/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Guido Tack * * Copyright: * Guido Tack, 2005 * * Last modified: * $Date: 2010-07-29 02:45:22 +1000 (Thu, 29 Jul 2010) $ by $Author: schulte $ * $Revision: 11297 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "test/set.hh" using namespace Gecode; namespace Test { namespace Set { /// %Tests for relation/operation constraints with constants namespace RelOpConst { /** * \defgroup TaskTestSetRelOpConst Relation/operation constraints with constants * \ingroup TaskTestSet */ //@{ static IntSet ds_33(-3,3); static IntSet ds_22(-2,2); static IntSet ds_12(-1,2); static IntSet iss[] = {IntSet(-1,1), IntSet(-4,-4), IntSet(0,2)}; /// %Test for set relation constraint with constants class RelSIS : public SetTest { private: IntSet is; Gecode::SetOpType sot; Gecode::SetRelType srt; bool inverse; template bool sol(I& i, J& j) const { switch (srt) { case SRT_EQ: return Iter::Ranges::equal(i,j); case SRT_NQ: return !Iter::Ranges::equal(i,j); case SRT_SUB: return Iter::Ranges::subset(i,j); case SRT_SUP: return Iter::Ranges::subset(j,i); case SRT_DISJ: { Gecode::Iter::Ranges::Inter inter(i,j); return !inter(); } case SRT_CMPL: { Gecode::Set::RangesCompl jc(j); return Iter::Ranges::equal(i,jc); } } GECODE_NEVER; return false; } public: /// Create and register test RelSIS(Gecode::SetOpType sot0, Gecode::SetRelType srt0, int intSet, bool inverse0) : SetTest("RelOp::ConstSIS::"+str(sot0)+"::"+str(srt0)+"::"+ str(intSet)+(inverse0 ? "i" :""),2,ds_22,false) , is(iss[intSet]), sot(sot0), srt(srt0), inverse(inverse0) {} /// %Test whether \a x is solution bool solution(const SetAssignment& x) const { IntSetRanges isr(is); CountableSetRanges xr0(x.lub, x[0]); CountableSetRanges xr1(x.lub, x[1]); switch (sot) { case SOT_UNION: { Iter::Ranges::Union u(isr, xr0); return sol(u,xr1); } break; case SOT_DUNION: { Iter::Ranges::Inter inter(isr, xr0); if (inter()) return false; Iter::Ranges::Union u(isr,xr0); return sol(u,xr1); } break; case SOT_INTER: { Iter::Ranges::Inter u(isr,xr0); return sol(u,xr1); } break; case SOT_MINUS: { if (!inverse) { Iter::Ranges::Diff u(isr,xr0); return sol(u,xr1); } else { Iter::Ranges::Diff u(xr0,isr); return sol(u,xr1); } } break; } GECODE_NEVER; return false; } /// Post constraint on \a x void post(Space& home, SetVarArray& x, IntVarArray&) { if (!inverse) Gecode::rel(home, is, sot, x[0], srt, x[1]); else Gecode::rel(home, x[0], sot, is, srt, x[1]); } }; /// %Test for set relation constraint with constants class RelSSI : public SetTest { private: IntSet is; Gecode::SetOpType sot; Gecode::SetRelType srt; template bool sol(I& i, J& j) const { switch (srt) { case SRT_EQ: return Iter::Ranges::equal(i,j); case SRT_NQ: return !Iter::Ranges::equal(i,j); case SRT_SUB: return Iter::Ranges::subset(i,j); case SRT_SUP: return Iter::Ranges::subset(j,i); case SRT_DISJ: { Gecode::Iter::Ranges::Inter inter(i,j); return !inter(); } case SRT_CMPL: { Gecode::Set::RangesCompl jc(j); return Iter::Ranges::equal(i,jc); } } GECODE_NEVER; return false; } public: /// Create and register test RelSSI(Gecode::SetOpType sot0, Gecode::SetRelType srt0, int intSet) : SetTest("RelOp::ConstSSI::"+str(sot0)+"::"+str(srt0)+"::"+ str(intSet),2,ds_22,false) , is(iss[intSet]), sot(sot0), srt(srt0) {} /// %Test whether \a x is