require 'spec_helper' describe Dydx::Algebra::Formula do let(:addition) { (:x + :y) } let(:subtraction) { (:x - :y) } let(:multiplication){ (:x * :y) } let(:division) { (:x / :y) } let(:exponentiation){ (:x ^ :y) } describe 'Calculate' do context 'With Fixnum' do let(:formula) { (:x + :y) } it{ expect((formula + 0).to_s).to eq(formula.to_s) } it{ expect((formula - 0).to_s).to eq(formula.to_s) } it{ expect((formula * 0).to_s).to eq('0') } it{ expect((formula * 1).to_s).to eq(formula.to_s) } it{ expect{(formula / 0).to_s}.to raise_error(ZeroDivisionError) } it{ expect(formula / 1).to eq(formula) } it{ expect((formula ^ 0).to_s).to eq('1') } end end describe '#to_s' do it{ expect(addition.to_s).to eq('( x + y )') } it{ expect(subtraction.to_s).to eq('( x - y )') } it{ expect(multiplication.to_s).to eq('( x * y )') } it{ expect(division.to_s).to eq('( x / y )') } it{ expect(exponentiation.to_s).to eq('( x ^ y )') } it{ expect( (addition * multiplication).to_s ).to eq('( ( x + y ) * ( x * y ) )') } end describe '#differentiate' do it{ expect(addition.d(:x).to_s).to eq('1') } it{ expect(addition.d(:y).to_s).to eq('1') } it{ expect(addition.d(:z).to_s).to eq('0') } it{ expect(subtraction.d(:x).to_s).to eq('1') } it{ expect(subtraction.d(:y).to_s).to eq('-1') } it{ expect(subtraction.d(:z).to_s).to eq('0') } it{ expect(multiplication.d(:x)).to eq(:y) } it{ expect(multiplication.d(:y)).to eq(:x) } it{ expect(multiplication.d(:z).to_s).to eq('0') } it{ expect(division.d(:x).to_s).to eq("( y ^ -1 )") } it{ expect(division.d(:y).to_s).to eq('( ( - x ) / ( y ^ 2 ) )') } it{ expect(division.d(:z).to_s).to eq('0') } it{ expect(exponentiation.d(:x).to_s).to eq('( y * ( x ^ ( y - 1 ) ) )') } it{ expect(exponentiation.d(:y).to_s).to eq('( ( x ^ y ) * log( x ) )') } it{ expect(exponentiation.d(:z).to_s).to eq('0') } end context 'With Symbol' do $a = (:x ^ :n) let(:d1){ da/dx } let(:d2){ d/dx($a) } it{ expect(d1.to_s).to eq('( n * ( x ^ ( n - 1 ) ) )') } it{ expect(d2.to_s).to eq('( n * ( x ^ ( n - 1 ) ) )') } end context 'With Symbol' do $b = (:x ^ (:x * 2)) let(:d1){ db/dx } let(:d2){ d/dx($b) } it{ expect(d1.to_s).to eq('( ( x * 2 ) * ( x ^ ( ( x * 2 ) - 1 ) ) )') } it{ expect(d2.to_s).to eq('( ( x * 2 ) * ( x ^ ( ( x * 2 ) - 1 ) ) )') } end end