# fluent-plugin-bigquery [Fluentd](http://fluentd.org) output plugin to load/insert data into Google BigQuery. * insert data over streaming inserts * for continuous real-time insertions * https://developers.google.com/bigquery/streaming-data-into-bigquery#usecases * (NOT IMPLEMENTED) load data * for data loading as batch jobs, for big amount of data * https://developers.google.com/bigquery/loading-data-into-bigquery Current version of this plugin supports Google API with Service Account Authentication, but does not support OAuth flow for installed applications. ## Configuration ### Streaming inserts Configure insert specifications with target table schema, with your credentials. This is minimum configurations: ```apache type bigquery method insert # default auth_method private_key # default email xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxx@developer.gserviceaccount.com private_key_path /home/username/.keys/00000000000000000000000000000000-privatekey.p12 # private_key_passphrase notasecret # default project yourproject_id dataset yourdataset_id table tablename time_format %s time_field time field_integer time,status,bytes field_string rhost,vhost,path,method,protocol,agent,referer field_float requesttime field_boolean bot_access,loginsession ``` For high rate inserts over streaming inserts, you should specify flush intervals and buffer chunk options: ```apache type bigquery method insert # default flush_interval 1 # flush as frequent as possible buffer_chunk_records_limit 300 # default rate limit for users is 100 buffer_queue_limit 10240 # 1MB * 10240 -> 10GB! num_threads 16 auth_method private_key # default email xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxx@developer.gserviceaccount.com private_key_path /home/username/.keys/00000000000000000000000000000000-privatekey.p12 # private_key_passphrase notasecret # default project yourproject_id dataset yourdataset_id tables accesslog1,accesslog2,accesslog3 time_format %s time_field time field_integer time,status,bytes field_string rhost,vhost,path,method,protocol,agent,referer field_float requesttime field_boolean bot_access,loginsession ``` Important options for high rate events are: * `tables` * 2 or more tables are available with ',' separator * `out_bigquery` uses these tables for Table Sharding inserts * these must have same schema * `buffer_chunk_records_limit` * number of records over streaming inserts API call is limited as 100, per second, per table * default average rate limit is 100, and spike rate limit is 1000 * `out_bigquery` flushes buffer with 100 records for 1 inserts API call * `buffer_queue_limit` * BigQuery streaming inserts needs very small buffer chunks * for high-rate events, `buffer_queue_limit` should be configured with big number * Max 1GB memory may be used under network problem in default configuration * `buffer_chunk_limit (default 1MB)` x `buffer_queue_limit (default 1024)` * `num_threads` * threads for insert api calls in parallel * specify this option for 100 or more records per seconds * 10 or more threads seems good for inserts over internet * less threads may be good for Google Compute Engine instances (with low latency for BigQuery) * `flush_interval` * `1` is lowest value, without patches on Fluentd v0.10.41 or earlier * see `patches` below ### Authentication There are two methods supported to fetch access token for the service account. 1. Public-Private key pair 2. Predefined access token (Compute Engine only) The examples above use the first one. You first need to create a service account (client ID), download its private key and deploy the key with fluentd. On the other hand, you don't need to explicitly create a service account for fluentd when you run fluentd in Google Compute Engine. In this second authentication method, you need to add the API scope "https://www.googleapis.com/auth/bigquery" to the scope list of your Compute Engine instance, then you can configure fluentd like this. ```apache type bigquery auth_method compute_engine project yourproject_id dataset yourdataset_id table tablename time_format %s time_field time field_integer time,status,bytes field_string rhost,vhost,path,method,protocol,agent,referer field_float requesttime field_boolean bot_access,loginsession ``` ### Table id formatting `table` and `tables` options accept [Time#strftime](http://ruby-doc.org/core-1.9.3/Time.html#method-i-strftime) format to construct table ids. Table ids are formatted at runtime using the local time of the fluentd server. For example, with the configuration below, data is inserted into tables `accesslog_2014_08`, `accesslog_2014_09` and so on. ```apache type bigquery ... project yourproject_id dataset yourdataset_id table accesslog_%Y_%m ... ``` Note that the timestamp of logs and the date in the table id do not always match, because there is a time lag between collection and transmission of logs. ### Dynamic table creating When `auto_create_table` is set to `true`, try to create the table using BigQuery API when insertion failed with code=404 "Not Found: Table ...". Next retry of insertion is expected to be success. NOTE: `auto_create_table` option cannot be used with `fetch_schema`. You should create the table on ahead to use `fetch_schema`. ```apache type bigquery ... auto_create_table true table accesslog_%Y_%m ... ``` ### Table schema There are three methods to describe the schema of the target table. 1. List fields in fluent.conf 2. Load a schema file in JSON. 3. Fetch a schema using BigQuery API The examples above use the first method. In this method, you can also specify nested fields by prefixing their belonging record fields. ```apache type bigquery ... time_format %s time_field time field_integer time,response.status,response.bytes field_string request.vhost,request.path,request.method,request.protocol,request.agent,request.referer,remote.host,remote.ip,remote.user field_float request.time field_boolean request.bot_access,request.loginsession ``` This schema accepts structured JSON data like: ```json { "request":{ "time":1391748126.7000976, "vhost":"www.example.com", "path":"/", "method":"GET", "protocol":"HTTP/1.1", "agent":"HotJava", "bot_access":false }, "remote":{ "ip": "192.0.2.1" }, "response":{ "status":200, "bytes":1024 } } ``` The second method is to specify a path to a BigQuery schema file instead of listing fields. In this case, your fluent.conf looks like: ```apache type bigquery ... time_format %s time_field time schema_path /path/to/httpd.schema field_integer time ``` where /path/to/httpd.schema is a path to the JSON-encoded schema file which you used for creating the table on BigQuery. The third method is to set `fetch_schema` to `true` to enable fetch a schema using BigQuery API. In this case, your fluent.conf looks like: ```apache type bigquery ... time_format %s time_field time fetch_schema true field_integer time ``` If you specify multiple tables in configuration file, plugin get all schema data from BigQuery and merge it. NOTE: Since JSON does not define how to encode data of TIMESTAMP type, you are still recommended to specify JSON types for TIMESTAMP fields as "time" field does in the example, if you use second or third method. ### Specifying insertId property BigQuery uses `insertId` property to detect duplicate insertion requests (see [data consistency](https://cloud.google.com/bigquery/streaming-data-into-bigquery#dataconsistency) in Google BigQuery documents). You can set `insert_id_field` option to specify the field to use as `insertId` property. ```apache type bigquery ... insert_id_field uuid field_string uuid ``` ## TODO * support Load API * with automatically configured flush/buffer options * support optional data fields * support NULLABLE/REQUIRED/REPEATED field options in field list style of configuration * OAuth installed application credentials support * Google API discovery expiration * Error classes * check row size limits ## Authors * @tagomoris: First author, original version * KAIZEN platform Inc.: Maintener, Since 2014.08.19