solution bool solution(const SetAssignment& x) const { CountableSetRanges xr0(x.lub, x[0]); CountableSetRanges xr1(x.lub, x[1]); IntSetRanges isr(is); switch (sot) { case SOT_UNION: { Iter::Ranges::Union u(xr0, xr1); return sol(u,isr); } break; case SOT_DUNION: { Iter::Ranges::Inter inter(xr0, xr1); if (inter()) return false; Iter::Ranges::Union u(xr0, xr1); return sol(u,isr); } break; case SOT_INTER: { Iter::Ranges::Inter u(xr0,xr1); return sol(u,isr); } break; case SOT_MINUS: { Iter::Ranges::Diff u(xr0,xr1); return sol(u,isr); } break; } GECODE_NEVER; return false; } /// Post constraint on \a x void post(Space& home, SetVarArray& x, IntVarArray&) { Gecode::rel(home, x[0], sot, x[1], srt, is); } }; /// %Test for set relation constraint with constants class RelISI : public SetTest { private: IntSet is0; IntSet is1; Gecode::SetOpType sot; Gecode::SetRelType srt; bool inverse; template bool sol(I& i, J& j) const { switch (srt) { case SRT_EQ: return Iter::Ranges::equal(i,j); case SRT_NQ: return !Iter::Ranges::equal(i,j); case SRT_SUB: return Iter::Ranges::subset(i,j); case SRT_SUP: return Iter::Ranges::subset(j,i); case SRT_DISJ: { Gecode::Iter::Ranges::Inter inter(i,j); return !inter(); } case SRT_CMPL: { Gecode::Set::RangesCompl jc(j); return Iter::Ranges::equal(i,jc); } } GECODE_NEVER; return false; } public: /// Create and register test RelISI(Gecode::SetOpType sot0, Gecode::SetRelType srt0, int intSet0, int intSet1, bool inverse0) : SetTest("RelOp::ConstISI::"+str(sot0)+"::"+str(srt0)+"::"+ str(intSet0)+"::"+str(intSet1)+ (inverse0 ? "i" : ""),1,ds_33,false) , is0(iss[intSet0]), is1(iss[intSet1]), sot(sot0), srt(srt0) , inverse(inverse0) {} /// %Test whether \a x is solution bool solution(const SetAssignment& x) const { CountableSetRanges xr0(x.lub, x[0]); IntSetRanges isr0(is0); IntSetRanges isr1(is1); switch (sot) { case SOT_UNION: { Iter::Ranges::Union u(isr0, xr0); return sol(u,isr1); } break; case SOT_DUNION: { Iter::Ranges::Inter inter(isr0, xr0); if (inter()) return false; Iter::Ranges::Union u(isr0, xr0); return sol(u,isr1); } break; case SOT_INTER: { Iter::Ranges::Inter u(isr0,xr0); return sol(u,isr1); } break; case SOT_MINUS: { if (!inverse) { Iter::Ranges::Diff u(isr0,xr0); return sol(u,isr1); } else { Iter::Ranges::Diff u(xr0,isr0); return sol(u,isr1); } } break; } GECODE_NEVER; return false; } /// Post constraint on \a x void post(Space& home, SetVarArray& x, IntVarArray&) { if (!inverse) Gecode::rel(home, is0, sot, x[0], srt, is1); else Gecode::rel(home, x[0], sot, is0, srt, is1); } }; /// Help class to create and register tests class Create { public: /// Perform creation and registration Create(void) { using namespace Gecode; for (SetRelTypes srts; srts(); ++srts) { for (SetOpTypes sots; sots(); ++sots) { for (int i=0; i<=2; i++) { (void) new RelSIS(sots.sot(),srts.srt(),i,false); (void) new RelSIS(sots.sot(),srts.srt(),i,true); (void) new RelSSI(sots.sot(),srts.srt(),i); (void) new RelISI(sots.sot(),srts.srt(),i,0,false); (void) new RelISI(sots.sot(),srts.srt(),i,1,false); (void) new RelISI(sots.sot(),srts.srt(),i,2,false); (void) new RelISI(sots.sot(),srts.srt(),i,0,true); (void) new RelISI(sots.sot(),srts.srt(),i,1,true); (void) new RelISI(sots.sot(),srts.srt(),i,2,true); } } } } }; Create c; //@} }}} // STATISTICS: test-set