require "dnn" require "dnn/lib/mnist" #require "numo/linalg/autoloader" include DNN::Layers include DNN::Activations include DNN::Optimizers Model = DNN::Model MNIST = DNN::MNIST x_train, y_train = MNIST.load_train x_test, y_test = MNIST.load_test x_train = Numo::SFloat.cast(x_train).reshape(x_train.shape[0], 784) x_test = Numo::SFloat.cast(x_test).reshape(x_test.shape[0], 784) x_train /= 255 x_test /= 255 y_train = DNN::Util.to_categorical(y_train, 10, Numo::SFloat) y_test = DNN::Util.to_categorical(y_test, 10, Numo::SFloat) model = Model.new model << InputLayer.new(784) model << Dense.new(256) model << BatchNormalization.new model << ReLU.new model << Dense.new(256) model << BatchNormalization.new model << ReLU.new model << Dense.new(10) model << SoftmaxWithLoss.new model.compile(RMSProp.new) model.train(x_train, y_train, 10, batch_size: 100, test: [x_test, y_test])