/* ========================================================================= */ /* === AMD_aat ============================================================= */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD, Copyright (c) Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: DrTimothyAldenDavis@gmail.com */ /* ------------------------------------------------------------------------- */ /* AMD_aat: compute the symmetry of the pattern of A, and count the number of * nonzeros each column of A+A' (excluding the diagonal). Assumes the input * matrix has no errors, with sorted columns and no duplicates * (AMD_valid (n, n, Ap, Ai) must be AMD_OK, but this condition is not * checked). */ #include "amd_internal.h" GLOBAL size_t AMD_aat /* returns nz in A+A' */ ( Int n, const Int Ap [ ], const Int Ai [ ], Int Len [ ], /* Len [j]: length of column j of A+A', excl diagonal*/ Int Tp [ ], /* workspace of size n */ scs_float Info [ ] ) { Int p1, p2, p, i, j, pj, pj2, k, nzdiag, nzboth, nz ; scs_float sym ; size_t nzaat ; #ifndef NDEBUG AMD_debug_init ("AMD AAT") ; for (k = 0 ; k < n ; k++) Tp [k] = EMPTY ; ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; #endif if (Info != (scs_float *) NULL) { /* clear the Info array, if it exists */ for (i = 0 ; i < AMD_INFO ; i++) { Info [i] = EMPTY ; } Info [AMD_STATUS] = AMD_OK ; } for (k = 0 ; k < n ; k++) { Len [k] = 0 ; } nzdiag = 0 ; nzboth = 0 ; nz = Ap [n] ; for (k = 0 ; k < n ; k++) { p1 = Ap [k] ; p2 = Ap [k+1] ; AMD_DEBUG2 (("\nAAT Column: "ID" p1: "ID" p2: "ID"\n", k, p1, p2)) ; /* construct A+A' */ for (p = p1 ; p < p2 ; ) { /* scan the upper triangular part of A */ j = Ai [p] ; if (j < k) { /* entry A (j,k) is in the strictly upper triangular part, * add both A (j,k) and A (k,j) to the matrix A+A' */ Len [j]++ ; Len [k]++ ; AMD_DEBUG3 ((" upper ("ID","ID") ("ID","ID")\n", j,k, k,j)); p++ ; } else if (j == k) { /* skip the diagonal */ p++ ; nzdiag++ ; break ; } else /* j > k */ { /* first entry below the diagonal */ break ; } /* scan lower triangular part of A, in column j until reaching * row k. Start where last scan left off. */ ASSERT (Tp [j] != EMPTY) ; ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; pj2 = Ap [j+1] ; for (pj = Tp [j] ; pj < pj2 ; ) { i = Ai [pj] ; if (i < k) { /* A (i,j) is only in the lower part, not in upper. * add both A (i,j) and A (j,i) to the matrix A+A' */ Len [i]++ ; Len [j]++ ; AMD_DEBUG3 ((" lower ("ID","ID") ("ID","ID")\n", i,j, j,i)) ; pj++ ; } else if (i == k) { /* entry A (k,j) in lower part and A (j,k) in upper */ pj++ ; nzboth++ ; break ; } else /* i > k */ { /* consider this entry later, when k advances to i */ break ; } } Tp [j] = pj ; } /* Tp [k] points to the entry just below the diagonal in column k */ Tp [k] = p ; } /* clean up, for remaining mismatched entries */ for (j = 0 ; j < n ; j++) { for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) { i = Ai [pj] ; /* A (i,j) is only in the lower part, not in upper. * add both A (i,j) and A (j,i) to the matrix A+A' */ Len [i]++ ; Len [j]++ ; AMD_DEBUG3 ((" lower cleanup ("ID","ID") ("ID","ID")\n", i,j, j,i)) ; } } /* --------------------------------------------------------------------- */ /* compute the symmetry of the nonzero pattern of A */ /* --------------------------------------------------------------------- */ /* Given a matrix A, the symmetry of A is: * B = tril (spones (A), -1) + triu (spones (A), 1) ; * sym = nnz (B & B') / nnz (B) ; * or 1 if nnz (B) is zero. */ if (nz == nzdiag) { sym = 1 ; } else { sym = (2 * (scs_float) nzboth) / ((scs_float) (nz - nzdiag)) ; } nzaat = 0 ; for (k = 0 ; k < n ; k++) { nzaat += Len [k] ; } AMD_DEBUG1 (("AMD nz in A+A', excluding diagonal (nzaat) = %g\n", (scs_float) nzaat)) ; AMD_DEBUG1 ((" nzboth: "ID" nz: "ID" nzdiag: "ID" symmetry: %g\n", nzboth, nz, nzdiag, sym)) ; if (Info != (scs_float *) NULL) { Info [AMD_STATUS] = AMD_OK ; Info [AMD_N] = n ; Info [AMD_NZ] = nz ; Info [AMD_SYMMETRY] = sym ; /* symmetry of pattern of A */ Info [AMD_NZDIAG] = nzdiag ; /* nonzeros on diagonal of A */ Info [AMD_NZ_A_PLUS_AT] = nzaat ; /* nonzeros in A+A' */ } return (nzaat) ; }