require_relative 'error' require_relative 'expression' class Regexp::Parser include Regexp::Expression class ParserError < Regexp::Parser::Error; end class UnknownTokenTypeError < ParserError def initialize(type, token) super "Unknown token type #{type} #{token.inspect}" end end class UnknownTokenError < ParserError def initialize(type, token) super "Unknown #{type} token #{token.token}" end end def self.parse(input, syntax = nil, options: nil, &block) new.parse(input, syntax, options: options, &block) end def parse(input, syntax = nil, options: nil, &block) root = Root.construct(options: extract_options(input, options)) self.root = root self.node = root self.nesting = [root] self.options_stack = [root.options] self.switching_options = false self.conditional_nesting = [] self.captured_group_counts = Hash.new(0) Regexp::Lexer.scan(input, syntax, options: options, collect_tokens: false) do |token| parse_token(token) end # Trigger recursive setting of #nesting_level, which reflects how deep # a node is in the tree. Do this at the end to account for tree rewrites. root.nesting_level = 0 assign_referenced_expressions if block_given? block.call(root) else root end end private attr_accessor :root, :node, :nesting, :options_stack, :switching_options, :conditional_nesting, :captured_group_counts def extract_options(input, options) if options && !input.is_a?(String) raise ArgumentError, 'options cannot be supplied unless parsing a String' end options = input.options if input.is_a?(::Regexp) return {} unless options enabled_options = {} enabled_options[:i] = true if options & ::Regexp::IGNORECASE != 0 enabled_options[:m] = true if options & ::Regexp::MULTILINE != 0 enabled_options[:x] = true if options & ::Regexp::EXTENDED != 0 enabled_options end def parse_token(token) case token.type when :anchor; anchor(token) when :assertion, :group; group(token) when :backref; backref(token) when :conditional; conditional(token) when :escape; escape(token) when :free_space; free_space(token) when :keep; keep(token) when :literal; literal(token) when :meta; meta(token) when :posixclass, :nonposixclass; posixclass(token) when :property, :nonproperty; property(token) when :quantifier; quantifier(token) when :set; set(token) when :type; type(token) else raise UnknownTokenTypeError.new(token.type, token) end close_completed_character_set_range end def anchor(token) case token.token when :bol; node << Anchor::BeginningOfLine.new(token, active_opts) when :bos; node << Anchor::BOS.new(token, active_opts) when :eol; node << Anchor::EndOfLine.new(token, active_opts) when :eos; node << Anchor::EOS.new(token, active_opts) when :eos_ob_eol; node << Anchor::EOSobEOL.new(token, active_opts) when :match_start; node << Anchor::MatchStart.new(token, active_opts) when :nonword_boundary; node << Anchor::NonWordBoundary.new(token, active_opts) when :word_boundary; node << Anchor::WordBoundary.new(token, active_opts) else raise UnknownTokenError.new('Anchor', token) end end def group(token) case token.token when :options, :options_switch options_group(token) when :close close_group when :comment node << Group::Comment.new(token, active_opts) else open_group(token) end end MOD_FLAGS = %w[i m x].map(&:to_sym) ENC_FLAGS = %w[a d u].map(&:to_sym) def options_group(token) positive, negative = token.text.split('-', 2) negative ||= '' self.switching_options = token.token.equal?(:options_switch) opt_changes = {} new_active_opts = active_opts.dup MOD_FLAGS.each do |flag| if positive.include?(flag.to_s) opt_changes[flag] = new_active_opts[flag] = true end if negative.include?(flag.to_s) opt_changes[flag] = false new_active_opts.delete(flag) end end if (enc_flag = positive.reverse[/[adu]/]) enc_flag = enc_flag.to_sym (ENC_FLAGS - [enc_flag]).each do |other| opt_changes[other] = false if new_active_opts[other] new_active_opts.delete(other) end opt_changes[enc_flag] = new_active_opts[enc_flag] = true end options_stack << new_active_opts options_group = Group::Options.new(token, active_opts) options_group.option_changes = opt_changes nest(options_group) end def open_group(token) group_class = case token.token when :absence; Group::Absence when :atomic; Group::Atomic when :capture; Group::Capture when :named; Group::Named when :passive; Group::Passive when :lookahead; Assertion::Lookahead when :lookbehind; Assertion::Lookbehind when :nlookahead; Assertion::NegativeLookahead when :nlookbehind; Assertion::NegativeLookbehind else raise UnknownTokenError.new('Group type open', token) end group = group_class.new(token, active_opts) if