Init(VALUE moduleFFI) { id_to_ptr = rb_intern("to_ptr"); id_to_native = rb_intern("to_native"); id_map_symbol = rb_intern("__map_symbol"); }