# frozen_string_literal: true require 'rumale/utils' require 'rumale/validation' require 'rumale/base/estimator' require 'rumale/base/classifier' require 'rumale/tree/decision_tree_classifier' require 'rumale/ensemble/value' module Rumale module Ensemble # AdaBoostClassifier is a class that implements AdaBoost (SAMME.R) for classification. # This class uses decision tree for a weak learner. # # @example # require 'rumale/ensemble/ada_boost_classifier' # # estimator = # Rumale::Ensemble::AdaBoostClassifier.new( # n_estimators: 10, criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # # *Reference* # - Zhu, J., Rosset, S., Zou, H., and Hashie, T., "Multi-class AdaBoost," Technical Report No. 430, Department of Statistics, University of Michigan, 2005. class AdaBoostClassifier < ::Rumale::Base::Estimator include ::Rumale::Base::Classifier # Return the set of estimators. # @return [Array] attr_reader :estimators # Return the class labels. # @return [Numo::Int32] (size: n_classes) attr_reader :classes # Return the importance for each feature. # @return [Numo::DFloat] (size: n_features) attr_reader :feature_importances # Return the random generator for random selection of feature index. # @return [Random] attr_reader :rng # Create a new classifier with AdaBoost. # # @param n_estimators [Integer] The numeber of decision trees for contructing AdaBoost classifier. # @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'. # @param max_depth [Integer] The maximum depth of the tree. # If nil is given, decision tree grows without concern for depth. # @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree. # If nil is given, number of leaves is not limited. # @param min_samples_leaf [Integer] The minimum number of samples at a leaf node. # @param max_features [Integer] The number of features to consider when searching optimal split point. # If nil is given, split process considers all features. # @param random_seed [Integer] The seed value using to initialize the random generator. # It is used to randomly determine the order of features when deciding spliting point. def initialize(n_estimators: 50, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) super() @params = { n_estimators: n_estimators, criterion: criterion, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, max_features: max_features, random_seed: random_seed || srand } @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [AdaBoostClassifier] The learned classifier itself. def fit(x, y) # rubocop:disable Metrics/AbcSize x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_label_array(y) ::Rumale::Validation.check_sample_size(x, y) ## Initialize some variables. n_samples, n_features = x.shape @estimators = [] @feature_importances = Numo::DFloat.zeros(n_features) @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer) @params[:max_features] = [[1, @params[:max_features]].max, n_features].min @classes = Numo::Int32.asarray(y.to_a.uniq.sort) n_classes = @classes.shape[0] sub_rng = @rng.dup ## Boosting. classes_arr = @classes.to_a y_codes = Numo::DFloat.zeros(n_samples, n_classes) - 1.fdiv(n_classes - 1) n_samples.times { |n| y_codes[n, classes_arr.index(y[n])] = 1.0 } observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples) @params[:n_estimators].times do |_t| # Fit classfier. ids = ::Rumale::Utils.choice_ids(n_samples, observation_weights, sub_rng) break if y[ids].to_a.uniq.size != n_classes tree = ::Rumale::Tree::DecisionTreeClassifier.new( criterion: @params[:criterion], max_depth: @params[:max_depth], max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf], max_features: @params[:max_features], random_seed: sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) ) tree.fit(x[ids, true], y[ids]) # Calculate estimator error. proba = tree.predict_proba(x).clip(1.0e-15, nil) pred = Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[proba[n, true].max_index] }) inds = pred.ne(y) error = (observation_weights * inds).sum / observation_weights.sum # Store model. @estimators.push(tree) @feature_importances += tree.feature_importances break if error.zero? # Update observation weights. log_proba = Numo::NMath.log(proba) observation_weights *= Numo::NMath.exp(-1.0 * (n_classes - 1).fdiv(n_classes) * (y_codes * log_proba).sum(axis: 1)) observation_weights = observation_weights.clip(1.0e-15, nil) sum_observation_weights = observation_weights.sum break if sum_observation_weights.zero? observation_weights /= sum_observation_weights end @feature_importances /= @feature_importances.sum self end # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. def decision_function(x) x = ::Rumale::Validation.check_convert_sample_array(x) n_samples, = x.shape n_classes = @classes.size sum_probs = Numo::DFloat.zeros(n_samples, n_classes) @estimators.each do |tree| log_proba = Numo::NMath.log(tree.predict_proba(x).clip(1.0e-15, nil)) sum_probs += (n_classes - 1) * (log_proba - 1.fdiv(n_classes) * Numo::DFloat[log_proba.sum(axis: 1)].transpose) end sum_probs /= @estimators.size end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) x = ::Rumale::Validation.check_convert_sample_array(x) n_samples, = x.shape probs = decision_function(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[probs[n, true].max_index] }) end # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) x = ::Rumale::Validation.check_convert_sample_array(x) n_classes = @classes.size probs = Numo::NMath.exp(1.fdiv(n_classes - 1) * decision_function(x)) sum_probs = probs.sum(axis: 1) probs /= Numo::DFloat[sum_probs].transpose probs end end end end