group.capturing? group.number = total_captured_group_count + 1 group.number_at_level = captured_group_count_at_level + 1 count_captured_group end # Push the active options to the stack again. This way we can simply pop the # stack for any group we close, no matter if it had its own options or not. options_stack << active_opts nest(group) end def total_captured_group_count captured_group_counts.values.reduce(0, :+) end def captured_group_count_at_level captured_group_counts[node] end def count_captured_group captured_group_counts[node] += 1 end def close_group options_stack.pop unless switching_options self.switching_options = false decrease_nesting end def decrease_nesting while nesting.last.is_a?(SequenceOperation) nesting.pop self.node = nesting.last end nesting.pop yield(node) if block_given? self.node = nesting.last self.node = node.last if node.last.is_a?(SequenceOperation) end def backref(token) case token.token when :name_ref node << Backreference::Name.new(token, active_opts) when :name_recursion_ref node << Backreference::NameRecursionLevel.new(token, active_opts) when :name_call node << Backreference::NameCall.new(token, active_opts) when :number, :number_ref # TODO: split in v3.0.0 node << Backreference::Number.new(token, active_opts) when :number_recursion_ref node << Backreference::NumberRecursionLevel.new(token, active_opts).tap do |exp| # TODO: should split off new token number_recursion_rel_ref and new # class NumberRelativeRecursionLevel in v3.0.0 to get rid of this if exp.text =~ /[<'][+-]/ assign_effective_number(exp) else exp.effective_number = exp.number end end when :number_call node << Backreference::NumberCall.new(token, active_opts) when :number_rel_ref node << Backreference::NumberRelative.new(token, active_opts).tap do |exp| assign_effective_number(exp) end when :number_rel_call node << Backreference::NumberCallRelative.new(token, active_opts).tap do |exp| assign_effective_number(exp) end else raise UnknownTokenError.new('Backreference', token) end end def assign_effective_number(exp) exp.effective_number = exp.number + total_captured_group_count + (exp.number < 0 ? 1 : 0) exp.effective_number > 0 || raise(ParserError, "Invalid reference: #{exp.reference}") end def conditional(token) case token.token when :open nest_conditional(Conditional::Expression.new(token, active_opts)) when :condition conditional_nesting.last.condition = Conditional::Condition.new(token, active_opts) conditional_nesting.last.add_sequence(active_opts, { ts: token.te }) when :separator conditional_nesting.last.add_sequence(active_opts, { ts: token.te }) self.node = conditional_nesting.last.branches.last when :close conditional_nesting.pop decrease_nesting self.node = if conditional_nesting.empty? nesting.last else conditional_nesting.last end else raise UnknownTokenError.new('Conditional', token) end end def nest_conditional(exp) conditional_nesting.push(exp) nest(exp) end def nest(exp) nesting.push(exp) node << exp self.node = exp end def escape(token) case token.token when :backspace; node << EscapeSequence::Backspace.new(token, active_opts) when :escape; node << EscapeSequence::AsciiEscape.new(token, active_opts) when :bell; node << EscapeSequence::Bell.new(token, active_opts) when :form_feed; node << EscapeSequence::FormFeed.new(token, active_opts) when :newline; node << EscapeSequence::Newline.new(token, active_opts) when :carriage; node << EscapeSequence::Return.new(token, active_opts) when :tab; node << EscapeSequence::Tab.new(token, active_opts) when :vertical_tab; node << EscapeSequence::VerticalTab.new(token, active_opts) when :codepoint; node << EscapeSequence::Codepoint.new(token, active_opts) when :codepoint_list; node << EscapeSequence::CodepointList.new(token, active_opts) when :hex; node << EscapeSequence::Hex.new(token, active_opts) when :octal; node << EscapeSequence::Octal.new(token, active_opts) when :control if token.text =~ /\A(?:\\C-\\M|\\c\\M)/ # TODO: emit :meta_control_sequence token in v3.0.0 node << EscapeSequence::MetaControl.new(token, active_opts) else node << EscapeSequence::Control.new(token, active_opts) end when :meta_sequence if token.text =~ /\A\\M-\\[Cc]/ # TODO: emit :meta_control_sequence token in v3.0.0: node << EscapeSequence::MetaControl.new(token, active_opts) else node << EscapeSequence::Meta.new(token, active_opts) end else # treating everything else as a literal # TODO: maybe split this up a bit more in v3.0.0? # E.g. escaped quantifiers or set meta chars are not the same # as stuff that would be a literal even without the backslash. # Right now, they all end up here. node << EscapeSequence::Literal.new(token, active_opts) end end def free_space(token) case token.token when :comment node << Comment.new(token, active_opts) when :whitespace node << WhiteSpace.new(token, active_opts) else raise UnknownTokenError.new('FreeSpace', token) end end def keep(token) node << Keep::Mark.new(token, active_opts) end def literal(token) node << Literal.new(token, active_opts) end def meta(token) case token.token when :dot node << CharacterType::Any.new(token, active_opts) when :alternation sequence_operation(Alternation, token) else raise UnknownTokenError.new('Meta', token) end end def sequence_operation(klass, token) unless node.instance_of?(klass) operator = klass.new(token, active_opts) sequence = operator.add_sequence(active_opts, { ts: token.ts }) sequence.expressions = node.expressions node.expressions = [] nest(operator) end node.add_sequence(active_opts, { ts: token.te }) end def posixclass(token) node << PosixClass.new(token, active_opts) end UP = Regexp::Expression::Property UPTokens = Regexp::Syntax::Token::Property def property(token) case token.token when :alnum; node << UP::Alnum.new(token, active_opts) when :alpha; node << UP::Alpha.new(token, active_opts) when :ascii; node << UP::Ascii.new(token, active_opts) when :blank; node << UP::Blank.new(token, active_opts) when :cntrl; node << UP::Cntrl.new(token, active_opts) when :digit; node << UP::Digit.new(token, active_opts) when :graph; node << UP::Graph.new(token, active_opts) when :lower; node << UP::Lower.new(token, active_opts) when :print; node << UP::Print.new(token, active_opts) when :punct; node << UP::Punct.new(token, active_opts) when :space; node << UP::Space.new(token, active_opts) when :upper; node << UP::Upper.new(token, active_opts) when :word; node << UP::Word.new(token, active_opts) when :xdigit; node << UP::Xdigit.new(token, active_opts) when :xposixpunct; node << UP::XPosixPunct.new(token, active_opts) # only in Oniguruma (old rubies) when :newline; node << UP::Newline.new(token, active_opts) when :any; node << UP::Any.new(token, active_opts) when :assigned; node << UP::Assigned.new(token, active_opts) when :letter; node << UP::Letter::Any.new(token, active_opts) when :cased_letter; node << UP::Letter::Cased.new(token, active_opts) when :uppercase_letter; node << UP::Letter::Uppercase.new(token, active_opts) when :lowercase_letter; node << UP::Letter::Lowercase.new(token, active_opts) when :titlecase_letter; node << UP::Letter::Titlecase.new(token, active_opts) when :modifier_letter; node << UP::Letter::Modifier.new(token, active_opts) when :other_letter; node << UP::Letter::Other.new(token, active_opts) when :mark; node << UP::Mark::Any.new(token, active_opts) when :combining_mark; node << UP::Mark::Combining.new(token, active_opts) when :nonspacing_mark; node << UP::Mark::Nonspacing.new(token, active_opts) when :spacing_mark; node << UP::Mark::Spacing.new(token, active_opts) when :enclosing_mark; node << UP::Mark::Enclosing.new(token, active_opts) when :number; node << UP::Number::Any.new(token, active_opts) when :decimal_number; node << UP::Number::Decimal.new(token, active_opts) when :letter_number; node << UP::Number::Letter.new(token, active_opts) when :other_number; node << UP::Number::Other.new(token, active_opts) when :punctuation; node << UP::Punctuation::Any.new(token, active_opts) when :connector_punctuation; node << UP::Punctuation::Connector.new(token, active_opts) when :dash_punctuation; node << UP::Punctuation::Dash.new(token, active_opts) when :open_punctuation; node << UP::Punctuation::Open.new(token, active_opts) when :close_punctuation; node << UP::Punctuation::Close.new(token, active_opts) when :initial_punctuation; node << UP::Punctuation::Initial.new(token, active_opts) when :final_punctuation; node << UP::Punctuation::Final.new(token, active_opts) when :other_punctuation; node << UP::Punctuation::Other.new(token, active_opts) when :separator; node << UP::Separator::Any.new(token, active_opts) when :space_separator; node << UP::Separator::Space.new(token, active_opts) when :line_separator; node << UP::Separator::Line.new(token, active_opts) when :paragraph_separator; node << UP::Separator::Paragraph.new(token, active_opts) when :symbol; node << UP::Symbol::Any.new(token, active_opts) when :math_symbol; node << UP::Symbol::Math.new(token, active_opts) when :currency_symbol; node << UP::Symbol::Currency.new(token, active_opts) when :modifier_symbol; node << UP::Symbol::Modifier.new(token, active_opts) when :other_symbol; node << UP::Symbol::Other.new(token, active_opts) when :other; node << UP::Codepoint::Any.new(token, active_opts) when :control; node << UP::Codepoint::Control.new(token, active_opts) when :format; node << UP::Codepoint::Format.new(token, active_opts) when :surrogate; node << UP::Codepoint::Surrogate.new(token, active_opts) when :private_use; node << UP::Codepoint::PrivateUse.new(token, active_opts) when :unassigned; node << UP::Codepoint::Unassigned.new(token, active_opts) when *UPTokens::Age; node << UP::Age.new(token, active_opts) when *UPTokens::Derived; node << UP::Derived.new(token, active_opts) when *UPTokens::Emoji; node << UP::Emoji.new(token, active_opts) when *UPTokens::Enumerated; node << UP::Enumerated.new(token, active_opts) when *UPTokens::Script; node << UP::Script.new(token, active_opts) when *UPTokens::UnicodeBlock; node << UP::Block.new(token, active_opts) else raise UnknownTokenError.new('UnicodeProperty', token) end end def quantifier(token) target_node = node.extract_quantifier_target(token.text) # in case of chained quantifiers, wrap target in an implicit passive group # description of the problem: https://github.com/ammar/regexp_parser/issues/3 # rationale for this solution: https://github.com/ammar/regexp_parser/pull/69 if target_node.quantified? new_group = Group::Passive.construct( token: :passive, ts: target_node.ts, level: target_node.level, set_level: target_node.set_level, conditional_level: target_node.conditional_level, options: active_opts, ) new_group.implicit = true new_group << target_node increase_group_level(target_node) node.expressions[node.expressions.index(target_node)] = new_group target_node = new_group end unless token.token =~ /\A(?:zero_or_one|zero_or_more|one_or_more|interval) (?:_greedy|_reluctant|_possessive)?\z/x raise UnknownTokenError.new('Quantifier', token) end target_node.quantify(token, active_opts) end def increase_group_level(exp) exp.level += 1 exp.quantifier.level += 1 if exp.quantifier exp.terminal? || exp.each { |subexp| increase_group_level(subexp) } end def set(token) case token.token when :open; open_set(token) when :close; close_set when :negate; negate_set when :range; range(token) when :intersection; intersection(token) else raise UnknownTokenError.new('CharacterSet', token) end end def open_set(token) # TODO: this and Quantifier are the only cases where Expression#token # does not match the scanner/lexer output. Fix in v3.0.0. token.token = :character nest(CharacterSet.new(token, active_opts)) end def negate_set node.negate end def close_set decrease_nesting(&:close) end def range(token) exp = CharacterSet::Range.new(token, active_opts) scope = node.last.instance_of?(CharacterSet::IntersectedSequence) ? node.last : node exp << scope.expressions.pop nest(exp) end def intersection(token) sequence_operation(CharacterSet::Intersection, token) end def type(token) case token.token when :digit; node << CharacterType::Digit.new(token, active_opts) when :hex; node << CharacterType::Hex.new(token, active_opts) when :linebreak; node << CharacterType::Linebreak.new(token, active_opts) when :nondigit; node << CharacterType::NonDigit.new(token, active_opts) when :nonhex; node << CharacterType::NonHex.new(token, active_opts) when :nonspace; node << CharacterType::NonSpace.new(token, active_opts) when :nonword; node << CharacterType::NonWord.new(token, active_opts) when :space; node << CharacterType::Space.new(token, active_opts) when :word; node << CharacterType::Word.new(token, active_opts) when :xgrapheme; node << CharacterType::ExtendedGrapheme.new(token, active_opts) else raise UnknownTokenError.new('CharacterType', token) end end def close_completed_character_set_range decrease_nesting if node.instance_of?(CharacterSet::Range) && node.complete? end def active_opts options_stack.last end # Assigns referenced expressions to referring expressions, e.g. if there is # an instance of Backreference::Number, its #referenced_expression is set to # the instance of Group::Capture that it refers to via its number. def assign_referenced_expressions # find all referenceable and referring expressions targets = { 0 => root } referrers = [] root.each_expression do |exp| exp.is_a?(Group::Capture) && targets[exp.identifier] = exp referrers << exp if exp.referential? end # assign reference expression to referring expressions # (in a second iteration because there might be forward references) referrers.each do |exp| exp.referenced_expression = targets[exp.reference] || raise(ParserError, "Invalid reference #{exp.reference} at pos #{exp.ts}") end end end # module Regexp::Parser